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Abstract

This paper studies stationary and nonstationary distributions of money holdings in a

random-matching model. The first part characterizes the stationary distributions of money

holdings and derives the optimum quantity of money. The second part considers nonsta-

tionary distributions of the optimum quantity of money to show that if the production

costs are not too large, any distribution of the optimum quantity of money converges

asymptotically to the uniform distribution.
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1 Introduction

This paper extends the basic search-theoretic model of money developed by Kiyotaki and

Wright (1991, 1993) by allowing agents to accumulate money up to the bound n ∈ N+.

First, it generalizes the result obtained in Kiyotaki and Wright (1991, 1993) that the

optimal quantity of money is 1/2 when the upper bound is n = 1 to show that the optimal

quantity of money is n/2 when the upper bound is n. Second, it demonstrates that if the

production cost are not too large, any initial distribution of the optimum amount of money

converges asymptotically to the uniform distribution.

Following the seminal work of Kiyotaki and Wright (1991, 1993), several articles have

either relaxed the fixed price assumption (Trejos and Wright, 1995; Shi, 1995; Berentsen,

Molico, and Wright, 2000), the one-unit constraint on money holdings (Berentsen, 2000;

Rocheteau, 2000), or both (Corbae and Camera, 1999; Green and Zhou, 1998a; Molico,

1998; Taber and Wallace, 1999; Zhou, 1999). A further line of research has developed

tractable versions of the search framework with fully divisible money (Berentsen and Ro-

cheteau, 2000; Shi, 1997, 1999; Lagos and Wright, 2001).

This paper relaxes the one-unit constraint on money holdings, but money and com-

modities must still exchange one for one. This intermediate step is interesting in its own

right. First, it allows for an analysis of nonstationary distributions of money holdings

that–with the exception of Green and Zhou (1998b)–has not been carried out yet. Sec-

ond, it complements the analysis of stationary equilibria by Corbae and Camera (1999)

and Zhou (1999), where commodities are exchanged for one indivisible unit of money, by

focusing on the welfare properties of these equilibria.
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2 The model

The economy is populated by a [0, 1] continuum of infinite-lived agents who specialize in

consumption and production. The commodities are indivisible and are nonstorable (to rule

out commodity money). Let Xi be the set of goods that agent i consumes. No agent i

produces a good in Xi. Moreover, for a pair of agents i and j selected at random, the

probability that i produces a good in Xj and also j produces a good in Xi is 0 (there are

no double coincidences of real wants), while the probability that i produces a good in Xj

but j does not produce a good in Xi is x ∈ (0, 1). For example, if there are J goods and

J types, J > 2, and each type i agent consumes only good i and produces only good i+ 1

(mod J), then x = J−1.

Consuming one unit of a consumption good in Xi yields utility U > 0. Consuming one

of the other commodities yields zero utility. Production of one unit of a real commodity

costs C with U > C ≥ 0. In addition to the consumption goods, there is also an object

called fiat money. Fiat money comes in indivisible units of size one, is storable, and cannot

be consumed by any agent. Agents can accumulate money up to the bound n ∈ N+.

The model is in continuous time, and agents meet according to a Poisson process with

arrival rate α. Total population is normalized to one, and the measure of agents of each type

is the same, which implies that the rate at which an agent meets other agents of a particular

type is αx. Denote by mi (t) the probability that at time t a randomly chosen agent has

accumulated i units of money, and denote by m (t) = {m0 (t) , ...,mn (t)} a probability

measure (satisfying
Pn

i=0mi (t) = 1). The probability that a randomly selected agent has

accumulated less than n units of money is 1 − mn (t), and the probability that he has

accumulated at least one unit of money is 1 −m0 (t). Accordingly, the rate at which an

agent meets a potential buyer is pb = αx (1−mn (t)), and the rate at which he meets a

potential seller is ps = αx (1−m0 (t)).
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Throughout the paper the quantity of money,M , is assumed to be constant. Note that

for any n the quantity of money is bounded in [0, n]: If no agent holds money, the quantity

of money is zero, and if all agents hold n units of money, the quantity is n. Moreover, at

any point of time the probability measure m (t) must satisfy

M =
nX

i=0

imi (t) .

As in Kiyotaki and Wright (1991, 1993), money is indivisible and agents cannot hold

more than one unit of money when they search for a trading opportunity.2 However, in

contrast to their models, agents are able to accumulate money by storing their money

holdings at home. This assumption makes the pricing decision very simple, because two

matched agents either exchange money for goods one for one or do not trade at all. This

simplification allows us to focus on the welfare and convergence properties of the model.

In this section, stationary equilibria where mi (t) = mi are considered only. Denote the

expected utility (value function) of an agent with money holdings i, i = 0, ..., n, by V i.

Then, if r is the rate of time preferences, the value functions satisfy

rV 0 = psmax {V
1 − V 0 − C, 0}

rV i = pbmax {U + V
i−1 − V i, 0}+ psmax {V i+1 − V i − C, 0} , i = 0, ..., n− 1,

rV n = pbmax {U + V
n−1 − V n, 0}

(1)

For example, the first equation sets the flow value of being an agent with no money, rV 0,

equal to the rate at which he meets an agent who buys his product, ps, times the gain of

either producing for money or refusing to do so.

Definition 1 For any n > 0 and M ∈ (0, n), a stationary monetary equilibrium is a list

hV,mi that satisfies the following conditions:
2Berentsen and Rocheteau (2001) analyse the implications of indivisible money for the efficiency of

monetary exchange in the Kiyotaki-Wright framework.
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i) V satisfies (1) taking the probability measure m as given,

ii) the probability measure m is stationary taking the values function V as given, and

iii) V > 0.

According to the first part of Definition 1, the monetary equilibrium is a Nash equilib-

rium for a given probability measure m. The second part requires that the economy be in

a steady state given the selling and buying activities induced by equations (1). The third

part requires that money have value.

Lemma 1 establishes the existence and uniqueness of a stationary distribution of money

(stationary probability measure m) when agents accumulate money up to the bound n.

Lemma 1 For any n andM ∈ (0, n), if agents accumulate money up to the bound n, there

is a unique stationary probability measure m which satisfies

mi = m
(n−i

n
)

0 m
( i
n
)

n , i = 0, ..., n (2)

nX

i=0

m
(n−i

n
)

0 m
( i
n
)

n = 1 (3)

mn

mn−1
=
mn−1
mn−2

= ... =
m1

m0
=
1−m0

1−mn

. (4)

Proof: See appendix. ¥

Two comments are in order here. First, a similar characterization of the stationary

distribution of money holdings has been independently developed by Zhou (1999) and

Camera and Corbae (1999). Second, the uniqueness result is derived by the assumption

that agents cannot spend more than one unit of money at a time. Without this restriction,

there may be many other stationary distributions, including a similar class of equilibria

where agents treat j < nunits of money as one (Zhou 1999).

It is well established that in this model when C > 0 there is an endogenous upper

bound I (Berentsen 2000). The existence of I is due to two properties of the model. First,
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the marginal expected utility of money is a monotonically decreasing function of money

holdings. Second, the cost of acquiring one unit of money (the production cost C) is

constant. For small money holdings, the increase in the expected utility outweighs the

cost, and for large money holdings, the cost is larger than the benefit. Accordingly, if C is

large, I < n and agents are only willing to sell for money when i < I.

Lemma 2 For any n and money supply M ∈ (0, n), if C ≤ C̃, where C̃ > 0 is defined in

the proof, a unique stationary monetary equilibrium exists.

Proof: See appendix. ¥

According to Lemma 2, for any exogenous upper bound n and any quantity of money

M , if the production costs are not too large, agents are willing to accumulate money up

to the bound n. The uniqueness of the equilibrium is a consequence of Lemma 1.

In the following, for a given bound n the optimum amount of money and its unique

stationary distribution are derived. Welfare is defined by W (M,n) =
Pn

i=0miV
i, which

measures the ex ante expected utility of all agents (or a single agent) before money is

distributed among them.

Proposition 1 For any n and money supplyM ∈ (0, n), in a stationary monetary equilib-

rium rW (M,n) = αx (1−mn) (1−m0) (U − C). Moreover, the quantity of moneyM = n
2

and the distribution mi =
1
n+1
, i = 0, ..., n, maximize W (M,n).

Proof: Multiply each value function of (1) by its measure and then add the value

functions to get

rW (M,n) = αx (1−mn) (1−m0) (U − C)−
nX

i=1

(pbmi − psmi−1)
¡
V i − V i−1

¢

In a stationary monetary equilibrium (pbmi − psmi−1) = 0, i = 1, ..., n. Hence, rW (M,n) =

αx (1−mn) (1−m0) (U − C). Next, maximizeW (M,n) with respect tom0 subject to (3)
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to get m0 = mn. Given this, Lemma 1 immediately implies that mi =
1
n+1
, i = 0, ..., n.

Accordingly, the optimum quantity of money is n
2
. ¥

The intuition for this result is straightforward. No trade takes place between an ap-

propriate seller and an appropriate buyer if and only if either the buyer has no money or

the seller has money holdings n. Consequently, welfare is maximized when the measure

of agents in either of these two states is minimized, and this is attained with the uniform

distributionmi =
1
n+1
, i = 0, ..., n. The uniform distribution then immediately implies that

the optimum quantity of money is n/2. Note that Proposition 1 generalizes Kiyotaki and

Wright’s (1991, 1993) welfare analysis. In their models, when no barter trade is possible,

the optimum amount of money is 1/2.3

In Proposition 2 welfare maximization is constrained to stationary distributions of

money. There are nonstationary distributions of the optimum quantity of money that can

temporarily increase (but also decrease) the frequency of trades (and accordingly welfare).

This increase, however, is temporal, because the distribution of money converges to the

unique stationary distribution associated with the optimum quantity of money, as shown

in Section 3.

3Note that the optimum quantities of money and welfare are strictly increasing in n. Thus, a social

planner would choose n = I. Moreover, when r → 0, I →∞, which implies that when r → 0 the optimum

quantity of money becomes infinitely large. In this limiting economy, almost no agent is constrained by

his money holdings. This result relates to Friedman’s (1969) observation that an efficient monetary system

requires that agents be constrained by their average flow of income, but not by immediate shortages of

cash.
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3 Convergence

This section studies the convergence property of the model when the optimum quantity

of money is distributed. The convergence property is of interest because it gives us some

intuition of whether the distribution of money matters in the long run. During the transi-

tion the endogenous bound I (t) is time dependent. If for all t we have I (t) ≥ n, the law

of motion proceeds according to the following system of nonlinear differential equations:

ṁ = g (m(t)) = P (t)m(t) (5)

where P (t) =

−ps pb 0 · · · 0 0 0

ps −ps − pb pb · · · 0 0 0

0 ps −ps − pb · · · 0 0 0

0 0 ps · · · 0 0 0

· · · · · · · · ·

0 0 0 · · · pb 0 0

0 0 0 · · · −ps − pb pb 0

0 0 0 · · · ps −ps − pb pb

0 0 0 · · · 0 ps −pb

Proposition 2 For any n, there is a critical value C̄ > 0 defined in the proof such that if

C ≤ C̄, any initial distribution of the optimum amount of money n
2
converges asymptoti-

cally to the uniform distribution.

Proposition 2 provides a sufficient condition that guarantees convergence to the sta-

tionary distribution from an arbitrary distribution of the optimum quantity of money.

The sufficient condition is essentially a restriction on the production cost that guarantees

that the exogenous bound on money holdings, n, remains binding at all times, i.e., that
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I (t) > n for all t. The first part of the proof of Proposition 2 involves Liapounov’s sec-

ond method, which is described in Lemma 3.4 Denote the gradient vector, Hf (m(t)), by

Hf (m(t)) =
³

∂f
∂m0
, ..., ∂f

∂mn

´
.

Lemma 3 Let X ⊂ <s be compact, and let g : X → X be continuous with g (m) = m for

some m ∈ X. Suppose there exists a continuous function f : X → < that satisfies

a) f (m(t)) ≥ 0, with equality if and only if m(t) = m,

b) ḟ (m(t)) = Hf (m(t)) g (m(t)) ≤ 0, with equality if and only if m(t) = m.

Then m is a globally stable solution to the set of nonlinear differential equations ṁ =

g (m(t)).

Proof of Proposition 2: The proof involves two steps. First, it is shown that (5) is

globally (asymptotically) stable if on the equilibrium path at any point of time I (t) ≥ n.

Second, a sufficient condition is derived that guarantees that during the entire transition

to the stationary distribution one has I (t) ≥ n.

First step. To prove the global stability of (5) when I (t) ≥ n, one has to find a

Liapounov function that is a continuous function and that satisfies conditions a) and b) of

Lemma 3. In the following I show that the function f (m) =
Pn

i=0 (mi(t)−mi)
2 satisfies

these conditions. Note, first, that X = {m ∈ In+1 :Pn

i=0mi = 1 and
Pn

i=0 imi =
n
2
} and

thatX is compact and convex. f (m) is continuous, and condition a) is satisfied. Condition

b) implies

ḟ =
nX

i=0

2 (mi −mi) ṁi ≤ 0 (6)

Because
Pn

i=0miṁi = m
Pn

i=0 ṁi = 0, (6) is reduced to
Pn

i=0miṁi ≤ 0. Use (5) to get

ps

Ã
n−1X

i=0

m2
i −

n−1X

i=0

mimi+1

!

+ pb

Ã
nX

i=1

m2
i −

n−1X

i=0

mimi+1

!

≥ 0 (7)

4The proof of Lemma 3 can be found, for example, in Stokey and Lucas (1989, p. 139ff.).
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After manipulations of (7) one gets

(2−m0 −mn)
n−1X

i=0

(mi −mi+1)
2 ≥ (m0 −mn)

2 (m0 +mn) (8)

Denote by LHS(m) (RHS(m)) the left-hand (right-hand) side of (8). For any m0 and mn,

LHS(m) is minimized when mi =
(n−i)m0+imn

n
, i = 1, .., n − 1. To see this, differentiate

Pn−1
i=0 (mi −mi+1)

2 with respect to mi, i = 1, .., n− 1, to get mi =
mi−1+mi+1

2
. Solve these

equations to get

mi =
(n− i)m0 + imn

n
, i = 0, .., n. (9)

Denote by X̃ the set of all probability measures that solve (9). Next, note that for any

m ∈ X̃, (8) holds with equality. This implies that for any m ∈ X, m /∈ X̃, m0 = m̃0, and

mn = m̃n

LHS(m) > LHS(m̃) = RHS(m̃) = RHS(m) (10)

To proceed, use
Pn

i=0mi = 1 and (9) to get

(m0 +mn) (n+ 1) = 2 (11)

Next,
Pn

i=0 imi =
n
2
and (9) yield

(1 + n) (mn (1 + 2n) +m0 (n− 1))
6

=
n

2
(12)

The unique solution to (11) and (12) is m0 = mn =
1
n+1

= m, and accordingly we have

mi = m, i = 1, .., n, and (8) holds with equality, as required by condition b). This result

and (10) confirm that f (m) satisfies condition b). Hence, f (m) is a Liapounov function.

Second step. During the transition the endogenous bound I (t) could fall below n.

In the following a bound on C is derived, denoted by C̄, such that if C ≤ C̄, at any

point of time we have I (t) ≥ n. For any initial distribution m of the optimum quantity

of money n
2
, denote by Cm the value of C such that h (m) = V

n(m) − V n−1 (m) = C. If

C ≤ Cm, then h (m) ≥ C. To see that h (m) > 0 note that at any point of time we have
10



ps = αx (1−m0) > 0 because if m0 = 1 then M < n
2
, and pb = αx (1−mn) > 0 because

if mn = 1 then M > n
2
. Denote by m̂ the initial distribution of the optimum quantity of

money that minimizes h (m), and denote by C̄ the value of C such that h (m̂) = C. Because

ps(m̂), pb(m̂) > 0, we have C̄ > 0. If C ≤ C̄, then I (m̂) ≥ n. Because m̂ minimizes h (m),

for all m we have h (m) ≥ C̄, and accordingly, if C ≤ C̄, then I (m) ≥ n for all m. Thus,

if C ≤ C̄, at any point of time we have I (t) ≥ n. Consequently, any initial distribution of

the optimum amount of money converges asymptotically to the uniform distribution. ¥

Three comments are in order here. First, the condition C ≤ C̄ is sufficient but not

necessary for convergence. There are distributions that converge to the uniform distribution

even when C > C̄. Second, as for the characterization of the stationary equilibria, the

uniqueness result is derived by assuming that during the transition goods and money must

exchange one for one. Without this assumption multiple equilibria are likely to occur.

Third, a redistribution of money affects welfare, although only temporarily. The welfare

effect is ambiguous and depends on the initial distribution.
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4 Summary

This paper studies stationary and nonstationary distributions of money. For this purpose it

relaxes the one-storage technology imposed in the early versions of the random-matching

model of money by considering a model where agents can accumulate money up to the

bound n ∈ N+. The following results emerge from the model. First, the quantity of money

M = n
2
and the uniform distribution mi =

1
n+1
, i = 0, ..., n, maximize welfare. This

result generalizes the welfare result of Kiyotaki and Wright (1991, 1993), where, in the

absence of barter trades, the optimum amount of money is 1
2
. Second, if C ≤ C̄, any initial

distribution of the optimum amount of money converges asymptotically to the uniform

distribution of money holdings. This result, although derived under the assumption of given

prices, supports Friedman’s conjecture about the long-run irrelevance of the distribution

of money. Although Friedman does not discuss this issue in detail, his conjecture is that a

nonstationary distribution “will introduce initial distribution effects. During the transition,

some men will have net gains in consumption, others net losses in consumption. But the

ultimate position will be the same, not only for the aggregate, but for each individual

separately” (1969, p. 6).
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Appendix

Proof of Lemma 1 In a steady state, the measure of agents who leave state i equals the

measure of agents that enter this state. All steady state conditions are summarized below:

n : pbmn = psmn−1

n− 1 : (pb + ps)mn−1 = pbmn + psmn−2
...

1 : (pb + ps)m1 = pbm2 + psm0

0 : psm0 = pbm1

(13)

These conditions imply

pbmi = psmi−1, i = 1, .., n, (14)

mi =
m2
i−1

mi−2
, i = 2, .., n (15)

Solving (15) recursively yields (2). Combine (2) with
Pn

i=0mi = 1 to get (3). Then, divide

mi = m
(n−i

n
)

0 m
( i
n
)

n by mi+1 = m
(n−i−1

n
)

0 m
( i+1

n
)

n to get m0

mn

=
³

mi

mi+1

´n
. This and (14) yield

(4).

I next show uniqueness of the stationary probability measure m for any n and money

supply M ∈ (0, n). The first thing to note is that (3) implies ∂mn

∂m0
< 0. Thus, for any n

and m0 there is a unique m that satisfies (2) and (3). Next, note that (4) implies that m0

is monotonically decreasing inM (to see this note that the right-hand side of (4) is strictly

decreasing inm0; thus, an increase inm0 reduces the ratios
mi

mi−1
, i = 1, ..., n). Accordingly,

for any n and M ∈ [0, n] there is a unique probability measure m satisfying (2) and (3).

¥

Proof of Lemma 2 The proof involves two steps. First, the critical value C̃ is derived.

Second, existence and uniqueness are shown for C ≤ C̃.
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First step. When all agents with money holdings i < n produce and sell for money,

the system of value functions (1) is reduced to

rV 0 = ps
¡
V 1 − V 0 − C

¢

rV i = pb
¡
U + V i−1 − V i

¢
+ ps

¡
V i+1 − V i − C

¢
, i = 0, ..., n− 1 (16)

rV n = pb
¡
U + V n−1 − V n

¢
.

(16) defines a second-order linear nonhomogeneous difference equation with constant coef-

ficients and constant term and two initial conditions. The second equation is the difference

equation, and the first and third equations are the initial conditions. The solution is

V i = φ1λ
i
1 + φ2λ

i
2 + µ (17)

where

λ1,λ2 =
pb + ps + r ∓

q
(pb + ps + r)

2 − 4pspb
2ps

(18)

φ1 =
(1− λ2) (pbλ

n
2U − psλ1C)

r
¡
λn+12 − λn+11

¢ , φ2 =
(1− λ1) (psλ2C − pbλn1U)

r
¡
λn+12 − λn+11

¢ (19)

µ =
pbU − psC

r
(20)

One can show that the roots satisfy 0 < λ1 < 1 and λ2 > 1.

Note that V i is concave, i.e., V i − V i−1 − (V i+1 − V i) ≥ 0, i = 1, .., n− 1. Thus, it is

sufficient to show that agents with money holdings n− 1 produce for money, i.e.,

V n − V n−1 ≥ C (21)

C̃ is the value of C such that (21) holds with equality, which implies that if C ≤ C̃ then

I ≥ n. Use (17), (18), (19), and (20) to get C̃ = λn1λ
n

2 (λ2−λ1)U
λn1 (1−λ1)−λn2 (1−λ2)

.

Second step. Consider, first, condition i) of Definition 1, consider any n and M ∈

(0, n), and assume that m is the unique stationary distribution characterized in Lemma 1.

Then, for C ≤ C̃, agents are willing to accumulate money up to the bound n. Consider,
14



next, condition ii). When agents are willing to sell for money up to the bound n, by

Lemma 1 m is the unique stationary probability measure we are looking for. Consider,

finally, condition iii). Because ps > 0 and pb > 0, we have V > 0. ¥
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