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Estimation of a Panel Stochastic Frontier Model with

Unobserved Common Shocks

Abstract

This paper develops panel stochastic frontier models with unobserved common cor-

related effects. The common correlated effects provide a way of modeling cross-sectional

dependence and represent heterogeneous impacts on individuals resulting from unobserved

common shocks. Traditional panel stochastic frontier models do not distinguish between

common correlated effects and technical inefficiency. In this paper, we propose a modi-

fied maximum likelihood estimator (MLE) that does not require estimating unobserved

common correlated effects. We show that the proposed method can control the common

correlated effects and obtain consistent estimates of parameters and technical efficiency for

the panel stochastic frontier model. Our Monte Carlo simulations show that the modified

MLE has satisfactory finite sample properties under a significant degree of cross-sectional

dependence for relatively small T . The proposed method is also illustrated in applications

based on a cross country comparison of the efficiency of banking industries.

JEL classification: C23

Keywords: fixed effects, common correlated effects, factor structure, cross-sectional de-

pendence, stochastic frontier



1 Introduction

Panel data sets have been increasingly used in stochastic frontier models to analyze the

inefficiency or efficiency of firms, banks and some government system we concerned. How-

ever, the conventional assumption of cross-sectional independence of error structure in

stochastic frontier model might be suspect. One potential source of cross-sectional depen-

dence is the global or economy-wise shocks, which might have various impacts on different

firms/units, such as changes in interest rates and taxation, oil shocks, financial crises, or

aggregate technological innovations. This type of cross-sectional dependence is usually

referred to as common correlated effects in the literature and usually modeled by factor

structure, a linear combination of common factors. Ignoring these unobserved common

shocks can make the estimators of the parameters of slope and efficiency biased. Never-

theless, an endogeneity problem may arise because these common shocks may affect both

firms’ input decisions and their outputs. 1

Conventional panel stochastic frontier analysis have relied on linear panel models

with fixed or random effects without imposing distributional assumption on inefficiency.

(Schmidt and Sickles (1984), Cornwell, Schmidt and Sickles (1990), Han, Orea and Schmidt (2005)

and Lee (2006)). Although such methods are easy to implement and can measure the

relative inefficiency by comparing the individual effects at each time period, they treat

inefficiency is time-invariant and any time-invariant across unit heterogeneity might be

wrongly counted for inefficiency. Recently, Ahn, Lee and Schmidt (2007) generalized the

specification of inefficiency by imposing a factor structure. Since factor structure can also

capture unobserved common correlated effects, treating all effects from factor structure as

inefficiency can also be unreasonable. For example, we may conclude that some local and

small banks suffering less from financial shocks are more efficient than international banks.

The alternative approach, adopted the Aigner, Lovell and Schmidt’s model (1977) to panel

data, has distributional assumptions but allows the inefficiency to vary over time (Battese

1To solve the endogeneity problem, Olley and Pakes (1996) and Levinshon and Petrin (2003) showed

that investment and intermediate goods can be used as the proxies of these unobserved state variables,

however, may not be valid in the cost function analysis.
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and Coelli (1988), Kumbhakar (1990), and Wang and Schmidt (2002)). Greene (2003,

2005) and Wang and Ho (2010) further modified this approach to overcome the identifi-

cation problem between individual effects and inefficiency via Maximum-Likelihood esti-

mation. Nevertheless, to our best knowledge, no previous study has taken cross-sectional

dependence into account along with this approach.

In this paper, we propose to incorporate the unobserved correlated common shocks

with stochastic frontier models to capture cross-sectional dependence and try to identify

the inefficiency, and unobserved common correlated effects (and time-invariant across unit

heterogeneity). Following the spirit of Pesaran (2006), our estimation involves a transfor-

mation to filter out the unobserved common shocks and then to estimate slope coefficients

and parameters in inefficiency function by maximizing the log-likelihood function. There

are four features of our method. First, our method inherits the advantage of transforma-

tion proposed by Pearsan (2006), by which we can consistently estimate the parameters in

the model without explicitly estimating the common correlated effects or factor structure.

Moreover, while the asymptotic requirements of sample size for measuring inefficiency in

Ahn, Lee and Schmidt (2007)2 is large N and T , it is only need large N and fixed T in

our method.3 Second, we use the scale function proposed by Wang and Schmidt (2002)

to explain the inefficiency. Such specification enables us to directly investigate the under-

lying determinants of inefficiency and to obtain meaningful policy inferences to improve

efficiency. Third, we can estimate the inefficiency spotlessly. In other words, inefficiency

can be identified from unobserved common shocks which might not explain inefficiency.

Fourth, this method is still valid regardless of the presence of fixed effects or common

correlated effects in the model. In addition, this method can be applied to cost ineffi-

ciency analysis. Furthermore, we investigate the small sample property via Monte Carlo

simulation. We compare the bias from the estimation procedure proposed by Wang and

Ho (2002) and our method. Simulation results show that our proposed method outper-

forms Wang and Ho (2002) when model exists the unobserved common shocks. The bias

2Both Pesaran’s (2006) and Ahn, Lee and Schmidt’s (2006) methods are based on the assumption that

the number of factors is less than the number of regressors.
3Similar restriction of sample size will arise if we adopt the method by Bai (2009).
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is often quite small in our method.

We also apply our approach to analyze the inefficiency of the banking industry in

OECD countries. In recent years, research on the variations in bank efficiency has ex-

panded, (see, for example, Lensink, Meesters and Naaborg (2008) and Sun and Change

(2010)). While these studies discuss bank efficiency in two different ways, they do not

deal with common correlated effects. In contrast, our empirical application focuses on the

bank efficiency after filtering out common correlated effects by our proposed approach.

The remainder of this paper is organized as follows. In Section 2, we describe the

setup of the stochastic frontier model with common effects and discuss the assumptions,

our estimation approach, and the asymptotic properties of the proposed estimator. Section

3 studies the small sample properties using Monte Carlo simulations. Our empirical study

is discussed in Section 4. Section 5 concludes the paper. The mathematic proofs of the

analytical properties are provided in the Appendix.

2 Model, Assumptions and Estimation

2.1 The Model

Consider the following stochastic frontier model with common correlated effects

yit = αi + x′itβ + λ′
ift + vit − uit, i = 1, . . . , N, t = 1, . . . , T, (1)

xit = Ai + τ ′ift + eit (2)

uit = hitu
∗
i = h(z′itδ)u

∗
i , (3)

where yit is the natural logarithm of output of firm i in period t, xit is a (k × 1) vector

of the natural logarithm of inputs in this production system, αi denotes the unobserved

individual effects, the common correlated effects are modeled by the product of ft, which

includes r unobserved common factors, and corresponding factor loadings λi, and vit and

uit are the idiosyncratic errors and the term which measures inefficiency, respectively. The

regressors are formed by equation (2), where τi denotes a (r× k) vector of factor loadings

and, therefore, our specification allows not only for cross-sectional dependence but also

3



for the correlation between common factors and regressors. The random variable eit is id-

iosyncratic error and are mutually independent of vit and uit. Finally, as shown in equation

(3), we let uit equal to a positive function hit = h(z′itδ) times u∗i ∼ N+(µ, σ2
u), in which

both µ and σ2
u do not dependent on observed variables zit. This specification is referred as

to scaling property by Wang and Schmidt (2002) and allows us to directly estimate slope

coefficients and capture inefficiency in a one-step procedure. 4 More importantly, since

ft is unobserved, it is difficult to check whether all ft are related to inefficiency, in other

words, whether all ft can be regard as a measure of inefficiency. Instead, our specifica-

tion that separating common correlated effects and uit = h(z′itδ)u
∗
i , enables us to directly

investigate the effect of observed variables zit on inefficiency and then obtain meaningful

policy inferences to improve efficiency.5

The common correlated effects in the above model are mainly used to capture the

heterogeneous impacts of unobserved common random shocks, such as a dramatic global

economic decline. There is room for further investigation into the assumption of the

correlation between xit and λi or ft. While Pesaran (2006) assumed that xit is correlated

with ft alone, Ahn et al. (2006, 2007) assumed xit is correlated with λi and then rectify

the endogeneity caused by the correlation between regressors xit and the factor structure.

However, they retain the ambiguity of the identification of common correlated effects and

inefficiency, i.e., treating λ′
ift − uit, based on our specification, as inefficiency. It is also

worth noticing that the conventional fixed effects stochastic frontier models proposed by

Greene (2005) and Wang and Ho (2010) are special cases of our specification with ft = 1.

6 Obviously, the model without common correlated effects will reduce to the canonical

4The detailed features of the scaling property are discussed in Wang and Schmidt (2002).
5Here h(z′itδ) is used to capture idiosyncratic inefficiency. Notice that even though zit might contain

both systematic and idiosyncratic components, if zit is not collinear with λ′

ift, we can still use that

observed variable to capture the effects of zit on idiosyncratic inefficiency. Particularly, inefficiency may

contain both idiosyncratic and systematic components, we can still separate them into systematic part,

λ∗
′

i f∗

t , and idiosyncratic part h(z′itδ).
6Although the fixed effects model is a special case of the common correlated effects model, without loss

of generality, αi is still treated as a parameter here, which is potential specific-heterogeneity uncorrelated

with ft, vit and uit.
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production stochastic frontier model proposed by Aigner et al. (1977).

In the following, we will introduce how to estimate the proposed model with common

correlated effects and establish the asymptotic properties under some suitable assumptions.

2.2 Estimation

Since we take account of common correlated effects in our stochastic frontier model, the

correlation between the common correlated effects and regressors makes the estimation

of our model nontrivial. Here, we construct a transformation to control for common

correlated effects and we then apply the maximum likelihood approach to consistently

estimate the parameters.

First, we construct a matrixMw = IT−Hw(H
′
wHw)

−1H ′
w, whereHw = (D, Ȳw, h̄wµ∗∗),

D is a (T×1) vector of ones, Ȳw = (ȳw, X̄w) is the cross-sectional average of (yi,Xi) under

the weight ωi, h̄w denotes the cross-sectional average of hit, and µ∗∗ = (µ+
φ(−µ

σu
)

1−Φ(−µ
σu

)
σu) is

the mean of the truncated normal u∗i ∼ N+
(

µ, σ2
u

)

. Here, Φ and φ represent the cumula-

tive density function and probability density function of a standard normal distribution,

respectively. The rank of Mw, which depends on the dimension of Hw = (D, Z̄w, h̄wµ∗∗),

is T − dim(Hw) = T − s.

We then transform equation (1) by pre-multiplying Mw

Mwyi = MwXiβ +Mwεi +MwFλi, (4)

where Mwεi = Mwvi − Mwui, Mwvi ∼ N (0,Π), Π = σ2
vMw, Mwui = Mwh (z

′
iδ) u

∗
i , and

F = (f ′
1, f

′
2, ..., f

′
T ) is a (T × r) matrix. Since Mw is an idempotent matrix, we solve

the non-invertible problem with Mw based on the method of Khatri (1968). In addition,

following Wang and Ho (2010), we obtain the marginal log-likelihood function for each

individual

lnLi =− 1

2
(T − s)

(

ln (2π) + lnσ2
v

)

− 1

2
(εi + Fλi)

′ MwΠ
−Mw (εi + Fλi) (5)

+
1

2

(

µ2
∗

σ2
∗
− µ2

σ2
u

)

+ ln

(

σ∗Φ

(

µ∗
σ∗

))

− ln

(

σuΦ

(

µ

σu

))

,
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where

µ∗ =
µ/σ2

u − (εi + Fλi)
′ MwΠ

−Mwhi
h′iMwΠ−Mwhi + 1/σ2

u

(6)

σ2
∗ =

1

h′iMwΠ−Mwhi + 1/σ2
u

. (7)

To estimate the parameters, we maximize the sum of lnLi over individuals.

Notice that the above equations are designed for the production system. For the cost

system, the main model should be modified as

yit = αi + x′itβ + λ′
ift + vit + uit, (8)

where yit now denotes the total cost of firm i in period t. The individual log-likelihood

function is similar to equation (5) except that

µ∗ =
µ/σ2

u + (εi + Fλi)
′ MwΠ

−Mwhi
h′iMwΠ−Mwhi + 1/σ2

u

.

2.3 The Properties of the Proposed Estimator

In this section, we will first present the proof to show that Mw can filter out common

correlated effects as N → ∞ and then show the consistency of the proposed method. To

establish the asymptotic properties, the following assumptions are used throughout the

paper:

Assumptions:

1. The error structure contains vit, eit and u∗i , which are distributed independently of

each other and of the regressors xit, zit, ∀ i, t. We also assume that

vit ∼ N(0, σ2
v)

u∗i ∼ N+(µ, σ2
u),

where the variances σ2
v and σ2

u are bounded.
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2. The common factors dt and ft are covariance stationary with absolute summable

autocovariances, distributed independently of vit, eit and u∗i , ∀ i, t.

3. The unobserved factor loadings λi with mean λ and τi with mean τ are mutually

independent and of vit, eit , u
∗
i , and the common factors dt, ft, ∀ i, t. In particular,

‖λi‖ and ‖τi‖ are finite with finite second moment.

4. The function of the determinants h(z′itδ) should be assumed to have finite first and

second moments and to be distributed independently of vit, eit and u∗i .

5. There are cross-sectional weights wi that satisfy (i)wi = O(1/N), (ii)
∑N

i=1 wi =

1 and (iii)
∑N

i=1 |wi| < K. Therefore, the weighted average of the cross-sectional

variable can be defined as r̄wt =
∑N

i=1wirit.

Assumption 1 is a standard distributional assumption for stochastic frontier model. As-

sumptions 2, 3, 4 and 5 are similar to the assumptions used in Pesaran (2006) for panel

models with multi-factor error structures.

In order to show the consistency of our estimator, we first rewrite the stochastic frontier

model with common correlated effects in equations (1)–(3) as
⎡

⎣

yit

xit

⎤

⎦ =

⎡

⎣

1 β′

0 Ik

⎤

⎦

⎡

⎣

αi

Ai

⎤

⎦ dt +

⎡

⎣

1 β′

0 Ik

⎤

⎦

⎡

⎣

λ′
i

τ ′i

⎤

⎦ ft −

⎡

⎣

uit

0

⎤

⎦+

⎡

⎣

vit + β′eit

eit

⎤

⎦

⇒ Yit =B′
idt +C′

ift −Uit + ξit

where Ai is a k × 1 vector of (αi, ..., αi)
′, and dt = 1.

Next, we take the cross-sectional average under the weight wi, and then we have

⇒ Ȳwt = B̄′
wdt + C̄′

wft − Ūwt + ξ̄wt, (9)

where Ūwt = (
∑N

i=1wihitu
∗
i , 0)

′. Following the proof of Pesaran (2006), we obtain ξ̄wt
p−→

0 and C̄w
p−→ C as N → ∞, whereC =

[

λ τ
]

⎡

⎣

1 0

β Ik

⎤

⎦. Then, under the assumption

rank(C̄w) = r ≤ k + 1, ∀i, we obtain

ft − (CC′)−1C(Ȳwt − B̄′
wdt + Ūwt)

p−→ 0 (10)
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Equation (10) gives us the set {D, ȳw, X̄w, ūw} which can be regarded as the proxies of the

factor structure. Here, this result still hold even we relax the assumption that the term

to capture inefficiency hit = h(z′itδ) is uncorrelated with ft.
7 Notice that Ūwt contains

the average of the inefficiency terms, u∗i , which is unobserved in the stochastic frontier

model. Hence, it cannot be directly applied to represent the factor structure. How-

ever, under Assumptions 1-4, Lemma 1 in appendix shows that
∑N

i=1wihitu
∗
i converges

to
∑N

i=1 wihitµ∗∗ = h̄wtµ∗∗ as N → ∞. Therefore, equation (10) can be replaced by

ft − (CC′)−1C

⎛

⎝Ȳwt − B̄′
wdt +

⎡

⎣

h̄wtµ∗∗

0

⎤

⎦

⎞

⎠

p−→ 0 (11)

asN → ∞. That is the reasonMw can be constructed by IT−Hw(H
′
wHw)

−1H ′
w withHw =

(D, Ȳw, h̄wµ∗∗). This result indicates that common correlated effects in the stochastic

frontier model will be eliminated as N → ∞ after taking the transformation.

Due to the above property, we provided the following proposition to show that the

marginal log-likelihood function in equation (5) will asymptotic to the marginal log-

likelihood function using the transform matrix M∗
w, where M∗

w = IT −H∗
w(H

∗′
wH∗

w)
−1H∗′

w ,

where H∗
w = (D, Ȳw, h̄wu

∗
i ).

8

Proposition 1. Under Assumptions 1–5,
∑N

i=1 wi lnLi

T
=

∑N
i=1 wi lnL

∗
i

T
+Op

(

1√
N

)

.

Thus, the maximum likelihood method can therefore consistently estimate the param-

eters under fixed T and large N .

Compared with the GMM procedure proposed by Ahn et al. (2006), our estimation has

two desirable properties. First, we can just focus on zit that is concerned with measuring

7The positive function h(·) makes us have the difficulty to rewrite hit as a linear factor structure and

have a matrix representation with equations (1)–(3). But equation (10) still hold, the sacrifice is the limit

of number of factors still can not greater than k + 1.
8Note that the identification of δ in the positive function h(z′itδ) requires the full column rank condition

of
(

D, X̄w, h̄wu
∗

i

)

, that is the condition rules out the perfect multi-collinearity situation. The first and

obvious case is that the function h(·) contains only one time-invariant regressor to explain inefficiency in

order that the transform matrix will orthogonal to h̄w. The second case is that h̄w is a linear combination

of X̄w.
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inefficiency and treat other unobserved inefficiencies as part of the common correlated

effects which can be filtered out by our transformation. However, the GMM method lets

inefficiency and common correlated effects into a mess. Second, our estimates are suitable

for fixed-T -and-large-N and large-T -large-N panel data. In the latter case, however, the

numbers of parameters and many instruments in the GMM method increase with T . In

addition, the recovery of the parameters is involved in the GMM procedure.

2.4 The Inefficiency Index

It is important to measure the inefficiency index in applications. However, how can the

inefficiency index be estimated after the CCE9 transformation? To obtain the solution, we

follow by Wang and Ho (2010), who use the conditional expectation estimator proposed

by Jondrow et al. (1982), namely, E(ui|εi) evaluated at εi = ε̂i. In the same manner, the

inefficiency index in our estimation is the conditional expectation of uit on the vector of

the transformed εi = vi − ui, i.e., Mwεi. Note that Mwεi can be evaluated at M̂wεi, and

following Wang and Ho (2010), the conditional inefficiency index is

E (uit|Mwεi) = h(z′itδ)

⎡

⎣µ∗ +
φ
(

µ∗

σ∗

)

σ∗

Φ
(

µ∗

σ∗

)

⎤

⎦ (12)

3 Monte Carlo Simulations

In this section, we use Monte Carlo simulations to investigate the finite sample properties

of our proposed estimator. We first consider the following stochastic production frontier

model for i = 1, . . . , N and t = 1, . . . , T :

yit = αi + xitβ + λ′
ift + vit − exp(z′itδ)u

∗
i (13)

xit = Ai + τ ′ift + eit, (14)

where αi ∼ U(0, 1), xit is a regressor, ft ∼ N(0, σf ) is a common factor, σf = 0.2, factor

loadings λi and τi follow N(1, 0.2), zit consists of zit,1 ∼ N(0, 1) and zit,2 = t, which

9In brief, we denote CCE as the abbreviation for the common correlated effects/common correlated

effects transformation.
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impleis the inefficiency is time-varying, vit ∼ N(0, σ2
v), u

∗
i ∼ N+(0, σ2

u), vit and u∗i are

mutually independent, and eit ∼ N(0, 1). The parameter values are

(β, δ1, δ2, σ
2
v , σ

2
u, µ) = (0.5, 0.5, 0.1, 0.1, 0.2, 0.5).

N = {50, 100, 200, 400}, T = {5, 10, 20}, and the number of replications is 1,000 in all

simulations.

To demonstrate the importance of our transformation in the presence of common

correlated effects, we also compared our method with the estimation proposed by Wang

and Ho (2010), which only takes the fixed effects into account by means of the within

transformation. Hereafter, we let Within denote the latter method and let CCE denote

our estimator.

Our simulation results are reported in Table 1. As we can see, CCE tends to have a

smaller bias than Within for all parameters over all combinations of (N,T ) except δ2 when

T = 5. Moreover, CCE uniformly has a smaller RMSE than Within as T ≥ 10. Even when

T = 5, the RMSE ratios, ψ =RMSE(Within)/RMSE(CCE), increase with the increase in

N . For example, the ψ of δ̂ is 0.614 when (N,T ) = (50, 5) and increases to 1.036, which

indicates that CCE has a smaller RMSE than Within by 3.6%, when (N,T ) = (50, 5). It

is also worth noting that the bias and the RMSE of CCE decline as T or N increases for

all parameters. By contrast, due to failing to control for the common correlated effects,

the Within estimators of β and δ are still biased and cannot be improved even when T or

N is large.

For robustness, we further consider the finite sample performance for different degrees

of cross-sectional correlation by adjusting the magnitude of σf . In particular, we consider

two settings with σ2
f = 0.1 and 1, respectively. As we can see from model (1), when

σf is smaller, our model is closer to the model with fixed effects only and the common

correlated effects become less important. Furthermore, instead of letting zit,2 = t in

h(z′itδ), we consider group-specific inefficiency by letting zit,2 be a group dummy such that

zit,2 = 1 for any unit in Group 2; otherwise zit,2 = 0. The members in Group 1 are

randomly assigned in each repetition with the number of units N1 = ⌊U(0.3, 0.7) × N⌋,
regardless of whether ⌊A⌋ is the integer closest to A. The other group has N −N1 units.

10



The group membership is known in advance. The parameters in this set of simulations

take the following values

(β, δ1, δ2, σ
2
v , σ

2
u, µ) = (0.5, 0.5, 0.1, 0.1, 0.2, 0.5).

The results are summarized in Tables 2 and 3 with T = {10, 20}, respectively. Since we
have similar patterns to the previous simulation, that is the bias and the RMSE of CCE

decline as T or N increases, we do not report the case when T = 5. Details regarding the

results of T = 5 can be obtained from the authors on request. It will be clear from these

results that the bias for Within seems to be less serious as σ2
f = 0.1, and becomes more

significant as σ2
f = 1. More importantly, the performance of our approach is generally

better than Within approach even when σ2
f = 0.1, which demonstrates that our method is

still robust even when the common correlated effects are small in the data. In particular,

the estimates of σ2
v and σ2

u for the Within approach seem to be overestimated in the

presence of the common correlated effects. On the contrary, CCE provides less unbiased

estimates even when σ2
f = 0.1.

We next turn to the experiment which takes account of xit and uit are both correlated

with the factors. In this simulation, it is convenient to set uit = exp(zit
′δ)u∗i to ensure uit

is positive and assume

zit = π′
ift + ez,it, (15)

to make uit is correlated with ft. We still have two variables z1,it and z2,it which can

affect uit. Particularly, the factor loadings πi,1 and πi,2 follow N(1, 0.4) and N(1, 0.2)

respectively, ft ∼ N(0, 0.6) to let factor is important in this model, and each of ez,it follows

N(0, 1). xit is similar to the former setting. The parameters in this set of simulations take

the following values

(β, δ1, δ2, σ
2
v , σ

2
u, µ) = (0.5, 0.2,−0.1, 0.1, 0.1, 0.4).

Table 4 summarizes the simulation results. A general finding is that our proposed

method is relatively much better than Within in all combinations. The bias is almost 0 in

CCE except σ2
u, whereas the bias of Within are serious not only in β but also δ’s. Notice

11



that the small bias of σ2
u in CCE will decrease as N increasing. On the contrary, the

bias of σ2
u in Within is enormous, and it is not surprising because Within do not control

the common correlated effects, and the components from the biased ĥit will induce large

variation of u∗i .

In general, the simulation shows the clear results that the estimation without control

common correlated effects will bias the estimates. We also conduct a similar simulation

for the cost frontier model, which is not reported here. Its pattern again confirms the

importance of taking the common correlated effects into account in a stochastic frontier

model and are similar to the findings summarized in Tables 1–4. Due to space limitations,

these results are available from the authors upon request.

4 Empirical Study

The existing body of research on ”bank efficiency” has grown rapidly. Lensink et al. (2008),

Berger, Hasan and Zhou (2009) and Sun and Chang (2010) provide different aspects to

measure bank efficiency. However, it is not clear how these aspects determine efficiency

when common correlated effects are taken into account. Our empirical study therefore

applies an approach that uses the proposed CCE transformation to deal with common

correlated effects even when the efficiency terms are directly unobserved.

4.1 Data

We evaluate the cost efficiency in OECD countries by using the proposed transformation

allowing for the common correlated effects in the stochastic frontier model. The conven-

tional intermediation approach to measuring the cost faced by a bank is used in this study.

Total cost is defined as the sum of interest expense and non-interest expense. Following

Berger et al. (2009) and Sun and Chang (2010), we consider the following output variables

in the cost function: total loans (TL), other earning assets (OEA), total deposits (TD)

and liquid assets (LA). We additionally consider the price of capital (PC) and funds (PF),

defined by the ratio of interest expenses to total deposits and the ratio of non-interest

expenses to total fixed assets, respectively, as our input prices. In order to guarantee
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linear homogeneity in input prices of the cost function, we re-scale TC and PC by PF.

The cost function used here is

ln

(

TC

PF

)

it

=β0 ln

(

PC

PF

)

it

+ β1 ln TLit + β2 lnOEAit (16)

+ β3 ln TDit + β4 ln LAit + λift + vit + uit.

To allow the inefficiency across banks to be measured by explanatory variables, we use the

scaling function proposed by Wang (2002). The specification of the scaling function is as

follows

h(z′itδ) = exp(δ1 ln TA + δ2ETA+ δ3ROAA+ δ4Year 2008 + Country dummy), (17)

where TA denotes the total assets, ETA denotes the equity to assets, and ROAA denotes

the return on average assets. These three variables are commonly used to control the

efficiency. TA measures the relationship between the efficiency and the size of the bank.

ETA can represent the equity position of a bank and avoid the scale bias making large

banks more efficient (Berger and Mester, 1997). In addition, ETA may reflect the risk

preference of a manager of a bank. ROAA can be regard as a proxy for manager ability. A

year dummy variable is also included to capture the averaged effect of the global crisis in

2008 across banks. Furthermore, we also put the country dummy in the scaling function

to measure the different inefficiency in these countries.

We consider a balanced panel data set covering 1996-2009 with 311 commercial banks

from nine countries: Austria, Belgium, Canada, Denmark, France, Germany, Switzerland,

the United Kingdom, and the United States. The data are taken from Bankscope and are

inflation-adjusted. Except for ETA and ROAA, all the other variables are transformed

into natural logs. Table 5 presents the descriptive statistics of these variables.

4.2 Empirical Results

The empirical results obtained by our approaches are summarized in the right panel of

Table 6. We report not only the estimates of the coefficients in the cost function β’s, but

also the estimates of the parameters in the inefficiency equation δ’s. For comparison, we

13



additionally show the results based on the Within approach proposed by Wang and Ho

(2010) in the left panel of Table 6.

Consider the coefficients in the cost function using our approach first. The coefficient

of the input prices (PC/PF) is positive at the 1% significance level, which indicates that

a higher capital cost results in a higher total cost and is similar to the empirical results

of Lensink et al. (2008) and Sun and Chang (2010). As expected, the output variables,

such as TL, TD and LA, also have positive effects on the total cost. While the estimated

coefficient of OEA is negative, it is not significantly different from zero. The empirical

results from the Within approach are qualitatively similar to those based on our CCE

approach. However, the former tends to deliver larger estimated coefficients of PC/PF

and TL than our approach.

Next, we turn our focus to the coefficients of the inefficiency equation. The coefficient

for TA, equal to -0.054, is negative and significant at the 1% level, which implies that

larger banks are on average more efficient than smaller banks as TA is regarded as a proxy

for the bank size. The estimated sign of this coefficient is different from that in Han, Orea

and Schmidt (2005) and Sun and Chang (2010). However, Delis and Papanikolaou (2009)

pointed out that the relationship between bank size and efficiency is inverse U-shaped,

which implies that the efficiency increases with size and then decreases thereafter. In our

data, almost 90% of banks are small and medium sized and, therefore, are more likely

to have a positive relationship with efficiency.10 In addition, our results indicate that an

increase in ETA will raise inefficiency, which can be explained in two ways. First, ETA

can be regarded as a proxy for the risk-preference of a manager. A higher equity position

reveals that the manager is risk-averse and might not be good at using financial leverage

to increase the size of bank, which indicates that the manager may not seek to minimize

the cost. Second, inefficiency will lead to a lower profit and put equity in a high position.

The coefficient of the bank’s ROAA is negative at the 1% significance level, which

implies that banks with a higher ROAA are generally more efficient than those with a

10Following Berger et al. (2009), the classification of bank size is defined as follows. The bank’s size is

small if its assets are less than or equal to $1 billion, its size is medium if the bank’s assets are greater

than $1 billion but less than $20 billion, and the bank is large if its assets are greater than $20 billion.
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lower ROAA. Our result is consistent with Lensink et al. (2008).11 Furthermore, the year

2008 dummy variable for capturing the financial crisis has positive but small effect on

efficiency based on our approach, which might be potentially due to the fact that other

variables already reflect the financial crisis, and the crisis is due to the financial institu-

tions’ highly leveraged behavior and increasing risky investment before 2008. However, in

late 2008, financial institutions try to survive on this crisis under rigorous management

even the emergency bailout was proposed. By comparing with other years, the rigorous

management may provide a small positive effect on efficiency in 2008.

Comparing the results from different approaches further reflects the importance of

controlling the common correlated effects in the frontier model. Notice that our CCE

approach is consistent and has satisfactory finite sample performance even when there

do not exist any or only small cross-sectional correlation effects as shown in the previous

sections. Thus, the large estimated value of σ2
u based on the Within approach appears to

reflect the fact that ignoring common correlated effects might result in higher uncertainty

in the inefficiency term.

Finally, to understand bank efficiency across countries, we also take account of the

country dummy to capture the country effect. The results are quite different in these

two approaches, for example, the negative coefficients of Canada, Denmark and UK in

CCE imply these countries are more efficient. However, these coefficients in Within model

are positive. We also provide the conditional cost efficiency, defined as the average cost

efficiency in each country in Figure 1 and 2. The conditional efficiency in Within model

reveals that Canada and Denmark are less efficient. On the contrary, in CCE model, it

seems that banks in Belgium are relatively efficient while those in France are relatively

inefficient. Furthermore, the index are close to 0 without taking account of the unobserved

common shock, and it is intuitive if these common shock are regard as inefficiency. Figure

3 further illustrates the efficiency pattern over time in each country.12 By contrast, bank

11This result is different from that of Sun and Chang (2010). While it might be caused by endogeneity,

the ROAA should exhibit a negative relationship with inefficiency as pointed out by Lensink et al. (2008).
12Since the time-varying variables’ coefficients are close to 0 in Within model and have the flat pattern

of efficiency, we do not report here.
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efficiencies in most countries tend to improve over time before 2006, and dramatically

decline in every country during the global crisis in 2008.

5 Concluding Remark

Many studies are conducted to reveal the fact that it is important to distinguish fixed

effects from inefficiency. However, such research fails to consider the possibility that the

specific-heterogeneity can be regarded as common correlated effects. This paper therefore

provides a stochastic model with the incorporation of the factor structure and adopts the

method proposed by Pesaran (2006) to eliminate the factor structure. The factor structure

can be eliminated as long as the cross-sectional dimension is sufficiently large. With this

transformation, we can use the observed variables to explain the inefficiency and directly

estimate the inefficiency which is not influenced by the unobserved factor structure. Since

the inefficiency is conditional upon the estimated residuals, our approach can provide a

reliable result in the estimation of inefficiency.
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Table 1: Simulation results with cross-section dependence

T = 5 T = 10 T = 20

With-in CCE Within CCE Within CCE

N = 50 Bias RMSE Bias RMSE ψ Bias RMSE Bias RMSE ψ Bias RMSE Bias RMSE ψ

β̂ 0.125 0.150 -0.002 0.058 2.596 0.146 0.159 0.000 0.021 7.695 0.155 0.162 0.000 0.012 13.170

δ̂1 -0.010 0.127 0.008 0.208 0.614 -0.002 0.080 -0.002 0.060 1.335 0.000 0.025 0.000 0.015 1.683

δ̂2 0.002 0.095 0.032 0.122 0.778 -0.002 0.021 0.001 0.013 1.565 0.000 0.005 0.000 0.002 2.729

σ̂2
v 0.166 0.202 -0.013 0.030 6.663 0.191 0.209 0.000 0.009 23.053 0.199 0.209 0.006 0.009 23.839

σ̂2
u 0.049 0.239 0.039 0.279 0.856 0.031 0.159 0.007 0.116 1.372 0.006 0.086 -0.003 0.070 1.232

µ̂ 0.068 0.263 0.014 0.285 0.924 0.020 0.208 -0.001 0.154 1.347 -0.007 0.137 -0.002 0.113 1.221

Within CCE Within CCE Within CCE

N = 100 Bias RMSE Bias RMSE ψ Bias RMSE Bias RMSE ψ Bias RMSE Bias RMSE ψ

β̂ 0.129 0.155 0.000 0.040 3.921 0.147 0.159 0.000 0.014 11.573 0.154 0.161 0.000 0.008 19.771

δ̂1 -0.027 0.109 -0.005 0.147 0.739 -0.002 0.071 0.001 0.039 1.800 0.001 0.023 0.000 0.010 2.203

δ̂2 -0.006 0.086 0.020 0.095 0.903 -0.002 0.019 0.000 0.010 1.906 0.000 0.005 0.000 0.001 3.499

σ̂2
v 0.177 0.214 -0.009 0.022 9.859 0.194 0.211 0.000 0.006 33.560 0.201 0.210 0.003 0.005 40.385

σ̂2
u 0.060 0.218 0.059 0.256 0.853 0.019 0.111 0.003 0.073 1.514 0.005 0.069 -0.003 0.051 1.348

µ̂ 0.096 0.231 -0.004 0.240 0.963 0.026 0.173 0.004 0.106 1.642 -0.003 0.111 -0.001 0.079 1.412
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(continued)

Within CCE Within CCE Within CCE

N = 200 Bias RMSE Bias RMSE ψ Bias RMSE Bias RMSE ψ Bias RMSE Bias RMSE ψ

β̂ 0.131 0.153 0.001 0.028 5.409 0.147 0.159 0.000 0.010 16.189 0.154 0.160 0.000 0.006 28.865

δ̂1 -0.026 0.094 -0.007 0.105 0.903 0.004 0.062 0.001 0.030 2.100 0.002 0.023 0.000 0.007 3.260

δ̂2 -0.006 0.078 0.010 0.078 0.998 -0.003 0.018 0.000 0.007 2.478 0.000 0.005 0.000 0.001 4.584

σ̂2
v 0.179 0.212 -0.005 0.015 13.772 0.195 0.212 0.000 0.004 48.627 0.200 0.209 0.002 0.003 63.266

σ̂2
u 0.051 0.185 0.061 0.216 0.853 0.015 0.093 0.003 0.055 1.708 0.002 0.056 -0.002 0.036 1.548

µ̂ 0.087 0.202 -0.015 0.196 1.027 0.009 0.147 -0.003 0.076 1.944 -0.003 0.093 0.001 0.057 1.630

Within CCE Within CCE Within CCE

N = 400 Bias RMSE Bias RMSE ψ Bias RMSE Bias RMSE ψ Bias RMSE Bias RMSE ψ

β̂ 0.126 0.148 0.000 0.019 7.817 0.147 0.158 0.000 0.007 23.143 0.155 0.161 0.000 0.004 40.098

δ̂1 -0.026 0.085 -0.003 0.082 1.036 0.000 0.059 0.001 0.021 2.794 0.000 0.022 0.000 0.005 4.404

δ̂2 -0.005 0.076 0.010 0.073 1.032 -0.002 0.017 0.000 0.006 3.025 0.000 0.005 0.000 0.001 5.839

σ̂2
v 0.173 0.205 -0.004 0.011 18.678 0.194 0.211 0.000 0.003 67.751 0.202 0.210 0.001 0.002 105.087

σ̂2
u 0.044 0.152 0.043 0.175 0.868 0.011 0.084 0.000 0.036 2.319 0.002 0.050 -0.002 0.026 1.895

µ̂ 0.082 0.180 -0.028 0.159 1.131 0.015 0.132 -0.005 0.052 2.521 0.006 0.080 0.002 0.043 1.849

1 In brief, we denote Within as the abbreviation of the within-transformation and CCE as the abbreviation for the common correlated effects transformation.
2 ψ is the ratio of RMSE(Within)/RMSE(CCE).
3 The true values of the parameter set are β = 0.5, δ1 = 0.5, δ2 = 0.1, σ2

v = 0.1, σ2
u = 0.2, and µ = 0.5.
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Table 2: Simulation results with cross-sectional dependence under different σf

(T=10)

σ2

f
= 0.1 σ2

f
= 1

N = 50 Within CCE Within CCE

Bias RMSE Bias RMSE ψ Bias RMSE Bias RMSE ψ

β̂ 0.087 0.097 -0.001 0.020 4.963 0.433 0.446 -0.000 0.019 24.016

δ̂1 0.001 0.075 0.006 0.077 0.971 0.014 0.126 0.002 0.074 1.694

δ̂2 0.001 0.200 -0.003 0.232 0.862 0.015 0.280 0.004 0.216 1.299

σ̂2
v 0.109 0.119 -0.001 0.009 13.655 0.592 0.604 -0.001 0.009 67.373

σ̂2
u 0.017 0.152 0.009 0.151 1.008 0.077 0.258 0.017 0.158 1.629

µ̂ 0.007 0.182 0.010 0.181 1.006 -0.038 0.226 -0.003 0.177 1.272

N = 100 Within CCE Within CCE

Bias RMSE Bias RMSE ψ Bias RMSE Bias RMSE ψ

β̂ 0.089 0.098 -0.000 0.014 7.041 0.427 0.439 -0.001 0.014 31.009

δ̂1 0.001 0.052 0.001 0.050 1.037 0.002 0.096 -0.001 0.051 1.871

δ̂2 0.009 0.130 0.001 0.162 0.805 0.002 0.182 0.004 0.162 1.125

σ̂2
v 0.112 0.123 -0.000 0.006 19.624 0.596 0.607 -0.000 0.006 98.686

σ̂2
u 0.009 0.103 0.009 0.105 0.982 0.082 0.229 0.011 0.107 2.143

µ̂ -0.009 0.128 -0.001 0.125 1.026 -0.040 0.192 -0.004 0.136 1.412

N = 200 Within CCE Within CCE

Bias RMSE Bias RMSE ψ Bias RMSE Bias RMSE ψ

β̂ 0.089 0.096 -0.000 0.009 10.234 0.430 0.441 0.000 0.010 45.506

δ̂1 0.002 0.037 0.001 0.037 0.995 0.001 0.068 -0.002 0.037 1.845

δ̂2 0.003 0.094 0.008 0.114 0.824 -0.007 0.133 -0.003 0.115 1.154

σ̂2
v 0.111 0.121 0.000 0.004 28.167 0.597 0.608 -0.000 0.004 135.998

σ̂2
u 0.005 0.068 0.002 0.070 0.978 0.083 0.195 0.009 0.076 2.560

µ̂ -0.008 0.088 -0.003 0.089 0.987 -0.060 0.152 0.003 0.087 1.754

N = 400 Within CCE Within CCE

Bias RMSE Bias RMSE ψ Bias RMSE Bias RMSE ψ

β̂ 0.088 0.094 -0.000 0.007 13.411 0.426 0.438 0.000 0.007 65.428

δ̂1 0.003 0.026 0.001 0.024 1.068 -0.003 0.049 0.002 0.025 1.980

δ̂2 0.002 0.067 -0.000 0.079 0.843 -0.007 0.094 0.004 0.077 1.229

σ̂2
v 0.109 0.119 -0.000 0.003 38.680 0.594 0.606 -0.000 0.003 193.373

σ̂2
u 0.002 0.049 0.000 0.043 1.124 0.086 0.178 0.003 0.046 3.831

µ̂ -0.009 0.062 -0.002 0.063 0.986 -0.060 0.119 -0.008 0.060 1.963

1 ψ is the ratio of RMSE(Within)/RMSE(CCE).
2 The true values of the parameter set are β = 0.5, δ1 = 0.5, δ2 = 0.5, σ2

v = 0.1, σ2
u = 0.2, and µ = 0.5.
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Table 3: Simulation results with cross-sectional dependence under different σf

(T=20)

σ2

f
= 0.1 σ2

f
= 1

N = 50 Within CCE Within CCE

Bias RMSE Bias RMSE ψ Bias RMSE Bias RMSE ψ

β̂ 0.089 0.094 0.000 0.011 8.272 0.447 0.453 0.000 0.012 38.062

δ̂1 -0.002 0.044 -0.003 0.035 1.257 -0.000 0.089 -0.002 0.038 2.332

δ̂2 0.000 0.171 -0.002 0.194 0.885 0.002 0.209 -0.006 0.193 1.084

σ̂2
v 0.110 0.116 -0.000 0.005 22.063 0.626 0.631 -0.000 0.005 122.391

σ̂2
u 0.010 0.110 -0.001 0.101 1.096 0.054 0.207 -0.000 0.102 2.030

µ̂ 0.001 0.141 0.015 0.130 1.080 -0.013 0.171 0.011 0.131 1.310

N = 100 Within CCE Within CCE

Bias RMSE Bias RMSE ψ Bias RMSE Bias RMSE ψ

β̂ 0.089 0.093 0.000 0.008 11.114 0.443 0.448 0.000 0.008 53.979

δ̂1 0.000 0.033 0.000 0.025 1.299 0.000 0.062 0.001 0.025 2.512

δ̂2 0.002 0.118 -0.003 0.135 0.875 -0.008 0.140 -0.006 0.133 1.055

σ̂2
v 0.110 0.116 -0.000 0.004 31.880 0.629 0.635 -0.000 0.004 169.412

σ̂2
u 0.003 0.078 -0.002 0.069 1.127 0.041 0.148 -0.002 0.069 2.133

µ̂ -0.004 0.094 0.003 0.091 1.037 -0.018 0.125 0.004 0.087 1.428

N = 200 Within CCE Within CCE

Bias RMSE Bias RMSE ψ Bias RMSE Bias RMSE ψ

β̂ 0.088 0.092 -0.000 0.006 16.425 0.442 0.447 -0.000 0.006 77.077

δ̂1 -0.000 0.023 -0.000 0.017 1.314 -0.001 0.044 -0.000 0.017 2.558

δ̂2 0.003 0.085 0.004 0.090 0.940 -0.003 0.101 -0.001 0.094 1.081

σ̂2
v 0.110 0.115 -0.000 0.003 44.603 0.631 0.636 0.000 0.003 244.367

σ̂2
u 0.005 0.052 -0.001 0.045 1.165 0.040 0.116 0.000 0.049 2.383

µ̂ -0.008 0.057 -0.001 0.053 1.067 -0.028 0.087 0.002 0.053 1.644

N = 400 Within CCE Within CCE

Bias RMSE Bias RMSE ψ Bias RMSE Bias RMSE ψ

β̂ 0.088 0.091 -0.000 0.004 22.551 0.444 0.449 -0.000 0.004 107.029

δ̂1 0.001 0.015 -0.000 0.012 1.291 0.001 0.030 0.000 0.013 2.374

δ̂2 0.007 0.059 0.004 0.065 0.919 -0.003 0.075 -0.002 0.066 1.126

σ̂2
v 0.109 0.114 -0.000 0.002 62.508 0.635 0.639 0.000 0.002 354.291

σ̂2
u 0.002 0.035 0.001 0.032 1.097 0.031 0.082 0.001 0.033 2.524

µ̂ -0.010 0.040 -0.002 0.035 1.140 -0.031 0.067 -0.002 0.037 1.815

1 ψ is the ratio of RMSE(Within)/RMSE(CCE).
2 The true values of the parameter set are β = 0.5, δ1 = 0.5, δ2 = 0.5, σ2

v = 0.1, σ2
u = 0.2, and µ = 0.5.

3 The bias is defined by (Estimated value −True Value).
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Table 4: Simulation results with cross-section depen-

dence, case about x and z are correlated with factor

(T=20)

Within CCE

N = 50 Bias RMSE Bias RMSE ψ

β̂ 0.292 0.534 0.000 0.012 45.393

δ̂1 -0.139 0.431 0.001 0.066 6.514

δ̂2 0.102 0.373 0.001 0.037 10.198

σ̂2
v 1.507 9.953 -0.001 0.005 1837.170

σ̂2
u 34721.845 68882.385 1.412 13.975 4928.831

µ̂ 0.038 0.225 0.036 0.234 0.959

Within CCE

N = 100 Bias RMSE Bias RMSE ψ

β̂ 0.272 0.446 0.000 0.008 54.281

δ̂1 -0.140 0.342 0.001 0.054 6.370

δ̂2 0.089 0.304 0.000 0.028 10.693

σ̂2
v 0.917 3.523 -0.001 0.004 968.563

σ̂2
u 39725.677 76044.209 0.180 0.866 87785.493

µ̂ 0.054 0.214 0.008 0.174 1.227

Within CCE

N = 200 Bias RMSE Bias RMSE ψ

β̂ 0.287 0.486 -0.000 0.006 85.221

δ̂1 -0.124 0.372 0.003 0.039 9.653

δ̂2 0.093 0.288 -0.001 0.020 14.582

σ̂2
v 1.135 5.096 -0.000 0.003 2004.083

σ̂2
u 32871.244 65416.402 0.078 0.444 147318.408

µ̂ 0.039 0.213 -0.011 0.106 2.004

Within CCE

N = 400 Bias RMSE Bias RMSE ψ

β̂ 0.249 0.390 -0.000 0.004 95.194

δ̂1 -0.136 0.349 -0.000 0.027 12.743

δ̂2 0.098 0.230 0.000 0.014 16.608

σ̂2
v 0.856 2.493 -0.000 0.002 1348.341

σ̂2
u 40286.341 76224.203 0.050 0.319 238843.857

µ̂ 0.048 0.213 -0.007 0.050 4.282

1 ψ is the ratio of RMSE(Within)/RMSE(CCE).
2 The true values of the parameter set are β = 0.5, δ1 = 0.2, δ2 =

−0.1, σ2
v = 0.1, σ2

u = 0.4, and µ = 0.5.
3 The bias is defined by (Estimated value− True Value).
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Table 5: Statistics of variables used in the cost function

Variables Mean Std. Dev. Min Max

Total Cost 1.22×103 5.24×103 3 7.49×104

Output quantities

Total loans 1.23×104 5.29×104 8 8.61×105

Other earning assets 9.96×103 5.62×104 3 9.68×105

Total deposits 1.34×104 6.35×104 4 1.06×106

Liquid assets 5.93×104 3.56×104 2 7.80×105

Input prices

Price of capital 5.51 15.77 0.17 370.17

Price of funds 0.27 1.97 1.89×10−3 44.44

Other variables’ quantity and ratios

Total assets 2.67×104 1.37×105 44 3.13×106

Return on average assets 1.10 1.27 -16.9 17.2

Equity to assets 9.46 5.07 -3.5 62.95

1 The variables in total cost and output quantities are measured in US $ millions.
2 There are a total of 4,354 bank-year observations.
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Table 6: Estimation results for the cost frontier

Within CCE

β̂ Std. Dev. β̂ Std. Dev.

Effects on cost function
ln(PC/PF) 0.321∗∗∗ 0.043 0.188 ∗∗∗ 0.003

ln(TL) 0.142∗∗∗ 0.220 0.058 ∗∗∗ 0.006

ln(OEA) 0.065∗∗∗ 0.057 -0.007 0.004

ln(TD) 0.795∗∗∗ 0.228 0.852 ∗∗∗ 0.005

ln(LA) 0.005 0.067 0.012 ∗∗∗ 0.003

t 0.015∗∗∗ 0.010

Effects on inefficiency
ln(TA) -0.007∗∗∗ 0.001 -0.054∗∗∗ 0.007

ETA 0.001∗∗∗ 2.1×10−4 0.071∗∗∗ 0.001

ROAA -4.5×10−4∗∗∗ 1.3×10−4 -0.070∗∗∗ 0.003

Year08 -0.004∗∗∗ 0.001 -0.019∗∗∗ 0.001

Austria 0.251 0.466 -1.257∗∗∗ 0.024

Belgium -0.134 0.282 -0.750∗∗∗ 0.005

Canada 0.646∗∗∗ 0.213 -0.209∗∗∗ 0.003

Denmark 0.561∗∗∗ 0.172 -1.201∗∗∗ 0.008

France 0.701∗∗∗ 0.053 1.017∗∗∗ 0.008

Germany 0.643 0.477 -0.144∗∗∗ 0.003

Switzerland 0.385∗∗ 0.179 0.011∗∗∗ 0.001

UK 0.314∗∗ 0.156 -1.132∗∗∗ 0.007

USA 0.113 0.123 0.415∗∗∗ 0.014

σ2
v 0.034∗∗∗ 9.6×10−5 0.005∗∗∗ 6.6×10−6

σ2
u 447.062∗∗∗ 161.515 0.015∗∗∗ 1.4×10−4

µ 1.2×10−4∗∗∗ 2.6×10−13 0.006∗∗∗ 2.0×10−7

log L 5020.754 9287.145

1 ∗ Significant at the 10% level, ∗∗ Significant at the 5% level and ∗∗∗ Significant

at the 1% level.
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Figure 1: Average Cost Efficiency in All Countries(Within)

Figure 2: Average Cost Efficiency in All Countries(CCE)
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Figure 3: The Pattern of Cost Efficiency in All Countries(CCE)
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Appendix

We first rewrite equations (1)-(3) as following:

yi = Dαi +Xiβi + Fλi + εi

εi = vi − ui

Xi = DA′
i + Fτi + ei

where yi and εi are T × 1 vectors, Xi is a T × k matrix, the common factors F =

(f1, f2, ..., fT )
′ is a T × r matrix with r common factors, αi captures individual-specific

time-invarious heterogeneity, D = 1T is a T × 1 vector with ones, and Ai = (αi1, . . . , αik)
′

is an n× k vector.

Let

ξit =

⎡

⎣

vit + β′eit

eit

⎤

⎦

and let ȳtw =
∑N

i=1wiyit, x̄tw =
∑N

i=1 wixit and ξ̄tw =
∑N

i=1wiξit. Additionally, let

ȳw = (ȳ1w, . . . , ȳTw)
′ X̄w = (x̄′1w, . . . , x̄

′
Tw)

′ and ξ̄w = (ξ̄′1w, . . . , ξ̄
′
Tw)

′. Based on Pesaran

(2006), to proxy the common factors in our model, we could use

H∗
w = (D, ȳw, X̄w,

N
∑

i=1

wihiu
∗
i )

if u∗i were observed. However, u∗i is unobserved practically. To resolve this problem, we

propose using h̄wµ∗∗ as a proxy of
∑N

i=1 wihiu
∗
i .

Lemma 1. Under Assumptions 1–5, for each t,

N
∑

i=1

wihitu
∗
i −

N
∑

i=1

wihitµ∗∗ = Op

(

1√
N

)

.

Proof of Lemma 1

Since u∗i is independent of hit and u∗j and u∗i are mutually independent for all i 
= j under

Assumption 4, it can be shown that

E(hitu
∗
i ) = E(hit)E(u∗i ) = E(hit)µ∗∗,

E[hithjt(u
∗
i − µ∗∗)(u

∗
j − µ∗∗)] = E(hithjt)E(u∗i − µ∗∗)E(u∗j − µ∗∗) = 0
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Therefore, we obtain

E

(

N
∑

i=1

wihitu
∗
i −

N
∑

i=1

wihitµ∗∗

)

=

N
∑

i=1

wiE(hit)E(u∗i )−
N
∑

i=1

wiE(hit)µ∗∗ = 0

and

V ar

(

N
∑

i=1

wihitu
∗
i −

N
∑

i=1

wihitµ∗∗

)

= E

[

N
∑

i=1

w2
i h

2
it(u

∗
i − µ∗∗)

2

]

=
N
∑

i=1

w2
iE(h2it)E [(u∗i − µ∗∗)]

2 = O

(

1

N

)

Thus, the desired result follows. ✷

Proof of Proposition 1

So far we have proved Lemma 1, we still need to prove Proposition 1. First, we define two

objective functions

lnLi = −1

2

[

(T − s)
(

ln (2π) + lnσ2
v

)

+
1

2
(εi + Fλi)

′MwΠ
−Mw(εi + Fλi)−

(

µ2
∗

σ2
∗
− µ2

σ2
u

)]

+ ln

(

σ∗Φ

(

µ∗
σ∗

))

− ln

(

σuΦ

(

µ

σu

))

,

lnL∗
i = −1

2

[

(T − s)
(

ln (2π) + lnσ2
v

)

− 1

2
ε′iM

∗
wΠ

−M∗
wεi −

(

µ2
∗∗

σ2
∗∗

− µ2

σ2
u

)]

+ ln

(

σ∗∗Φ

(

µ∗∗
σ∗∗

))

− ln

(

σuΦ

(

µ

σu

))

.

where

µ∗ =
µ/σ2

u − (εi + Fλi)
′Mwhi

h′iMwhi + 1/σ2
u

, σ2
∗ =

1

h′iMwhi + 1/σ2
u

µ∗∗ =
µ/σ2

u − ε′iM
∗
whi

h′iM
∗
whi + 1/σ2

u

, σ2
∗∗ =

1

h′iM
∗
whi + 1/σ2

u

M∗
w = I −H∗

w(H
∗′
wH∗

w)
−1H∗′

w .

Thus, to complete the proof of Proposition 1, we must show that

1

T

N
∑

i=1

wi lnLi =
1

T

N
∑

i=1

wi lnL
∗
i +Op

(

1√
N

)

by the following lemmas.
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Lemma 2. Under Assumptions 1–5,

(B1) D′vi

T
= Op(

1√
T
) (B2) F′vi

T
= Op(

1√
T
) (B3) D′ui

T
= Op(1)

(B4) F′ui

T
= Op(1) (B5) 1

T

∑N
j=1wjh

′
ju

∗
jui = Op(1) (B6) ξ̄∗

′

w vi

T
= Op(

1
N
) +Op(

1√
NT

)

(B7) D′hi

T
= Op(1) (B8) F′hi

T
= Op(1) (B9) 1

T

∑N
i=1 wih

′
iu

∗
ihi = Op(1)

(B10) ξ̄∗
′

w F

T
= Op(

1√
NT

) (B11) ξ̄∗
′

w ξ̄∗w
T

= Op(
1
N
) (B12) ξ̄∗

′

w D

T
= Op(

1√
NT

)

Proof of Lemma 2

First, we let ξ̄∗w =
(

0, ξ̄w,0
)

, and under Assumptions 2 and 4, that (D,F,hi,vi) are co-

variance stationary, Lemma 2 can be shown based on the proofs of Pesaran (2006). ✷

Lemma 3. Under Assumptions 1–5,

(C1) 1
T

∑N
i=1 wih

′
iu

∗
ivi = Op

(

1√
NT

)

.

(C2) ξ̄∗
′

w ui

T
= Op

(

1√
N

)

.

(C3) ξ̄∗
′

w hi

T
= Op

(

1√
N

)

.

(C4) 1
T

∑N
i=1 wih

′
iu

∗
i ξ̄

∗
w = Op

(

1√
NT

)

.

Proof of Lemma 3

Consider (C1) first. Since vi is zero mean and independent of hi and u∗i for all i’s and t’s

by Assumption 1, we have

E

(

1

T

N
∑

i=1

wih
′
iu

∗
ivi

)

=
1

T
E

(

N
∑

i=1

wih
′
iu

∗
i

)

E(vi) = 0

Also,

V ar

(

1

T

N
∑

i=1

wih
′
iu

∗
ivi

)

=
1

T 2
E

(

T
∑

t=1

T
∑

s=1

N
∑

i=1

w2
i hithisu

∗2
i vitvis

)

=
1

T 2

T
∑

t=1

T
∑

s=1

N
∑

i=1

w2
iE(hithis)E(u∗2i )E(vitvis)

=
1

T 2

T
∑

t=1

N
∑

i=1

w2
iE(h2it)E(u∗2i )E(v2it)

= O

(

1

N

)

1

T 2

T
∑

t=1

E(h2it)E(u∗2i )E(v2it) = O

(

1

NT

)
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where the third equality comes from the fact that E(vitvis) = 0 for t 
= s, and the last

equality comes from the fact that E(h2it), E(u∗2i ), and E(v2it) are finite by Assumption 1

and 4.

Next consider (C2). Under the independent assumption of eit and u∗it, and by letting

ξ̄∗w,l = (ξ̄∗w,1,l, ξ̄
∗
w,2,l, ..., ξ̄

∗
w,T,l)

′ denotes the l-th element of ξ̄∗w, we only consider the case

which the element is not 0. We have

E

(

ξ̄∗
′

w,lui

T

)

=
1

T
E
(

ξ̄∗
′

w,l

)

E (ui) = 0

furthermore, by Cauch-Schwarz inequality and the fact that E(h2it) and E(u∗2i ) are bounded

V ar

(

ξ̄∗
′

w,lui

T

)

=
1

T 2

(

T
∑

t=1

T
∑

s=1

E(ξ̄∗w,t,lξ̄
∗
w,s,l)E(uituis)

)

=
1

T 2

(

T
∑

t=1

T
∑

s=1

E(ξ̄∗w,t,lξ̄
∗
w,s,l)E(hithis)E(u∗2i )

)

= O

(

1

N

)

1

T 2

(

T
∑

t=1

T
∑

s=1

E(hithis)E(u∗2i )

)

≤ O

(

1

N

)

1

T 2

(

T
∑

t=1

T
∑

s=1

E(h2it)
1

2E(h2is)
1

2

)

≤ O

(

1

N

)

1

T 2

(

T
∑

t=1

T
∑

s=1

K

)

= O

(

1

N

)

where K is a finite positive constant, and the second equality comes from Lemma 2(B11).

Similarly, we can obtain (C3).

Finally, consider (C4). Similarly, let ξ̄∗w,l = (ξ̄∗w,1,l, ξ̄
∗
w,2,l, ..., ξ̄

∗
w,T,l)

′ denotes the l-th

element of ξ̄∗w. Since hit, u
∗
i , εit and eit are mutually independent and their second moments

are bounded, we have

E

(

N
∑

i=1

wih
′
iu

∗
i ξ̄

∗
w,l

)

=

N
∑

i=1

wiE(h′
i)E(u∗i )E(ξ̄∗w,l) = 0 (18)
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and

E(ū2wt) = E

⎡

⎣

(

N
∑

i=1

wihitu
∗
i

)2
⎤

⎦

= E

⎛

⎝

N
∑

i=1

w2
i h

2
itu

∗2
i +

N
∑

i,j=1,i �=j

wiwjhithjtu
∗
i u

∗
j

⎞

⎠

=

N
∑

i=1

w2
iE(h2it)E(u∗2i ) +

N
∑

i,j=1,i �=j

wiwjE(hithjt)E(u∗i )E(u∗j )

=
N
∑

i=1

w2
iE(h2it)V ar(u∗i ) +

N
∑

i=1

N
∑

j=1

wiwjE(hithjt)E(u∗i )E(u∗j )

≤
N
∑

i=1

w2
iE(h2it)V ar(u∗i ) +

N
∑

i=1

N
∑

j=1

wiwjE(h2it)
1

2E(h2jt)
1

2E(u∗i )E(u∗j ) = O(1)

by Cauch-Schwarz inequality. Thus,

V ar

(

N
∑

i=1

wih
′
iu

∗
i ξ̄

∗
w,l

)

= V ar

(

T
∑

t=1

ūwtξ̄
∗
w,t,l

)

=

T
∑

t=1

V ar
(

ξ̄wtūw,t,l

)

=
T
∑

t=1

E(ξ̄2w,t,l)E(ū2wt) = O

(

T

N

)

, (19)

where the second equality comes from the fact that for all t 
= s

Cov
(

ξ̄∗w,t,lūwt, ξ̄
∗
w,s,lūws

)

= E
(

ξ̄∗w,t,lūwtξ̄
∗
w,s,lūws

)

− E
(

ξ̄∗w,t,lūwt

)

E
(

ξ̄∗w,s,lūws

)

=E
(

ξ̄∗w,t,l

)

E
(

ξ̄∗w,s,l

)

E (ūwtūws)− E
(

ξ̄∗w,t,l

)

E (ūwt)E
(

ξ̄∗w,s,l

)

E (ūws) = 0.

Together with (18) and (19), we obtain

V ar

(

1

T

N
∑

i=1

wih
′
iu

∗
i ξ̄

∗
w

)

= O

(

1

NT

)

hence, 1
T

∑N
i=1wih

′
iu

∗
i ξ̄

∗
w = Op

(

1√
NT

)

. ✷
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Lemma 4. Under Assumptions 1-5,

(D1) 1
T

∑N
i wiε

′
iMwεi =

1
T

∑N
i wiε

′
iM

∗
wεi +Op

(

1√
N

)

.

(D2) 1
T

∑N
i wiλ

′
iF

′Mwεi = Op

(

1√
N

)

.

(D3) 1
T

∑N
i wiλ

′
iF

′MwλiF = Op

(

1√
N

)

.

(D4) 1
T

∑N
i wih

′
iMwhi =

1
T

∑N
i wih

′
iM

∗
whi +Op

(

1√
N

)

.

(D5) 1
T

∑N
i wiε

′
iMwhi =

1
T

∑N
i wiε

′
iM

∗
whi +Op

(

1√
N

)

.

Proof of Lemma 4

Recall Mw =
(

IT −Hw (H ′
wHw)

−1 H ′
w

)

, G = (D,F, Ūw) and ξ̄∗w =
(

0, ξ̄w,0
)

. Therefore

Hw = (D, ȳw, X̄w,
∑N

i=1 wihiµ∗∗) can be written by

Hw =

(

G+Op

(

1√
N

))

P̄w + ξ̄∗w = GP̄w + ξ̄∗w +Op

(

1√
N

)

= H∗
w +Op

(

1√
N

)

.

(20)

where

P̄w =

⎡

⎢

⎢

⎣

1 B̄w 0

0 C̄w 0

0 Ik+1 1

⎤

⎥

⎥

⎦

Then we consider (D1)

1

T

N
∑

i=1

wiε
′
iMwεi =

1

T

N
∑

i=1

wiε
′
iεi −

1

T

N
∑

i=1

wiε
′
iHw

(

H ′
wHw

)−1
H ′

wεi.

By (20) and the fact that εit = vit − hitu
∗
i , we have

ε′iHw

T
=

ε′iH
∗
w

T
+

1

T

T
∑

t=1

εitOp

(

1√
N

)

=
ε′iH

∗
w

T
+

1

T

T
∑

t=1

(vit − hitu
∗
i )Op

(

1√
N

)

. (21)

Since vit is a covariance stationary process with zero mean and independent over t’s and

across i’s, we have

V ar

(

1

T

T
∑

t=1

vit

)

=

(

1

T 2

) T
∑

t=1

E(v2it) = O(1/T )
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Thus, 1
T

∑T
t=1 vit = Op

(

1√
T

)

. Similarly, by Assumption 1 and 4, that u∗i and hit have

finite second moments and are mutually independent, we have

E

(

1

T

T
∑

t=1

hitu
∗
i

)

= O(1), V ar

(

1

T

T
∑

t=1

hitu
∗
i

)

=
1

T 2
E

(

T
∑

t=1

(hitu
∗
i )

)

= O

(

1

T

)

,

Thus, 1
T

∑T
t=1 hitu

∗
i = Op(1). Therefore, (21) can be rewritten as

εiHw

T
=

εiH
∗
w

T
+Op

(

1√
N

)

. (22)

Notice also that the last equality holds due to H∗
w = GP̄w + ξ̄∗w, where G is covariance

stationary, and P̄w is bounded. We have

H ′
wHw

T
=

1

T

(

H∗
w +Op

(

1√
N

))′ (

H∗
w +Op

(

1√
N

))

=
H∗′

wH∗
w

T
+Op

(

1√
N

)

, (23)

Additionally, by lemma2 (B1–5) and lemma3 (C1), it can be shown that

H∗′
w εi
T

= Op (1) . (24)

Thus, by (21)–(24) and Lemma2 from Kiviet and Phillips (1994), we have

1

T

N
∑

i=1

wiε
′
iMwεi =

1

T

N
∑

i=1

wiε
′
iεi −

N
∑

i=1

wi
ε′iHw

T

(

H ′
wHw

T

)−1 H ′
wεi
T

=
1

T

N
∑

i=1

wiε
′
iεi −

N
∑

i=1

wi

(

ε′iH
∗
w

T
+Op

(

1√
N

))

×
⎛

⎝

(

H∗′
wH∗

w

T

)−1

+Op

(

1√
N

)

⎞

⎠

(

H∗′
w εi
T

+Op

(

1√
N

)

)

=
1

T

N
∑

i=1

wiε
′
iM

∗
wεi +Op

(

1√
N

)

.

To proof (D2), let Fl = (fl1, . . . , flT )
′ denotes the l-th column of F. Since F is covariance

stationary, we have

E

(

1

T

T
∑

t=1

flt

)

= O (1) , V ar

(

1

T

T
∑

t=1

flt

)

=
1

T 2
V ar

(

T
∑

t=1

flt

)

= O

(

1

T

)

.
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Therefore, we have

F′
lHw

T
=

F′
lH

∗
w

T
+

1

T

T
∑

t=1

fltOp

(

1√
N

)

=
F′
lH

∗
w

T
+Op

(

1√
N

)

. (25)

By (22), (23), (25), and the fact that H∗
′

w H∗

w

T
= OP (1) due to G is covariance stationary

and P̄w is bounded, we have

1

T

N
∑

i=1

wiλ
′
iF

′Mwεi =
1

T

N
∑

i=1

wiλ
′
iF

′εi −
N
∑

i=1

wiλ
′
i

(

F′H∗
w

T
+Op

(

1√
N

))

×
⎛

⎝

(

H∗′
wH∗

w

T

)−1

+Op

(

1√
N

)

⎞

⎠

(

H∗′
w εi
T

+Op

(

1√
N

)

)

=
1

T

N
∑

i=1

wiλ
′
iF

′
(

IT −H∗
w

(

H∗′
wH∗

w

)−1
H∗′

w

)

εi +Op

(

1√
N

)

=
1

T

N
∑

i=1

wiλ
′
iF

′M∗
wεi +Op

(

1√
N

)

By Lemma 2(B10), we have

H∗′
wF

T
=

P̄′
wG

′F

T
+

ξ̄∗
′

wF

T
=

P̄′
wG

′F

T
+Op

(

1√
NT

)

(26)

Similarly, by Lemma 2(B1–6) and Lemma 3(C2), we have

H∗′
w εi
T

=
P̄′

wG
′εi

T
+

ξ̄∗
′

w εi
T

=
P̄′

wG
′εi

T
+Op

(

1√
N

)

, (27)

and by Lemma 2(B10–12) and Lemma 3(C4)

H∗′
wH∗

w

T
=

P̄′
wG

′GP̄w

T
+Op

(

1

N

)

+Op

(

1√
NT

)

. (28)

Notice that if the rank condition hold, IT−GP̄w

(

P̄′
wG

′GP̄w

)−
P̄′

wG
′ = IT−G (G′G)−G′ =

Mg. Since F ⊂ G, we have MgF = 0. Together with (26)–(28), we have

1

T

N
∑

i=1

wiλ
′
iF

′M∗
wεi

=
1

T

N
∑

i=1

wiλ
′
iF

′
(

IT −GP̄w

(

P̄′
wG

′GP̄w

)−
P̄′

wG
′
)

εi +Op

(

1√
N

)

+Op

(

1√
NT

)

=
1

T

N
∑

i=1

wiλ
′
iF

′Mgεi +Op

(

1√
N

)

+Op

(

1√
NT

)

= Op

(

1√
N

)

+Op

(

1√
NT

)
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Therefore, we obtain

1

T

N
∑

i=1

wiλ
′
iF

′Mwεi =
1

T

N
∑

i=1

wiλ
′
iF

′M∗
wεi +Op

(

1√
N

)

= Op

(

1√
N

)

.

Similarly, we can obtain (D3). Finally, Consider (C4) and (C5). Since hit is covariance

stationary, we have

E

(

1

T

T
∑

t=1

hit

)

=
1

T
E

(

T
∑

t=1

hit

)

= O (1)

V ar

(

1

T

T
∑

t=1

hit

)

=
1

T 2
V ar

(

T
∑

t=1

hit

)

=
1

T 2

T
∑

t=1

T
∑

s=1

Cov (hit, his)

= O

(

1

NT 2

) T
∑

t=1

T
∑

s=1

(Γh|t− s|) = O

(

1

NT

)

where Γh|t− s| is the autocovariance of hit. Therefore, we have 1
T

∑T
t=1 hit = Op(1) and

h′
iHw

T
=

h′
iH

∗
w

T
+

1

T

T
∑

t=1

hitOp

(

1√
N

)

=
h′
iH

∗
w

T
+Op

(

1√
N

)

.

Then, similar to the proof of (D1), we can further obtain (D4) and (D5). ✷

Lemma 5. Under Assumptions 1-5,

(E1) ln (σ∗) = ln (σ∗∗) +Op

(

1√
N

)

.

(E2) µ∗

σ∗

= µ∗∗

σ∗∗

+Op

(

1√
N

)

+Op

(√
T√
N

)

.

(E3) µ2
∗

σ2
∗

= µ2
∗∗

σ2
∗∗

+Op

(√
T√
N

)

+Op

(

T√
N

)

.

Proof of Lemma 5: First, consider (E1). Notice that

ln(σ∗) = −1

2
ln(h′iMwΠ

−Mwhi + 1/σ2
u) = −1

2
ln

(

h′iMwhi
Tσ2

v

+
1

Tσ2
u

)

− lnT,

ln(σ∗∗) = −1

2
ln

(

h′iM
∗
wΠ

−M∗
whi + 1/σ2

u

)

= −1

2
ln

(

h′iM
∗
whi

Tσ2
v

+
1

Tσ2
u

)

− lnT.
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By lemma 4(D4), we have

h′iM
∗
whi

T
=

h′iM
∗
whi

T
+Op

(

1√
N

)

,

by using Taylor expansion at Θ∗
1 =

h′

iM
∗

whi

Tσ2
v

+ 1
Tσ2

u
and the fact that Θ1 =

h′

iM
∗

whi

Tσ2
v

+ 1
Tσ2

u
is

strictly positive, we obtain

ln(Θ1) = ln(Θ∗
1) +

1

Θ∗
1

(

Op

(

1√
N

))

= ln(Θ∗
1) +Op

(

1√
N

)

.

Next, consider (E2). Notice that

µ∗
σ∗

=

(

µ

σ2
u

− ε′iMwΠ
−1Mwhi

)(

h′
iMwΠ

−1Mwhi +
1

σ2
u

)− 1

2

. (29)

The denominator can be rearranged as

(

h′
iMwΠ

−1Mwhi +
1

σ2
u

)− 1

2

= T− 1

2

(

h′
iMwhi

Tσ2
v

+
1

Tσ2
u

)− 1

2

.

Let Θ2 =
h′

iMwhi

Tσ2
v

+ 1
Tσ2

u
and Θ∗

2 =
h′

iM
∗

whi

Tσ2
v

+ 1
Tσ2

u
. By using Taylor expansion, we have

Θ
− 1

2

2 = (Θ∗
2)

− 1

2 − 1

2
(Θ∗

2)
− 3

2

(

Op

(

1√
N

))

Then (E2) follows if (Θ∗
2)

− 3

2 = Op(1).

Since Θ∗
2 is a scalar, it is either (Θ∗

2)
−1 ≤ (Θ∗

2)
− 3

2 ≤ (Θ∗
2)

−2 or (Θ∗
2)

−1 ≥ (Θ∗
2)

− 3

2 ≥
(Θ∗

2)
−2 by Lemma 2 from Kiviet and Phillips (1994). Also,

(Θ∗
2)

−1 =

(

h′
iM

∗
whi

Tσ2
v

+
1

Tσ2
u

)−1

= Op(1) > 0

and

(Θ∗
2)

−2 =

(

(

h′
iM

∗
whi

Tσ2
v

)−1

+O

(

1

T 2

)

)2

= Op(1) (30)

Thus, (Θ∗
2)

− 3

2 = Op(1) and, therefore,

T
−1

2

(
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iMwhi

Tσ2
v

+
1

Tσ2
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)
−1

2

= T
−1

2

(

(
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∗
whi

Tσ2
v

+
1
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)
−1

2

+Op

(
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(31)
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Similarly, by using lemma 4(D5), it can be shown that

T

(

µ

Tσ2
u

− ε′iMwhi

Tσ2
v

)

= T

((

µ

Tσ2
u

− ε′iM
∗
whi

Tσ2
v

)

+Op

(

1√
N

))

(32)

Together with (31) and (32), we obtain (E2).

The proof of (E3) is similar. First, by (30) that (Θ∗
2)

−2 =
(

h′

iM
∗

whi

Tσ2
v

+ 1
Tσ2

u

)−2
= Op (1),

we have

T−1

(
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∗
whi

Tσ2
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+
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(

(
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Similarly,

T 2

(

µ
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(

(
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Tσ2
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+Op
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Combining the above two equations, we obtain (E3). ✷

Proof of Proposition 1 Recall that

1

T

N
∑

i=1

wi lnLi =
1

T

N
∑

i=1

wi

[

−1

2
(T − s)

(

ln (2π) + lnσ2
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− 1
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(
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)
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(
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(
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(

σuΦ

(

µ

σu

))]

.

By Lemmas 3(D1)–(D3), the second term becomes

(εi + Fλi)
′MwΠ

−Mw (εi + Fλi)

T
=

(εi +Fλi)
′Mw (εi + Fλi)

Tσ2
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+Op

(
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. (33)

Next, consider the third term. Define f(·) = ln (Φ(·)). By Lemma 5(E2) and using Taylor

expansion,

ln

(

Φ

(
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))

= ln
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Φ

((

µ∗∗
σ∗∗

)))

+Op
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√
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.

Together with Lemma 5(E1), we obtain
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and, therefore,

T−1 ln

(

σ∗Φ

(

µ∗
σ∗

))

= T−1 ln

(

σ∗∗Φ

(

µ∗∗
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+Op

(
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Similarly, by Lemma 5(E3),

T−1

(

µ∗
σ∗

)2

= T−1

(

µ∗∗
σ∗∗

)2

+Op

(

1√
NT

)

(35)

Combining (33)–(35), we obtain the desired result. ✷
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