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Allocation Rules on Networks
∗

Rahmi İlkılıç† and Çağatay Kayı‡

Abstract

When allocating a resource, geographical and infrastructural constraints

have to be taken into account. We study the problem of distributing

a resource through a network from sources endowed with the resource

to citizens with claims. A link between a source and an agent depicts

the possibility of a transfer from the source to the agent. Given the

supplies at each source, the claims of citizens, and the network, the

question is how to allocate the available resources among the citizens.

We consider a simple allocation problem that is free of network

constraints, where the total amount can be freely distributed. The

simple allocation problem is a claims problem where the total amount

of claims is greater than what is available. We focus on consistent and

resource monotonic rules in claims problems that satisfy equal treat-

ment of equals. We call these rules fairness principles and we extend

fairness principles to allocation rules on networks. We require that
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for each pair of citizens in the network, the extension is robust with

respect to the fairness principle. We call this condition pairwise robust-

ness with respect to the fairness principle. We provide an algorithm

and show that each fairness principle has a unique extension which is

pairwise robust with respect to the fairness principle. We give appli-

cations of the algorithm for three fairness principles: egalitarianism,

proportionality and equal sacrifice.

Keywords: Networks, Claims Problems, Egalitarianism, Proportionality, Equal Sac-

rifice.

JEL–Numbers: D61, D85, Q20.

1 Introduction

The world has become a densely connected network, especially for markets and

natural resources. Given geographical or infrastructural constraints, it is important

to understand how scarce resources should be allocated. An example where such

network constraints are essential is fresh water resources. As a result of increasing

population and developing economies, there is a growing need for water. The

principal problem is to have an efficient and fair allocation of resources (Ansink and

Weikard, 2009; Hoekstra, 2006). Some other examples are aid relief during disaster

situations (Özdamar et al., 2004), common property fisheries (İlkılıç, 2007), and

the distribution of utilities like electricity and natural gas when there is a supply

shock.

We study the problem of distributing a resource through a bipartite network

between citizens with positive claims, needs, or entitlements and sources that are

endowed with a limited amount of the desired resource. If there is a link between

a source and a citizen, then the citizen can receive the resource from the source.

Each source has a limited supply of the resource and each citizen has a claim

on the resource. Given the network constraints, the demand of citizens, and the

supplies at each source, the question is how to allocate the resource among the

citizens. An allocation rule assigns to each citizen a quantity of resource satisfying

the following feasibility constraints: First, a citizen can not receive more than his

demand. Second, a source can not deliver more than its supply.

We study those problems where total demand exceeds total supply where all

the agents suffer from the scarcity.1 When individuals have claims on a resource

1If there is a group of agents on the network whose claims can be completely satisfied
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that sum up to more than what is available, how should the resource be divided?

This problem is a claims problem, formally introduced by O’Neill (1982). Several

rules are commonly used in practice and analyzed in theoretical work (Thomson,

2003, 2006).

An allocation problem is defined by the supplies at the sources, the claims of

citizens, and the network. The question is how to allocate the resources among

the citizens. First, we define a simple allocation problem that is free of network

constraints, where the total amount can be freely distributed between the agents.

The simple allocation problem is in fact a claims problem. We focus on a subset of

rules in claims problems. A rule satisfies equal treatment of equals if two citizens

with equal claims receive equal amounts. A rule is resource monotonic if when the

resource increases, each citizen receives at least as much as he did initially. For

the next property, suppose a rule has been applied to a claims problem and some

citizens leave with what they are prescribed by the rule. If we apply the rule to the

problem with the remaining citizens and the remaining resources, then the initial

prescribed allocation should not change for the remaining ones. A rule is consistent

if it satisfies this invariance property.

We refer to the rules that are consistent and resource monotonic satisfying

equal treatment of equals as fairness principles. We extend fairness principles to

allocation rules on networks. We require that for each pair of citizens in the network,

the extension is robust with respect to the fairness principle. We call this condition

pairwise robustness with respect to the fairness principle. We provide an algorithm

to extend a fairness principle to an allocation rule which is pairwise robust with

respect to the fairness principle (Theorem 1). This algorithm is parallel to the

ascending algorithms used in Moulin (1999) and Bochet et al. (2010, 2011). Then,

we show that each fairness principle has a unique extension which is pairwise robust

with respect to the fairness principle (Theorem 2).

The literature on flow sharing on networks has focused on computation of egali-

tarian solutions (Megiddo, 1974, 1977; Brown, 1979; Hall and Vohra, 1993). Several

allocation rules for allocation problems on networks have recently been introduced

and axiomatized in Branzei et al. (2008), Bjørndal and Jörnsten (2010), Bochet

et al. (2010, 2011), and Moulin and Sethuraman (2011).

Branzei et al. (2008) represent a claims problem as a standard flow problem

on a simple network and implement some known rules via suitable cost functions

in the related minimum cost flow problem. Bjørndal and Jörnsten (2010) provide

without any burden on others, we can simply take those agents put of the network and

focus on the “genuine” problem
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an extension of two simple allocation rules (the contested-garment rule and the

constrained equal awards rule) by applying to each two person problem.

Bochet et al. (2010) study the egalitarian rule for allocation problems on net-

works, which they characterize with Pareto optimality, equal treatment of equals

and strategy-proofness. Their egalitarian rule is an extension of the uniform rule

(Sprumont, 1991) for the simple allocation problem to an allocation problem on net-

works in an agent consistent way, meaning if an agent leaves the problem with her

share and the corresponding amounts are reduced from the sources she received her

share, then in the remaining network the agents should receive the same amounts

as in the original problem. Our aim in this paper is to extend all consistent and

resource monotonic rules satisfying equal treatment of equals for the simple prob-

lem to a network allocation problem in an agent consistent manner. Our pairwise

robustness captures this consistency requirement.

Moulin and Sethuraman (2011) provides an alternative extension of simple al-

location rules in a source consistent fashion, meaning if a source leaves the problem

with its resources and the corresponding amounts are reduced from the agents

receiving them, then the new problem should allocate the agents the shares they

received in the original problem plus the amounts allocated from the deleted source.

Bochet et al. (2011) studies the problem of balancing the demands and supplies be-

tween agents where links depict the transfer from a supplier to a demander. That

is different from a classic allocation problem as the agents receive the commodity

they desire from other agents (Klaus et al., 1997, 1998).

The allocation problem we study is different from models where agents are

located sequentially on a line or the so-called river sharing (Ambec and Sprumont,

2002; Ambec and Ehlers, 2008; Ansink and Weikard, 2011). A river sharing problem

can be written as an allocation problem on a network where agents’ access to sources

are hierarchical.2 Hence our model is more general than a river sharing problem as

we have no restrictions on the possible networks between sources and agents. Our

model is also different than the division of a single commodity supplied by multiple

sources as studied in Kar and Kıbrıs (2008). There, although an agent, a priori,

can consume from any source, she must receive all her endowment from a single

2In more detail, the river sharing can be written as an allocation problem on a network

in the following manner. The initial stream reaching the first agent on the river and the

rainfall received by every agent are the sources in our network. The last agent on the river

has access to all sources. The second from the last agent has access to all sources except

the rainfall of the last agent and in general an agent has access to all sources except the

rainfall of her downstream agents.
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source whereas an agent in our model can receive her share from several sources

which she has access to.

In Section 2, we introduce the model and some properties of fairness principles.

In Section 3, we present the algorithm and give the results. In Section 4, we give

three applications of the algorithm. We conclude in Section 5.

2 Model

Let S be the set of sources and |S| = m, and C be the set of citizens and |C| = n.

Each source t ∈ S has a non-negative supply st ∈ R+ and each citizen i ∈ C

has a non-negative claim ci ∈ R+ for the resource.

Let s = (s1, s2, ..., sm) be the supply vector and c = (c1, c2, ..., cn) be the claims

vector. The sources and citizens are embedded in a network in which citizens can

acquire the resource only from the sources they are connected to. A bipartite

graph g ⊆ S × C consists of links between nodes in S and C. If a link connects

a source t to a citizen i in g, i.e., ti ∈ g, then it is possible for citizen i to acquire

the resource from source t. We assume that g is connected. If it is not, then we

can treat each connected component of g as a separate problem. Let Gn×m be the

set of all connected bipartite graphs between S and C.

A subgraph of g is a graph g(T,D) ⊆ g such that T ⊆ S, D ⊆ C and each

link in g that connects a source in T to a citizen in D is a member of g(T,D), i.e.,

g(T,D) = g ∩ (T ×D). For a subgraph g(T,D) of g, we denote by g(S\T,C\D),

the subgraph of g that results when we remove all nodes in T ∪ D from g. Let

Ng(T) be the set of citizens connected to the set of sources T in g; Ng(T ) =

{i ∈ C such that ti ∈ g for some t ∈ T}. Similarly, Ng(D) be the set of sources

connected to the set of citizenD in g; Ng(D) = {t ∈ S such that ti ∈ g for some i ∈

D}.

An allocation is a vector q = (q1, q2, ..., qn) ∈ R
n
+ showing how much resource

is allocated to each citizen. A transfer of resources, or simply a flow, is a vector φ

∈ R
S×D
+ , where φti is the amount sent from source t to citizen i such that if ti /∈ g,

then φti = 0.

An allocation q is feasible if there is a flow φ ∈ R
S×D
+ that supports it, i.e., for

each citizen i ∈ C, qi =
∑

t∈Ng(i)
φti and for each source t ∈ S,

∑
i∈Ng(t)

φti ≤ st.

An allocation q is efficient if it is feasible and there is no other feasible allocation

q′ such that for each citizen i ∈ C, we have ci ≥ q′i ≥ qi and
∑

i q
′
i >

∑
i qi. A

feasible allocation q satisfies claim boundedness if for each citizen i ∈ C, qi ≤ ci.
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An allocation problem is a triple R = (s, c, g) such that

for all T ⊂ S,
∑

t∈T

st <
∑

i∈Ng(T )

ci

Note that no subset of sources has enough resource to satisfy the claims of the

citizens connected to them. Hence, the allocation problem is “genuine” in the sense

that a citizen receives the resource always at the expense of some other citizen.

Let R= R
m
+ × R

n
+ × Gm×n be the set of allocation problems. See Figure 1 for an

example of an allocation problem.

t t t t

t t t t t t

s1 = 1 s2 = 1 s3 = 2 s4 = 2

c1 = 1 c2 = 1 c3 = 1 c4 = 2 c5 = 3 c6 = 5

g

Figure 1: An example of an allocation problem: R = (s, c, g) is an

allocation problem with S = {1, 2, 3, 4}, C = {1, 2, 3, 4, 5, 6}, s = (1, 1, 2, 2), and c =

(1, 1, 1, 2, 3, 5).

An allocation rule ϕ is a function which assigns to each allocation problem

(s, c, g) an efficient allocation that satisfies claim boundedness. Since each rule

assigns an allocation to each problem, there is a flow supporting that allocation.

If φ(s, c, g) is a flow that supports ϕ(s, c, g), then for each citizen i, ϕi(s, c, g) =∑
t∈Sg(i)

φti(s, c, g).

A simple allocation problem is a pair P = (c, ω) such that
∑

i∈C ci ≥ ω.

Note that P represents the problem of allocating an amount ω ≥ 0 among the

citizens in C. There is no restriction on the possible flows and ω can be distributed

freely to citizens. Let P = R
m
+ × R+ be the set of simple allocation problems.

A rule f is a function which assigns to each simple allocation problem (c, ω)

an efficient allocation, i.e.,
∑

i∈C fi(c, ω) = ω that satisfies claim boundedness, i.e.,

for each i ∈ C, fi(c, ω) ≤ ci.
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A rule f satisfies equal treatment of equals if for each simple allocation

problem (c, ω) and each pair of citizens i, j ∈ C with ci = cj , we have fi(c, ω) =

fj(c, ω), i.e. two citizens with equal claims receive equal amounts.

For the next property, suppose a rule has been applied to a claims problem

and some citizens leave with what they are prescribed by the rule. If we apply the

rule to the problem with the remaining citizens and the remaining resource, then

the initial prescribed allocation does not change for the remaining ones. A rule is

consistent if it satisfies this invariance property. Formally, a rule f is consistent

if for each simple allocation problem (c, ω), each D ⊂ C, and each i ∈ C\D,

fi(c−D, ω −
∑

j∈D

fj(c, ω)) = fi(c, ω)

where c−D is the claims vector of the citizens in C\D.

A rule is resource monotonic if when the resource increases, each citizen receives

at least as much as he did initially. A rule f is resource monotonic if for each

pair of simple allocation problems (c, ω) and (c, ω′) with ω′ > ω and each i ∈ C,

we have fi(c, ω
′) ≥ fi(c, ω).

We focus on consistent and resource monotonic rules in claims problems that

satisfy equal treatment of equals. We call these rules fairness principles. Our aim

is to extend each fairness principle to an allocation rule on a network. We require

the extension to conserve the essence of the fairness principle. We formalize this

requirement by the following definition:

Pairwise f-Robustness: Given an allocation problem (s, c, g) and a fairness

principle f , an allocation q is pairwise f -robust if for each pair of citizens i, j ∈

C with f((ci, cj), qi + qj) = (q∗i , q
∗
j ), there exists no feasible allocation q′ for the

allocation problem (s, c, g) such that for each k 6= i, j, q′k = qk and

|q∗i − q′i| < |q∗i − qi|.

An allocation rule ϕ is pairwise f -robust if for each allocation problem (s, c, g) ∈

R, ϕ(s, c, g) = q satisfies pairwise f -robustness.

Next, we construct an algorithm to extend any fairness principle f to an al-

location rule ϕf that is pairwise f -robust. Then, we show that for each fairness

principle f , there exists a unique allocation rule which is pairwise f -robust.
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3 The Ascending Algorithm

Let f be a fairness principle. Given the claims of the citizens c, consider the

simple allocation problem with a single source of capacity ω ≥ 0. For each citizen

i, let fi(c, ω) be the amount that citizen i ∈ C would have received under the

fairness principle f in the simple allocation problem (c, ω). Note that by resource

monotonicity, fi(c, ω) is an increasing function of ω.

We obtain the allocation rule ϕf (s, c, g) by an ascending algorithm based on

the following system K(ω) of inequalities where ω is a non-negative parameter:

∑

i∈D

fi(c, ω) ≤
∑

t∈Ng(D)

st for all D ⊆ C (1)

For ω = 0, equation (1) is satisfied for each D ⊆ C. For ω =
∑

i∈C ci, there

exists D ⊆ C such that

∑

i∈D

fi(ω, c) >
∑

t∈Ng(D)

st

by construction. Hence, there exists a largest ω1 such that

∑

ci∈D

qi(c, ω
1) ≤

∑

st∈Ng(D)

st for each D ⊆ C (2)

∑

ci∈D

qi(c, ω
1) =

∑

st∈Ng(D)

st for some D ⊆ C (3)

As
∑

t∈Ng(D) st is a submodular function of D, there exists a unique largest D1

such that equation (2) holds. The allocation ϕf (s, c, g) = q is obtained by setting

qi = fi(c, ω
1) for each i ∈ D1

and assigning other agents their allocation in the reduced problem (s \Ng(D
1), c \

D1, g \ (Ng(D
1) ∪D1)). That is, we look for the largest ω2 > 0 such that

∑

i∈D

fi(c, ω
2) ≤

∑

t∈Ng(D)\Ng(D1)

st for each D ⊆ C \D1 (4)

∑

i∈D

fi(c, ω
2) =

∑

t∈Ng(D)\Ng(D1)

st for some D ⊆ C \D1 (5)

Then, there exists a unique largest set D2 such that equation (4) holds. Observe

that ω2 ≥ ω1. Since if ω2 ≤ ω1, we combine equations (2) and (4) to obtain
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∑

ci∈D1∪D2

qi(c, ω
1) ≥

∑

ci∈D1

qi(c, ω
1) +

∑

ci∈D2

qi(c, ω
2) =

∑

st∈Ng(D1∪D2)

st

which contradicts the choice of D1 as the largest set satisfying equation (2).

Theorem 1. For each fairness principle f , the allocation rule ϕf obtained by the

ascending algorithm is pairwise f -robust.

Proof. Let (s, c, g) be an allocation problem, ϕf (s, c, g) = q, and i, j ∈ C. First,

suppose that the ascending algorithm assigns to i and j their allocations in the same

iteration step, which means qi = fi(c, ω) and qj = fj(c, ω) for ω > 0. Consider the

simple allocation problem ((ci, cj), qi+qj). Since f is consistent, f((ci, cj), qi+qj) =

(qi, qj). Hence, pairwise f -robustness is trivially satisfied.

Now, suppose that the ascending algorithm assigns to i and j their allocations

in different iteration steps, meanings qi = fi(c, ω) and qj = fj(c, ω
′) for ω, ω′ > 0,

which are the parameters obtained from the ascending algorithm. Assume without

loss of generality that ω′ > ω. By resource monotonicity, we have qi = fi(c, ω) ≤

fi(c, ω
′) and qj = fj(c, ω

′) ≥ fj(c, ω). If one of these inequalities is not strict, then

f((ci, cj), qi + qj) = (qi, qj) by the same argument presented above. Hence, assume

that qi = fi(c, ω) < fi(c, ω
′) and qj = fj(c, ω

′) > fj(c, ω). Let fi(c, ω
′) = q̄i and

fj(c, ω) = q̄j . By consistency, we have f((ci, cj), qi+q̄j) = (qi, q̄j) and f((ci, cj), q̄i+

qj) = (q̄i, qj). Then, by resource monotonicity, we have fi((ci, cj), qi + qj) ≥ qi and

fj((ci, cj), qi + qj) ≤ qi. If one of these inequalities are weak, then pairwise f -

robustness is satisfied. Hence, assume that both are strict. Since the algorithm

assigns j’s allocation after i’s allocation, there is no feasible allocation q′ such that

for each k 6= i, j, qk = q′k and q′i > qi. The reason is that each citizen who receives

his allocation at some step h obtains no resource from the sources, he shares with

citizens who receive their allocations in the steps earlier than h. Hence, ϕf obtained

by the ascending algorithm is pairwise f -robust.

Theorem 2. For each fairness principle f , there exists a unique allocation rule ϕf

which is pairwise f -robust.

Proof. Let ϕf be the allocation rule given by the ascending algorithm. Suppose

there exists some other rule ϕ 6= ϕf which also satisfies pairwise f -robustness. Then,

there exists an allocation problem (s, c, g) such that ϕ(s, c, g) = q′ 6= q = ϕf (s, c, g).

Let D1, D2, ..., Dh be the set of citizens which are allocated in steps 1, 2, ..., h

of the ascending algorithm, respectively. Suppose that there exists i ∈ D1 such
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that q′i < qi. Then, qi = fi(c, ω) for some ω > 0. Let φ′ be a flow which supports

the allocation q′. Consider the set of sources S1 = Ng(i) connected to i. Let

C1 = {j ∈ C : ∃t ∈ S1 such that φ′
tj > 0}. This set is non-empty, because the

resources which were going to i in q, now must be allocated to other citizens which

share sources with i, due to the efficiency of the allocation q′.

If there exists j ∈ C1 such that q′j > fj(c, ω), then it is possible to transfer

some positive amount from j to i through the path jt, ti without changing the

allocations of citizens other than i and j, contradicting pairwise f -robustness.

So, suppose that for each citizen j ∈ C1, q′j ≤ fj(c, ω). Consider the set

S2 = Ng(C
1) and C2 = {j ∈ C : ∃t ∈ S2 such that φ′

tj > 0}. Since q′i < qi and

for each citizen j ∈ C1, q′j ≤ fj(c, ω), C
2 is non-empty. If there exists j ∈ C2

such that q′j > fj(c, ω), then it is possible to transfer some positive amount from

j to i through a path j2t2, t2j1, j1t1, t1i for some j2 ∈ C2, t2 ∈ S2, j1 ∈ C1,

and t1 ∈ S1, without changing the allocations of citizens other than i and j2,

contradicting pairwise f -robustness.

If there exists no j ∈ C2 such that q′j > fj(c, ω), then we continue iteratively

to look for a j such that q′j > qj . Such a j exists, because q′i < qi and the resource

allocation rule ϕ is efficient. Then, it is possible to make a transfer from j to i

without changing the allocations of other citizens.

If for each i ∈ D1, q′i ≥ qi, then we have q′i = qi for all i ∈ D1. Since q 6= q′,

there exists i ∈ Dh1 such that for each h2 < h1 and each j ∈ Dh2 , q′j = qj and we

can apply the same iterative argument starting from i to find a contradiction to

pairwise f -robustness.

Hence, ϕf is the unique allocation rule which is pairwise f -robust.

4 Three allocation rules

4.1 Egalitarian Allocation Rule

The first fairness principle we extend is egalitarianism.

Egalitarian Rule, e : For each P = (c, ω) ∈ P, egalitarian rule assigns an

allocation e(c, ω)= q such that for each i ∈ C, qi = min{ci, λ} where λ solves∑
i∈C min{ci, λ} = ω.

We extend egalitarianism to obtain the egalitarian allocation ruleϕe(s, c, g)=

q. Instead of the extension algorithm proposed in the previous section, we use an
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equivalent, but more revealing ascending algorithm based on the following system

E(λ) of inequalities where λ is a non-negative parameter.3

∑

j∈D

λ ∧ cj ≤
∑

t∈Ng(D)

st for all D ⊆ C (6)

For λ = 0, equation (6) is satisfied for each D ⊆ C. For λ = ∞, there exists D ⊆ C

such that

∑

j∈D

λ ∧ cj >
∑

t∈Ng(D)

st

by construction. Hence, there exists a lowest λ1, strictly positive, such that

∑

j∈D

λ1 ∧ cj =
∑

t∈Ng(D)

st for some D ⊆ C (7)

As
∑

t∈Ng(D) st is a submodular function of D, there exists a unique largest D1 such

that equation (7) holds for. The egalitarian allocation ϕe(s, c, g) = q is obtained

by setting

qj = λ1 ∧ cj for j ∈ D1

and assigning other agents their egalitarian allocation in the reduced problem (s \

Ng(D
1), c\D1, g \ (Ng(D

1)∪D1)). That is, we look for the lowest λ2 > 0 such that

∑

j∈D

λ2 ∧ cj =
∑

t∈Ng(D)\Ng(D1)

st for some D ⊆ C \D1 (8)

There exists a unique largest set D2 such that equation (8) holds for. If λ2 ≤ λ1,

we combine equations (7) and (8) to obtain

∑

j∈D1∪D2

λ1 ∧ cj ≥
∑

j∈D1

λ1 ∧ cj +
∑

j∈D2

λ2 ∧ cj =
∑

t∈Ng(D1∪D2)

st

which contradicts the choice of D1 as the largest set satisfying equation (7).

The egalitarian allocation rule is ϕe(s, c, g) = q obtained in the algorithm

above. For an example of the egalitarian allocation rule, see Figure 2.

3Note that for each λ ∈ R+, each c ∈ R
n
+, and each j = 1, 2, ..., n, λ ∧ cj ≡ min{λ, cj}.
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t t t t

t t t t t t

s1 = 1 s2 = 1 s3 = 2 s4 = 2

c1 = 1 c2 = 1 c3 = 1 c4 = 2 c5 = 3 c6 = 5

ge1

(λ1 = 2

3
)

g

ge2

(λ2 = 4

3
)

Figure 2: Egalitarian allocation rule: For the allocation problem R = (s, c, g),

the egalitarian allocation is ϕe(s, c, g) = ( 2
3
, 2

3
, 2

3
, 4

3
, 4

3
, 4

3
). In the algorithm, the lowest λ1

satisfying equation (7) is 2

3
and the largest set satisfying equation (7) is D1 = {1, 2, 3}.

Then, the lowest λ2 satisfying equation (8) is 4

3
and the largest set satisfying equation (8)

is D2 = {4, 5, 6}.

4.2 Proportional Allocation Rule

The second fairness principle is proportionality.

Proportional Rule, p: For each P = (c, ω) ∈ P , proportional rule assigns an

allocation p(c, ω)= q = πc where π = ω∑
i∈C ci

.

We obtain the proportional allocation rule ϕp(s, c, g)= q by an ascending

algorithm based on the following system P (π) of inequalities where π is a non-

negative parameter.

∑

i∈D

π.ci ≤
∑

t∈Ng(D)

st for all D ⊆ C (9)

For π = 0, equation (9) is satisfied for all D ⊆ C. For π = 1 there exists D ⊆ C

such that

∑

i∈D

π.ci >
∑

t∈Ng(D)

st

by construction. Hence, there exists a lowest π1, strictly positive, such that

∑

i∈D

π1.ci =
∑

t∈Ng(D)

st for some D ⊆ C (10)
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As
∑

t∈Ng(D) st is a submodular function of D, there exists a unique largest D1

such that equation(10) holds for. The proportional allocation rule ϕp(s, c, g) = q is

obtained by setting

qi = π1.ci for i ∈ D1

and assigning other agents their constrained proportional allocation in the reduced

problem (s \ Ng(D
1), c \ D1, g \ (Ng(D

1) ∪ D1)). That is, we look for the lowest

π2 > 0 such that

∑

i∈D

π2.ci =
∑

t∈Ng(D)\Ng(D1)

st for some D ⊆ C \D1 (11)

There exists a unique largest set D2 such that equation (11) holds for. If

π2 ≤ π1, we combine equations (10) and (11) to obtain

∑

i∈D1∪D2

π1.ci ≥
∑

i∈D1

π1.ci +
∑

i∈D2

π2.ci =
∑

t∈Ng(D1∪D2)

st

which contradicts the choice of D1 as the largest set satisfying equation (10).

t t t t

t t t t t t

s1 = 1 s2 = 1 s3 = 2 s4 = 2

c1 = 1 c2 = 1 c3 = 1 c4 = 2 c5 = 3 c6 = 5

g
p
2

(π2 = 1

2
)

g

g
p
1

(π1 = 2

5
)

Figure 3: Proportional allocation rule: For the allocation problem R =

(s, c, g), the proportional allocation is ϕp(s, c, g) = ( 1
2
, 1

2
, 1

2
, 1, 3

2
, 2). In the algorithm,

the lowest π1 satisfying equation (10) is 1

2
and the largest set satisfying equation (10) is

D1 = {1, 2, 3, 4, 5}. Then, the lowest π2 satisfying equation (11) is 2

5
and the largest set

satisfying equation (11) is D2 = {6}.

The proportional allocation rule is ϕp(s, c, g) = q obtained in the algorithm

above. For an example of the proportional allocation rule, see Figure 3.
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4.3 Equal Sacrifice Allocation Rule

The third fairness principle is egalitarianism in terms of the sacrifices required from

the agents.

Equal Sacrifice Rule, l : For each P = (c, ω) ∈ P, equal sacrifice rule assigns

an allocation l(c, ω)= q such that for each i ∈ C, qi = max{0, ci − σ} where σ

solves
∑

i∈C max{0, ci − σ} = ω.

We obtain the equal sacrifice allocation rule ϕl(s, c, g)= q by a descending

algorithm based on the following system S(σ) of inequalities where σ is a non-

negative parameter.4

∑

i∈D

0 ∨ (ci − σ) ≤
∑

t∈Ng(D)

st for all D ⊆ C (12)

For σ = ∞, equation (12) is satisfied for all D ⊆ C. For σ = 0 there exists

D ⊆ C such that

∑

i∈D

0 ∨ (ci − σ) >
∑

t∈Ng(D)

st

by construction. Hence, there exists a largest σ1 such that

∑

i∈D

0 ∨ (ci − σ1) =
∑

t∈Ng(D)

st for some D ⊆ C (13)

As
∑

t∈Ng(D) st is a submodular function of D, there exists a unique largest

D1 such that equation(13) holds for. The equal sacrifice allocation ϕl(s, c, g) = q

is obtained by setting

qi = 0 ∨ (ci − σ1) for i ∈ D1

and assigning other agents their equal sacrifice allocation in the reduced problem

(s\Ng(D
1), c\D1, g \ (Ng(D

1)∪D1)). That is, we look for the largest σ2 > 0 such

that

∑

i∈D

0 ∨ (ci − σ2) =
∑

t∈Ng(D)\Ng(D1)

st for some D ⊆ C \D1 (14)

There exists a unique largest set D2 such that equation (14) holds for. If

σ2 ≥ σ1, we combine equations (13) and (14) to obtain

4Note that for each c ∈ R
n
+ and each j = 1, 2, ..., n, 0 ∨ (ci − σ) ≡ max{0, cj − σ}.
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∑

i∈D1∪D2

0 ∨ (ci − σ1) ≥
∑

i∈D1

0 ∨ (ci − σ1) +
∑

i∈D2

0 ∨ (ci − σ2) =
∑

t∈Ng(D1∪D2)

st

which contradicts the choice of D1 as the largest set satisfying equation (13).

t t t t

t t t t t t

s1 = 1 s2 = 1 s3 = 2 s4 = 2

c1 = 1 c2 = 1 c3 = 1 c4 = 2 c5 = 3 c6 = 5

gl3

(σ3 = 2

3
)

g gl2(σ
2 = 1)

gl1

(σ1 = 3)

Figure 4: Equal sacrifice allocation rule: For the allocation problem R =

(s, c, g), the equal sacrifice allocation is ϕl(s, c, g) = ( 1
3
, 1

3
, 1

3
, 1, 2, 2). In the algorithm,

the highest σ1 satisfying equation (13) is 3 and the largest set satisfying equation (13) is

D1 = {6}. Then, the highest σ2 satisfying equation (14) is 1 and the largest set satisfying

equation (14) is D2 = {4, 5}. Then, the highest σ3 satisfying equation (14*) (where D1 is

replaced with D1 ∪D2 in equation (14)) is 2

3
and the largest set satisfying equation (14*)

is D3 = {1, 2, 3}.

The equal sacrifice allocation rule is ϕl(s, c, g) = q obtained in the algorithm

above. For an example of the equal sacrifice allocation rule, see Figure 4.

5 Conclusion

Our results expand the scope of the existing literature on the claims problems.

We provide a unique way to apply fairness principles to allocation problems on

networks of sources and agents. Such problems with multiple sources are very

commonly observed as exemplified in the introduction.

Moreover, the network model brings new theoretical questions. For example

which axiomatic properties of simple rules carry over to allocation rules on net-

works? How can the axioms defined for simple allocations problems (e.g. no envy,

15



composition up, consistency, etc.) can be extended to allocation rules on networks?

The egalitarian rule for network allocation problems has been characterized with

Pareto optimality, equal treatment of equals and strategy-proofness (Bochet et al.,

2010). Is it possible to give a characterization of rules on how they respond to

changes in the network structure? Similarly, the dual of an allocation problem

(Thomson, 2006) is well defined when there is only one source. Is it possible to

define the dual of an allocation problem on a network? In general, any question

which is relevant for simple allocation rules can now be asked for their extensions

on networks as provided by our algorithm.
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