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Abstract

We investigate the empirical support to the Purchasing
Power Parity hypothesis in sixteen real exchange rates for the
decade 1999-2009 by implementing Cointegrated VAR analy-
sis, panel cointegration and nonlinear models. The theory is
rejected and both the puzzles remain unsolved if considering
linear models, while a nonlinear scenario seems to allow for a
partial solution to the puzzle if adopting a modified General-
to-Specific modelling strategy. The parameters restrictions
commonly used in literature and the automatic use of sym-
metric transitions between different regimes when estimating
the conditional mean are criticized and shown being two plau-
sible candidates for explaining the puzzle.
Key words: PPP, real exchange rates, dynamically symmetric
models,STAR models, model specification.
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1 Introduction

Real exchange rates are source of one of the six main puzzles in

macroeconomics. The Purchasing Power Parity (PPP) proposition

states that the price of a basket of goods expressed in a common

currency should be constantly equal to one (absolute version) or
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Institutions. This paper is based on my MSc. dissertation in Macroeconometrics
at University of Rome "Tor Vergata" entitled "Does the Parity of Purchasing
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my first supervisor Tommaso Proietti and to Fabrizio Mattesini who was the
second supervisor. I am particularly grateful to Giovanni Trovato and Barbara
Annicchiarico for their useful comments and suggestions. Any error is my own
responsibility.
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constant (relative version). Rogoff (1996) highlights that there is

consensus on the facts that real exchange rates tend toward PPP

in the very long run while the speed of convergence towards is ex-

tremely slow and that short run deviations from PPP are large and

volatile since the half-live is measured in the range of 3-5 years, hence

the "PPP puzzle"1.

Since PPP is assumed is assumed in many wildly used macroe-

conomic models, there is a huge literature which uses three main

methodologies: linear cointegration analysis, panel methods and uni-

variate nonlinear autoregressive models. Only recently some positive

results have been achieved: Taylor et al. (2001) (TPS) applies the

family of smooth transition autoregressive (STAR) models (see Sec-

tion 2) to four rates and solves the two PPP puzzles2 by analyzing

the standard post-Bretton-Wood sample.

Panel unit root and cointegration techniques has been developed

since last 90’s (Maddala and Wu, 1999; Pedroni, 2004), until Baner-

jee et al. (2005) (BMO) noticed that commonly used panel unit root

test critical values, if not allowing for cross-countries cointegrating

relationships, are severely biased towards rejecting the null hypoth-

esis of a unit root; this leads to a severe critique to the commonly

used empirical methodology in macroeconomics in the measure of

which panel methods are performed automatically.

The issue of the unobserved heterogeneity seemed to be a plausi-

ble candidate to go ahead the BMO critique: Imbs et al. (2005)

explicitly takes in account the heterogeneous dynamics in a panel

of sectoral indexes and shows how this heterogeneity is consistent,

from a theoretical point of view, with the high persistence of real

exchange rates in aggregates indexes and the faster adjustment in

sectoral ones because of an upward bias in the traditional estimates

1"The purchasing power parity puzzle then is this: how can one reconcile
the enormous short-term volatility with the extremely slow rate at which shocks
appear to damp out ?" Rogoff (1996), pag. 647.

2TPS considers the two empirical facts above mentioned (that is long-run
mean reversion of real exchange rates with respect their theoretical values and
the volatility) separately and calls them "First" and "Second PPP Puzzles"
respectively. In this paper we will use the same notation.
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of such persistence. Gadea and Mayoral (2009) replies that the het-

erogeneity is not a valid answer because the GIRF (see next Section

2.4) used by Imbs et al. was seriously biased and, consequently, this

bias is the cause of the differences between sectoral and aggregate

persistence, so that the games are still open.

Finally Johansen et al. (2010) solves the PPP puzzles for the DKR/$

rate using an alternative, fully empirically-based approach in a stan-

dard sample by implementing a Cointegrated VAR model under an

I(2) scenario, justified by a non-conventional economic theory3.

The main purpose of this article is to investigate the empirical sup-

port to the PPP hypothesis for the last 11 years. In order to do this

we compare all the three main methodologies previously mentioned.

This work originates from three findings: first, almost all the most

influential studies - and, in primis, the ones supporting the theory

- are based on a very peculiar sample (1975:04-1998:12 at the best)

and on few currencies; consequently, none of such studies (also the

most recent ones) mention the euro nor, a fortiori the effects of the

2008 crisis. Second, the model specification in almost all the litera-

ture is highly driven by theoretical reasons (in particular in nonlinear

models, see Section 3). In the next sections we will try to bridge this

gap in empirical literature and to compare the three methodologies

for last 11 years data and will check whether the conclusions of the

previously mentioned studies are still valid or not. Secondly, we will

extensively discuss the issue of model specification by introducing

some modifications to the available strategies that allow us to es-

timate a higher number of models for real exchange rates than the

ones we would estimate whether considering a more theory-based

specification. We anticipate the two main results: first, the dynam-

ics of real exchange rate seems to be asymmetric contrarily to what

suggested by standard literature; second, the peculiarity of the esti-

mates suggests that only a small part of the mean reversion can be

captured by standard nonlinear models because of the highly restric-

3See Sarno and Taylor (2001) for a survey of standard applied literature prior
to 2001

3



tive definition of (a)symmetry implicitly used in applied literature.

The paper is organized as follows: Section 2 states the relations of

interest and the new definition of (a)symmetry used in the paper

and briefly describes the statistical models; Section 3 points out the

empirical strategy; Section 4 describes the data set; Section 5 shows

the empirical evidence of both weak and strong PPP hypotheses for

our dataset for each methodology used; Section 6 concludes.

2 The models

2.1 Economic relations and definitions

Following Juselius (2009) notation and working with aggregate terms

in logarithmic transformation, we define the PPP as:

pt = p∗t + st + vt (1)

where pt and p∗t are the domestic and foreign consumer price indexes,

st are defined as above and vt is the time t error term. Hence the

model can be written in deviation from PPP, which correspond to

what literature calls "strong PPP hypothesis":

vt ≡ y = pt − p∗t − st, (2)

where y corresponds to the real exchange rate. The "weak PPP

hypothesis", is a generalization of model (2) and is defined as:

v̂t ≡ ŷt = pt − αp∗t − βst (3)

where α and β represent measurement errors as transaction and

transport costs and the hat is only for notation.

In term of cointegrating relations we can state two postulates:

Postulate 1. If strong PPP holds, the corresponding cointegrating

relation is:

CI = (1 − 1 − 1) (4)

4



Postulate 2. If weak PPP holds, ∃ CI s.t. ŷt ∼ I(0)

where CI indicates the cointegrating relation and I(0) indicates

integrated of order zero process. Testing for strong PPP means test-

ing for unit root of real exchange rates, while testing for weak PPP

means testing for cointegration.

We define the two PPP puzzles directly from Postulates 1 and 2:

Definition 1 (1st Puzzle). Neither Postulate 1 nor Postulate 2 holds.

That is, the real exchange rates deviate systematically from their

theoretical (PPP) values.

Definition 2 (2nd Puzzle). These deviation are permanent in the

long run, contrary to what the economic theory suggests.

The previous postulates and definitions assume a linear model.

In practice, it is well known that economic variables behaves non-

linearly in the short/medium-run, as we will proove in the next Sec.

5. Hence the need an appropriate definition of what we call "non-

linearity" from a statistical point of view:

Definition 3 (Nonlinear process). Let {vt}
T
t be a stationary stochas-

tic process with conditional mean mt = E(vt|vt−1, . . . , yt−m) where vt

defined as in (2). The process is defined nonlinear if mt = f(yt),

where f(yt) is any (possibly twice differenciable) function in Rm+1

and yt = [vt, γt], γt is a velocity parameter.

The previous Def. 3 only require that the conditional mean is not

a constant or a line. In practice, in applied literature, one require

some other dynamics properties, such as monotony and symmetry.

These two requirements are particularly interesting for our aims be-

cause they are assumed in econometric models. Hence the following

Definition 4 (Dynamically (a)symmetric and (a)symmetric mod-

els). Consider a nonlinear model for mt satisfying Def. 3. Suppose

that data suggest two different levels for mt, say m1 and m2 respec-

tively. Call the mild-point between m1 and m2 as ma = (m1+m2)/2.

If f(yt) is such that: i) mt moves from m1 to m2 with increasing
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velocity until ma, where it begin to decrease at the same rate of the

previous increase; ii) an increase in the velocity produce a monotone

increase in mt; then the model is called dynamically symmetric. A

model satisfying only ii) is defined symmetric. A model not satisfy-

ing i) and ii) (not satisfying ii)) is defined dynamically asymmetric

( asymmetric).

According to our definition, a typical dynamically symmetric pro-

cess is the Logistic Smooth Transition Auto-Regressive model (see

Sec. 2.4).

Remark 1. Notice that Def 4 does not concern about the permanence

of mt on its new level, but only about the dynamics of its velocity of

transition; that is, the fact that mt does not return to its previous

level is not sufficient to define the process as asymmetric.

Remark 2. Notice that a dynamically symmetric model is consider-

ably more stringent than a symmetric one from a statistical point of

view. Hence it is a testable hypothesis which should be checked any

time the econometrician uses a nonlinear model for mt.

This definition of (a)symmetry is the main contribution of this

paper, since the econometric and applied literature implicitly con-

sider asymmetry only by looking at the level of mt, or equivalently,

uses a dynamically symmetric structure without test for it, see TPS

(pag. 1020) and Sec. 2.4.

2.2 Statistical models: CVAR

For what concerns the cointegration analysis of PPP, we use a VECM(p)

to model relations (1) and (2)4:

∆yt = Γ
(1)
1 ∆yt−1+Γ

(1)
2 ∆yt−2+...+Γ

(1)
p−1∆yt−p−1+αβ′xt−1+µ0+µ1t+ǫt

(5)

4Remember that the VECM(p) is only a way for re-writing the more con-
ventional VAR(p) when the data are supposed to be I(1), hence the "CVAR"
notation remains still valid.
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where: Γ
(1)
1 = −(Π2 + Π3 + ... + Πp), Γ

(1)
2 = −Π3 and Π =

−(I −Π1 −Π2 − ...−Πp) are the short run matrices and the long

run matrix respectively and the integer (1) indicates the lag pleace-

ment of ECM, Π = αβ′ is the reduced rank long run matrix, α and

β are p × r matrices, r ≤ p, µ0 + µ1t = ΦDt are the unrestricted

components (i.e. allowed to enter in cointegrating relation) of deter-

ministic trend. The equation (5) is the cointegrated VAR (CVAR)

model under I(1) hypothesis, see Johansen (1991) for further details

and estimation.

2.3 Statistical models: panel methods

For what concerns panel data methods, the general model can be

formulated as the following regression:

∆yit = ρiyi,t−1 +

pi
∑

L=1

θi,L∆yi,t−L + αmidmt + ǫit m = 1, 2, 3 (6)

where: yit = [pit, p
∗
it, sit]

′, ǫit ∼ IID(0, σ2), E(ǫitǫjt) = 0, i 6= j

∀ t, dmt indicates the vector of deterministic terms and αmi the

corresponding vector of coefficients for model m = 1, 2, 3 and pi is

unknown. In particular, d1,t = ∅, d2,t = {1} and d3t = {1, t}.

By starting from model (6) we can test for unit root (that is, for

strong PPP) the panel of exchange rates using a battery of tests

allowing for slightly more general assumptions and making the in-

vestigator able to answer to three different questions: (i) is panel sup-

porting strong PPP? (ii) Conversely, is panel rejecting strong PPP?

(iii) Finally, are there cointegrating cross-sections (that is, is panel

supporting weak PPP)? Levin et al. (2002) (LLC), Im et al. (2003)

(IPS), Pesaran (2007) (CADF), Maddala and Wu (1999) (MW) are

used to answer to question (i). Hadri (2000) and Nyblom and Harvey

(2000) (NH) answer to question (ii). Pedroni (2004) and Westerlund

(2007) answer to question (iii).

We refer to the original papers for technicalities. We just under-

line that these different tests are today used to analyze the non-
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stationary behavior of data from slightly different perspectives; that

is, since a test which is robust to all possible features in the panel

does not exist, a battery of partial tests can be build in order to cover

particular lacks which remain unsolved by other tests (see BMO as

an example). In particular the LLC test has the strongest hypothe-

sis system: each series is unit root against each series is stationary.

For this reason the LLC test is one of the more frequently used and

criticized. The IPS test solves this problem but the cost is that it

can be applied only to balanced panels; moreover, both LLC and

IPS are built under cross-sectional independence hypothesis. This

last peculiarity is treated by CADF test while MW test is in turn

the solution to IPS lack of adequacy in unbalanced panels and by

construction can be used for other unit root test. Again, the prob-

lem is in that p-values needed to perform it have to be computed

by Monte Carlo simulation. Concerning the tests for the opposite

null of stationarity, the Hadri test is the the panel analogue of uni-

variate Kwiatkowski et al. (1992) (KPSS) test. Differently, the NH

test is its multivariate version which allows to test the presence of

an additive random walk in the data generating process. Concern-

ing panel cointegration, the first tests used simple panel versions of

LM and ADF-based procedure in order to test the two opposite null

hypothesis systems. In this paper we implement two on the seven

tests developed by Pedroni (2004) because, differently to the pre-

vious ones, it allows for individual heterogeneity, fixed effects and

trends terms. Westerlund (2007) uses a different kind of test in or-

der to test the same null hypothesis of no cointegration, but its two

statistics are more powerful than Pedroni’s ones.

2.4 Statistical models: nonlinear time series

Concerning the nonlinear scenario, we use the standard STAR and

its particular case, the self-exciting threshold autoregressive (SE-

TAR) models, in order to replicate the analysis by TPS. Granger

and Teräsvirta (1993) recommends a specific-to-general modelling
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procedure based on the following steps: (i) select an appropriate

linear AR(p) model for the series under investigation; (ii) test the

null hypothesis of linearity against the alternative of STAR/SETAR-

type nonlinearity and select the appropriate transition variable(s);

(iii) estimate the parameters; (iv) evaluate the model using diagnos-

tic tests; (v) if necessary, modify the model; (vi) use the model for

descriptive or forecasting objectives. We broadly describe the econo-

metric methodology step by step using the notation by Teräsvirta

(2006) (since now, Teräsvirta) to which we remind for technicalities.

Consider the general additive non-linear model:

yt = φ′zt + θ′ztG(γ, c, st) + ǫt (7)

where yt ≡ vt in equation (2), zt = (1, y1, . . . , yt−p)
′, φ = (φ0, φ1, . . . , φp)

′,

θ = (θ0, θ1, . . . , θp)
′ are parameter vectors, and ǫt ∼ i.i.d.(0, σ2), the

transition function G(γ, c, st) is a continuous function in the transi-

tion variable st
5 where γ controls the velocity of the transition and

c = (c1, . . . , cK) is a vector of transition parameters.

One of the main used functions for G(·) is the (first order) logistic

function:

G(γ, c, st) =

(

1 + exp

{

−γ
K
∏

k=1

(st − ck)

})−1

, γ > 0, (8)

where γ > 0 is an identifying restriction. Equations (8) and (7)

define the first order Logistic STR (LSTR1) model. The most com-

mon choices for K are K = 1, in which case the parameters φ +

θG(γ, c, st) change monotonically as a function of st from φ to φ+θ

and K = 2, in which case the parameters φ + θG(γ, c, st) change

symmetrically6 around the mid-point (c1 + c2)/2 where the logistic

5Notice that here st is a generic transition variable which can coincide (but
not necessarily) with yt 6= st. This change in notation is only for convenience
when comparing the literature in STR models.

6Notice that here the term "symmetrically" is referred only to the level of the
conditional mean, while according to our definition (see Def. 4 on page 5), the
LSTR1 is a dynamically symmetric model since γ is implicitly assumed constant.
We will show in next Section 5 that this could lead to misleading results.
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function attains its minimum, minGG(·) ∈ [0, 1/2], and it’s such

that:

minGG(·) =







0 if γ → ∞

1/2 if c1 = c2 and γ < ∞

If γ = 0, the transition function G(γ, c, st) ≡ 1/2 so that model (7)

nests a linear model. In the latter case, that is when K = 2 and

c1 6= c2 the transition function became a second order Logistic STR

(LSTR2). A peculiar form of this latter case is when K = 2 and

c1 = c2 and the transition function (8) becames:

G(γ, c, st) = 1 − exp{−γ(st − c)2}, γ > 0 (9)

Equations (7) and (9) define the Exponential STR (ESTR) model.

When zt ≡ yt−d and st ≡ yt−d, d > 0 in (8) and (9), the model

becomes an LSTAR1, an LSTAR2 and an ESTAR respectively. Sim-

ilarly, when γ → ∞ and zt ≡ yt and st ≡ yt−d the model (7) nests

a SETAR model:

yt =
r+1
∑

j=1

(

φ′

jyt

)

I
(

yt−d ≤ cj

)

+
r+1
∑

j=1

(

φ′

jyt

)

I
(

yt−d > cj

)

+ ǫjt (10)

where φ, yt are defined as before, st is a continuous switching r.v.,

c0, c1, . . . , cr+1 are threshold parameters, c0 = −∞, cr+1 = +∞,

ǫjt ∼ i.i.d.(0, σ2
j ), j = 1, . . . , r.

Concerning step (i) (specification), Tsay (1989) proposes a four-step

specification procedure for SETAR model: select the AR order p and

the set of possible threshold lags S, fit arranged autoregressions for a

given p and every element d of S and perform threshold nonlinearity

test F̂ (p, d); if some nonlinearity is detected, select the delay param-

eter dp such that F̂ (p, dp) = maxv∈S{F̂ (p, v)}; for given p, d, locate

the threshold variables by using scatterplot of predictive residuals

derived by the arranged autoregression against yt−d; finally, refine

the order and threshold values by linear techniques. Teräsvirta pro-

poses a similar procedure for STAR models: specify a linear AR(p)

model; test linearity for different values of d and, if rejected, deter-
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mine the d parameter following the same criterion above mentioned.

Concerning step (iii), the estimation is done by OLS in (SE)TAR

models while in STAR models the NLLS algorithm is required.

The step (ii) (Linearity testing) for (SE)TAR models is discussed

in Tsay. The idea is to perform an arranged autoregression and the

resulting parameter are estimated by recursive least squares. The re-

sulting predictive and standardized predictive residuals are used to

build the F-type test from a least square regression. Hansen (1996)

discusses an alternative likelihood-based test. Three statistics are

used:

ST = sup
γ∈Γ

ST (γ),

aveST = aveST (γ) =

∫

Γ

ST (γ)dW (γ),

exp ST = ln

(

∫

Γ

exp

{

1

2
ST (γ)

}

dW (γ)

)

(11)

where Γ = {γ : γ ∈ Γ}, W (γ) is a weight function such that
∫

Γ
W (γ)dγ = 1. Using the likelihood function of the model (7),

Hansen derives the the score function for Wald and LM test; the

empirical distribution of the last one is computed by bootstrap sim-

ulation and can be used to show whether the null hypothesis has

to be rejected or not. The analogue test for STAR models is dis-

cussed in Luukkonen et al. (1988). It is based on a Taylor expansion

of the transition function (8) (or (9)), T3(z) = g1z + g3z
3 where

g1 = ∂G/∂z|z=0 and g3 = (1/6)∂3G/∂z3
|z=0, so that the approxima-

tion, yt = φ′zt + θ′ztT3(γ(yt−d − c)) + ǫt, leads to the auxiliary

regression:

ǫ̂t = ẑ′

1tβ̃1 +

p
∑

j=1

β2jyt−jyt−d +

p
∑

j=1

β3jyt−jy
2
t−d +

p
∑

j=1

β4jyt−jy
3
t−d + v′

t

(12)

The null hypothesis for linearity against LSTAR is H0 : β2j = β3j =

β4j = 0, j = 1, · · · , p, which, under the conditions that a linear
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autoregressive model holds and Eǫt < ∞, is tested by statistic:

LM2 = (SSR0 − SSR)/σ̂2 ∼ χ2(3p) (13)

where SSR are the sum of squared residuals form equation (12)

or, alternatively, by setting the artificial model yt = g1γ0 + γ′
1zt +

γ′
2(ztyt−d)+γ′

3(zty
2
t−d)+γ′

4(zty
3
t−d)+v′′

t where v′′ ∼ nid(0, σ2
v′′), γj =

(γ1j, · · · , γjp)
′, and j = 1, · · · , 4, and H0 : γ2 = γ3 = γ4 = 0. In

terms of Taylor approximations we get:

γ2 = g1γθ̂ + 3g3γ
3c2θ̂ − 3g3γ

3cθ0ed

γ3 = −3g3γ
3cθ̂ + g3γ

3θ0ed

γ4 = g3γ
3θ̂

(14)

where θ̂ and c and d are previously defined. Similarly, if the model

is an ESTAR(p) model, ẑ1t = −zt and ẑ2t(π) = −(yt−d−c)2(θ̂′zt) =

−( ¯θ′zty
2
t−d + θ0y

2
t−d − 2cθ̄′ztyt−d + c2θ̄′zt − 2cθ0yt−d + c2θ0). This

yields to the following auxiliary regression:

v̂t = β̃′
1ẑ1t + β′

2ztyt−d + β′
3zy2

t−d + e′t (15)

where v̂t is the analogue of ǫ̂t, e′t is an error term and β̃1 = (β10, β
′

1)
′

with β10 = φ0 − c2θ0 and β1 = φ̄ − c2θ̄ + 2cθ0ed, β2 = 2cθ̄ − θ0ed.

The null of linearity is H ′
0 : β2 = β3 = 0 which is tested by statistic

LM3 = (SSR0 − SSR)/σ̂2 ∼ χ2(p) (16)

where SSR is the sum of squared residuals from (15). In order to

choice the correct transition function, Teräsvirta (1994) proposes the

following nested hypotheses test (the so called "Teräsvirta rule"):

H04 : γ4 = 0 against H14 : γ4 6= 0 in (14).

H03 : γ3 = 0 | γ4 = 0 against H13 : γ3 6= 0 | γ4 = 0 in (14).

H02 : γ2 = 0 | γ3 = γ4 = 0 against H12 : γ2 6= 0 | γ3 = γ4 = 0 in (14).

(17)
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If the p-value of H03 is the smallest of the three, select an ESTAR

model; otherwise, select an LSTAR model.

Concerning the step (iv) (Dyagnostic tests), Eitrheim and Teräsvirta

(1996) provides three LM tests for serial auto-correlation, remaining

nonlinearity and parameter constancy.

Finally, the last step (Evaluation and/or forecasting) can be per-

formed by using the impulse response functions (IRF). Formally the

"traditional" impulse response function (TIRF) is defined as:

TIRF (h, δ, ωt−1) =E[yt+h|ǫt = δ, ǫt+1 = · · · = ǫt+h = 0, ωt−1]−

−E[yt+h|ǫt = 0, ǫt+1 = · · · = ǫt+h = 0, ωt−1],

(18)

for h = 0, 1, 2, . . . . The TIRF is commonly used in linear systems

because of its three properties: first, it’s symmetric, that is a a shock

of size −δ has an effect exactly opposite to that of shock of size δ;

second, it’s proportional to the size of the size of the shock; third,

it’s history independent, that is its shape does not depend on the

particular history ωt−1. These properties does not hold in nonlinear

models.

In order to solve this problem, Koop et al. (1996) proposes a gen-

eralization of (18), called Generalized Impulse Response Function

(GIRF). The GIRF for a shock ǫt = δ and history ωt−1, for both δ

and ωt−1 function of the random variable ǫt and Ωt−1 (the set of all

possible histories {ωt−1}), is defined as:

GIRF (h, ǫt, Ωt−1) = E[yt+h|ǫt, Ωt−1] − E[yt+h|Ωt−1]. (19)

for h = 0, 1, 2, . . . . In linear models TIRF and GIRF coincide. The

applied econometric literature uses the IRF analysis in order to study

the second PPP puzzle, namely to measure the half-life of the devi-

ation of real exchange rates from their theoretical PPP value.
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3 Empirical strategy

We follow the Juselius’ "Marshallian" approach to cointegration anal-

ysis when testing weak PPP hypothesis because of its completeness

and its agnosticism. It can be summarized in three main points:

first, much more importance is put on the specification rather than

the prior role of a theoretical economic model. Second, and conse-

quently, the theoretical model is re-parametrized in such a way that

all possible testable hypotheses can be analyzed; in particular the

price homogeneity and the order of integration constitute the main

block of the whole strategy since all conventional literature makes

assumption on them7. Third, the econometrician should minimize

the restrictions that could be needed during the specification in or-

der to let the data speak freely.

The Marshallian strategy briefly described above is in contraposition

to the theory-based "Walrasian" approach, represented by DSGE

family of models8. However, Juselius’ philosophy clearly presents

some problems, first of all the probability of rejection of investiga-

tor’ searched relation, relatively higher than in any other theory-

based econometric model. A second more important problem is the

treatment of extraordinary events, modeled by using shift and blip

dummies9; namely, the problem is in that such dummies derive from

the search of large errors in distribution of the series, for which not

always an economic explanation is available and in that parameters

estimates are strongly sensitive to dummies and linear trends enter-

ing in cointegrating vectors. A third problem is that this strategy is

currently not available for other methodologies. In that case we’ re

7See Juselius (2009) for details and an application to the conventional case
of DMK/$ in the conventional sample 1975-1998.

8"The VAR procedure is less pretentious about the prior role of a theoretical
economic model, but it avoids the lack of empirical relevance the theory-based
approach has often been criticized for" (Juselius, 2006, Ch. 1, pag. 9)

9That is, a series could present several changes in terms of mean, trends or
transitory shift in levels and these can easily observed by fitting a (preliminary)
model assuming gaussian errors and then the differences between this and the
original series: if such differences is grater than a pre-specified threshold, they
can be seen as extraordinary events to take in account in phase of specification.
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forced to use a more traditional theory based approach10.

The Marshallian approach to cointegration analysis allows us to

choose the appropriate specification for model (3) for the j-th sys-

tem of country, that is to check if (pj −p∗j −sj) ∼ I(0) for j = CAN ,

DN , JPN , NW , SD, SZ, UK, EU or US. It is implemented by

the following step procedure, see Juselius (2006) for details:

i. Select the lag p for the system (5) by using standard informa-

tion criteria.

ii. Once p is selected, check for normality and residuals first and

second-order autocorrelation; in the case, augment p until nec-

essary.

iii. Check for the presence of transitory or permanent shocks in

the series. This can be done by looking at residuals, imposing

a threshold and checking for the presence of errors exceeding it;

if outliers exist, impose an appropriate dummy variable in the

month corresponding to the outlier and repeat the procedure

from Step 2.

iv. Perform the Johansen’ Rank test in order to check for the

presence of cointegrating relations in the system. Since the test

is not invariant to changes in deterministic kernel, simulate the

critical values when outlier has been found in Step 3.

v. If rank(Π) 6= 0, set the rank of Π matrix.

vi. Set the identifying restriction corresponding to the searched

relation (4); the (possibly, more than one) resulting restricted

(cointegrated) VECM model(s) are selected if the p-value is

sufficiently high.

vii. The so found restricted VECM are analyzed in their cointe-

grating relations by recursive tests.

10However one should consider that the empirical problem in this article is
relatively simple, and the data set used relatively small so the two approaches,
in principle, should coincide.
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viii. Check for the presence of I(2)-ness. If found, the whole analysis

should be reconsidered in an I(2) scenario.

In the nonlinear framework we follow TPS as benchmark and

apply an analysis à là Teräsvirta (1994) on our dataset. TPS finds

that the exchange rates under investigation are nonlinear mean re-

verting. In particular, the delay parameter is a priori considered

as small (near 1) although a grid search by NLLS is performed.

Then the model (7) is restricted for φ = −θ, because this ensure

an economic interpretation similar to Coleman (1995)11. Using the

Monte Carlo method by Gallant et al. (1993) (GRT) for GIRFs, TPS

finds that large shocks are faster mean reverting than smaller ones.

This means that also the second PPP puzzle is solved. However,

this result has strongly driven from the a priori choice for exponen-

tial smooth transition for STAR models, which is justified it by its

property of symmetric adjustment of transition variable around an

equilibrium level12.

Since the ESTAR model is a particular case of the more general

family of LSTAR, we find such a priori unjustified, specially for a

problematic dataset as our one. Moreover, we found that the above

mentioned restriction caused an artificial reduction of estimated pa-

rameters’ p-values13. For this reason, we follow a more agnostic pol-

icy in modeling our series, allowing some parameters (the constant,

in a lot of cases) for no restrictions. The resulting Granger-Teräsvirta

modeling procedure has been consequently adapted as here described

in detail:

11"[This restriction] implies an equilibrium log-level of real exchange rates
[called µ and found being zero] in the neighborhood of which, real exchange is
close to a random walk, beginning increasingly mean reverting as going far away
from it" (TPS, pag. 1030).

12TPS consider the logistic smooth transition inappropriate because "[...] It’s
hard to think economic reasons why the speed of adjustment of the real exchange
rate should vary according to whether the dollar is over-valued or undervalued,
specially if one is thinking of goods arbitrage as ultimately diving the impetus
towards the long run equilibrium and one is dealing with major dollar exchange
rates against the currencies of other developed countries" (TPS, pag. 1021).

13This last empirical finding has been checked as preliminary step to the draft
of this paper in order to replicate the results by TPS. The results, jointly with
more detailed critiques to the TPS methodology, can be sent under request.
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i. Selection of p-order. Use AIC, BIC, and HQ criteria, with

particular attention to the second one because is known to

be the more conservative. Then, in order to take in account

the possibility of the presence of non gaussian residuals due to

high instability of the series, and secondly to explore its abil-

ity to testing for third-order residual correlation, implement an

Hinich (1996) test and corrected the choice of lag order when

necessary. In particular, this is the criterion in adjusting the

AR order: when the one of both Hinich’ statistics p-values are

less the 0.10, add one or more lag in function of its nearness to

0; when slightly higher than such threshold, the test is able to

reject the null of no third-order autocorrelation, so the order

is not increased. However, this test remain as boldly indica-

tive and does not constrain us to a limit in adding lags; this

postulates that a limit of three/four added lags is a reason-

able choice. Consider such "auxiliary" lags as potential: this

means, start he specification procedure by giving priority to

orders selected by traditional criteria.

ii. Specification of linear AR(p) part of the model (7). Allow for

the possibility for model (7) to have some zero-coefficient in

both linear and nonlinear part, starting with the hypothesis of

no restrictions.

iii. Linearity tests. Apply the Teräsvirta rule (17) for all possible

candidates transition variable st = z̃t ≡ (yt−1, ..., yt−p, t)
′; that

is, consider as candidates all lags of {yt} and a linear trend t.

If the model is linear for all possible candidate, return to Step

ii) and start to restrict the model until some nonlinearity is

detected. In particular, use a progressive criterion in putting

restriction: start with one zero coefficient, then augment their

number until having one constant and a non-zero coefficient. If

the model is linear again, return at Step i), augment the order

p until the maximum p estimated by information criteria (pos-

sibly augmented by Hinich’ test) and restart the procedure.
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iv. Grid search for starting values of nonlinear parameters.

v. Estimation. Use the selected transition variables, transition

function and starting value in order to compute the parameter

estimates by NLLS algorithm. Impose the restriction φ = −θ

only when the unrestricted model is not able to produce reason-

able estimates. In that case, perform a progressive criterion in

imposing such restriction: start with restricting the constant;

if the restriction produce reasonable estimates (γ and c are not

high and all parameters are significantly different from zero),

continue with next step; otherwise, restrict yt−i, i = 1, ..., p

singularly and continue with next step; otherwise, restrict al

possible combinations of yt−i, until all lagged yt−i are restricted

and continue with next step; otherwise, add also the constant

to the yt−i previously restricted and continue with next step;

otherwise, return at Step ii) and restart the procedure. If also

the new procedure defaults, return to Step i), augment the or-

der p until the maximum p estimated by information criteria

and restart the whole procedure.

vi. Diagnostic tests. Apply the three tests described in Section

2.4. If the resulting p-value are high, accept the selected model.

Otherwise, check for different restrictions in Step v) and accept

estimates with slightly higher p-value; then, perform the diag-

nostic tests for the new (sub-optimal) model; if the resulting

statistics are highly significant, accept the model. Otherwise,

return to Step iii), set different transition variables and restart

the procedure. If this is not an help, return to Step ii) and set

new linear AR(p) specification and restart the procedure; if

the estimates are significant, accept the model. Otherwise, as

last possibility, return to Step i) and augment the order p until

the maximum in the information criteria (possibly augmented

by Hinich’ test) and restart the whole procedure. If the result

is negative, the series is not mean-reverting, hence the (first)

PPP puzzle cannot be solved.
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4 The data

We consider 9 countries, namely: Denmark (DN), Canada (CAN),

Japan (JPN), Norway (NW), Sweden (SD), Switzerland (SZ), U.K.,

U.S., and E.U (euro area); the numeraires are U.S. and E.U. Hence,

we have 16 series for nominal exchange rates and 8 series for season-

ally adjusted consumer price indicators14. The series of real exchange

rates has been built by equation (2).

The considered sample is 1999:01 - 2009:12, so we have to hold with

the presence of a structural break in 2008:04 due to the financial

crisis and, in addiction for the euro, with the "Greece Effect" in the

last observations. The sources of these series are: FED of St. Louis

for spot rates with basis $, ECB for spot rates with basis e and

OECD website for CPIs. For detailed description of the dataset, see

Appendix A.1.

The fact that the dataset is composed by a limited number of ad-

vanced economies ensures that the empirical analysis is not seriously

biased by Balassa-Samuelson effect when considering very aggregate

("all items") CPIs. Moreover, we stress the fact that the whole ap-

plied literature, with the exception constituted by Imbs et al. (2005)

and Gadea and Mayoral (2009), does not concerns at all of the effect

of the various CPI indexation. Finally, we remember that there is

no universally accepted price index adjusted for export due to the

high measurement error in the computation of the quantity of goods

exported.

5 Empirical evidence

A graphical analysis of the series shown in Figure 1 reveals several

important features: i) all the real exchange rates follow a positively

(negatively) shaped linear broken trend when $ (e) is the numeraire;

ii) the break is located approximately in 2008:04 but continues until

14The original CPI series was not adjusted for seasonality. We did it by using
the X-12 ARIMA procedure
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first months of 2009, a fact which suggest a regime switching in the

levels; iii) this change in regime is weaker when the e is numeraire

because of the speculative attack during the financial crisis; iv) all

the series show one or more breaks in the middle of the sample, cor-

responding to the selected dummy variables in Table 3, two of which

(2003:01 and 2003:03) seem to be consistent with the turbulence

of oil market immediately before and after the Iraqi political crisis

in that months; v) the presence of autocorrelation in rates DN/$ ,

EU/$, DN/e, SD/$, SZ/$ and ARCH-effects is observable in series

in first differences (not reported here). While considering these find-

ings, it is not a surprise that strong PPP hypothesis does not seem

to hold. Namely we used the Augmented Dikey-Fuller (ADF) test,

the GLS-robust Dikey-Fuller (DF-GLS) (Elliott et al., 1996) for the

null of unit root in the real exchange rates and the KPSS test for

the null of stationarity with a predetermined number of additional

lags (namely, p = 0, . . . , 3) by "Marshallian" approach discussed in

Section 3. Table 1 shows our results: when $ is numeraire we cannot

reject the null of unit root for any country and any lag, while some

exception is observable when e is numeraire but the result is the

same; the only relevant rejection is the case of Norway when testing

for lag 1. The hypothesis of stationarity is almost always rejected

at 1%, regardless to the numeraire, coherently with the above re-

sults. The results for null unit root under GLS estimation confirm

and, possibly, enforce the ADF ones. Clearly, a failure to reject the

null hypothesis of unit root (a rejection of the null of stationarity)

implies an irregularity in the real exchange rate mean reversion and

so a lack of empirical support for strong PPP hypothesis.

5.1 CVAR

For what concerns the CVAR approach for weak PPP hypothesis, the

procedure described in Section 3 is performed in a semi-automatic

way by CATS package (Dennis et al., 2006). Concerning for Step

2, we use the Shenton-Bowman test for normality and the Ljung-
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Box LM test for autocorrelation. For simulation of critical values of

Johansen’ Trace test we apply the Johansen (2002) bootstrap proce-

dure with 2,500 draws for each possible rank. For the choice of the

rank, we consider both standard and Bartlett-corrected for small

samples p-values; in a standard scenario, they are really similar.

The plausible restricted models are selected by using the automatic

procedure "CATS Mining", which show all potential cointegrating

relation between covariates and select them as option. Clearly, since

cointegrating relations are simply linear combinations, the number

of candidates is often so high that we have selected them by using the

following criteria: first, p-value of the candidate should be at least

0.20 in order to ensure some stability to the cointegrating relation

which is essential for being economically meaningful, see Juselius

(2006); second, the sign of α and β in (3) should be at least simi-

lar to what theory suggests; finally, their absolute values should not

be extravagant. The presence of I(2)-ness is checked by looking at:

(i) the graphs of the cointegrating relations in their two specifica-

tions: if not strictly similar, this is a sign of I(2) behavior; (ii) the

characteristic roots of the model for a reasonable choice of cointe-

gration rank: if there’s no difference between couples corresponding

the candidate rank and ones immediately after (that is, they are

all near to unit), there’s I(2)-ness; (iii) rank test statistic p-values:

considerable differences between Bartlett and non-Bartlett corrected

p-values. Since the statistical theory of cointegration analysis in an

I(2) scenario is not complete and does not necessarily add economi-

cally meaningful results to the empirical analysis, we stopped when

I(2)-ness was found. Table 3 illustrates our results for PPP when

using $ or e as numeraire. In the majority of cases our optimal lag

choice is 2. However, because of the presence of some outliers, we

will specify the next test for p = 3. Almost all systems do not reject

the null of no cointegration, hence, in practice, we stopped to Step 4.

Two exceptions are constituted by Norway and U.K. However, since

also the other ranks hypotheses has a small p-values respect on the
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other systems, the found relations for these countries are affected by

I(2)-ness15. Moreover, the large number of shift dummies used cor-

responding to an equivalently large number of outliers in residuals

implies that gaussianity assumption of the statistical model could

be seriously suspect to not hold, which is not uncommon in financial

variables.

5.2 Panel methods

Concerning panel methodology for strong PPP hypothesis, we have

by 8 cross-sections. Since the results country-by country shows that

it’s reasonable to model until p = 3, we test for the first three lags,

so that the number of observations varies between 1,024 and 1,040.

The strong PPP hypothesis is investigated by performing the six

tests previously described (see Section 2.3). For MW method we

use both ADF and Phillips-Perron tests. Concerning Hadri test, the

statistic is robust to heteroskedasticity and serial dependance across

disturbances. Table 4 shows that for both numeraires, panel unit

root tests are not able to reject the null hypotheses of unit root with

few exceptions and, coherently with this finding, reject the null of

no unit root. Hence the data do not provide empirical evidence for

strong PPP hypothesis.

The weak PPP hypothesis is investigated by performing the Pedroni

and Westerlund tests on all possible triples of variables. Concerning

Pedroni test, we show only the two most powerful statistics on the

seven proposed by the author, Z̃ρ and Ztρ̂NT
. For the same reason,

concerning Westerlund tests, we show only the Pγ statistic. Both of

the tests are based on the null hypothesis of no cointegrating rela-

tion, hence a failure to reject the null hypothesis implies the failure

in finding empirical evidence for weak PPP hypothesis. Notice that

Westerlund test is based on an error correction model, so that, simi-

larly to the CVAR framework, the statistic critical values are biased

15We do not report all the data which confirm this finding for space motivation.
They can be provided under request
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when allowing for a deterministic kernel to enter in cointegrating

relations. In this case, robust critical values can be computed by

bootstrap methods. Table 5 shows results for each triple, for which

has been provided the statistics, the corresponding z-value, standard

p-value and, for the Westerlund test, bootstrapped p-value and the

automatic selection of lags and leads. The two tests show that spot

rates, domestic and foreign prices are strongly not cointegrated in

two cases on three, regardless to the numeraire, and in the one where

cointegration cannot be rejected the variables are positioned differ-

ently from what theory suggest. This finding leads us to reject the

weak PPP hypotheses, on the contrary of Pedroni (2001).

5.3 Nonlinear models

Concerning the First Puzzle we checked for the presence of ARCH-

effects by performing the McLeod and Li (1983) test before to im-

plement the Granger-Teräsvirta procedure. The results are given in

Table 2. We can see that the test fails to reject the null of no ARCH-

effect for almost all the series, but if considering the lag correspond-

ing to the p order of selected model, they became less problematic.

Table 8 shows the results of the STAR specification procedure above

explained for our dataset. We identified seven LSTR1 models when

$ is numeraire (six when e is numeraire, one of which is LSTR2).

It’s interesting to notice that the errors of the considered series are

not third-order correlated, as suggested by Hinich test: the only case

of correction is CAN/$ (three lag added by procedure described in

Sec. 3). The estimates of selected STAR models are reported in

Table 9.

Figure 2 plots the transition function G(γ, c, st) as function of the

transition variable st. On thirteen estimated nonlinear models, five

(DN/$, CAN/$, SD/$, SZ/$ and e/$) are at the line with linear

models, since their mean reversion is very smooth. The other mod-

els are more clearly nonlinear and, consequently, more interesting

from an economic point of view because they correspond to very
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different situations: in the set of models under investigation, the

models NW/$ and SD/$ are the more restricted one, since all lags

of y
NW/$
t and ySD/$ enter in the restriction φ = −θ, so the interpre-

tation is very similar to that given in TPS. On the contrary, model

£/e has no restrictions, so there’s no equilibrium around which the

model is a random walk, but more meaningfully a simple (quasi-

exponential) mean reversion; this is the only estimated LSTR2 model

in the dataset. These findings leads to several implications: first, the

methodological choice to not use the restriction for all parameters

jointly and the exponential smooth transition function as a priori

was really critical. Second, the nonlinear asymmetric mean rever-

sion of exchange rates suggests a change in long run, if considering

the TPS’ s implicit observation that goods arbitrage are driving the

market towards it. In this sense, the diagnostic tests in Table 10 does

not support the idea of a third regime for the estimated model for

any model. Third, and most important, few of the estimated tran-

sition function are puzzling if considering the results form linearity

tests used in Teräsvirta, unless reconsidering the intrinsically sym-

metric (in the sense of Def. 4) structure of the same one in STAR

family. That is, we suspect that such quasi-linear behavior could

be only apparent because data has been forced to be estimated by

using a dynamically symmetric rather than a symmetric statistical

model. In other world, the fact that the econometric literature does

not allow to test for and parametrize an eventual change in the ve-

locity of transition from m1 to ma w.r.t. ma to m2 seems us able

to generate a sort of "neglected dynamic asymmetry" puzzle which

could explain some of the difficulties in fitting a statistically signifi-

cant mean reversion.

Table 9 shows the results for SETAR(k; p, d) specification proce-

dures above explained for our dataset in levels. The Tsay’ s test

allows five currency to be nonlinearly mean-reverting. These results

should not be taken as definitive, since a key role is put on the

Hansen’ s test for threshold effect: if a series allows for a SETAR-
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type nonlinearity but the threshold effect is weak, the nonlinearity

should be interpreted as spurious. This is exactly what happens to

our data. We used all three statistics (11) for testing threshold effect

in both homoskedasticity and heteroskedasticity cases. The p-values

are bootstrapped using 1,000 draws. On six plausible one thresh-

old SETAR models, the threshold effect holds in only one of them,

namely in the real exchange rate £/eas shown in Table 7. More-

over, this is a limit-case, since only the supST -statistic is in rejection

region, when the test is robust to heteroskedasticity. These are the

resulting estimates where the values in brackets are robust standard

errors:

y
£/e
t = −0.022 + 0.849 · y

£/e
t−1 if y

£/e
t−1 ≤ 0.341, σ̂2 = 0.0007

(0.013) (0.055)

y
£/e
t = 0.006 + 0.984 · y

£/e
t−1 if y

£/e
t−1 > 0.341, σ̂2 = 0.0002

(0.011) (0.026)

(20)

An interesting feature is that the estimated SETAR model (as all

plausible threshold models, too) are not so sensitive to heteroskedas-

ticity, and the above model is the only exception. That is, the rel-

evant ARCH-effects showed in Table 2 does not involve any rele-

vant difference in (bootstrapped) p-values when performing an het-

eroskedasticity robust test for threshold effect respect on the non-

robust one.

Concerning the Second Puzzle, the previously introduced "neglected

dynamic asymmetry puzzle" leads us to not follow TPS pedantically

in using the GRT method for GIRF analysis in order to study the

shocks persistence of real exchange rates and to use TIRF for the

five models previously mentioned. Nevertheless, neither in the other

series we agree in performing the GRT method, since our modeling

strategy and the resulting models was different from TPS: their so-

lution to PPP puzzle was based on ESTAR model, which has been

shown in Section 2.4 to be a very peculiar case of the more general

family of LSTR. The only model which does not follow an LSTR
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is an LSTR2, since c1 6= c2; this means that the transition function

is not perfectly symmetric (neither in the common meaning of the

term, although it can be seen as an approximation), hence the eco-

nomic interpretation of the resulting GIRF could be misleading16.

Figure 3 plots the TIRF/GIRF of the real exchange rate series for

shocks of magnitude {1, 2, 3} and an horizon of 12 month. It’s easy

to notice the different behavior of the two groups: in TIRFs, when

the shock is larger (shock=3, green line) the TIRF does converge

faster to 0 and tends immediately to go slightly below such thresh-

old; more in general, a common feature of all the TIRFs is that small

shocks tend to disappear slower than big shocks (6-8 months against

2-4) month. This confirms in some way the TPS result, showing the

nonlinearity of the real exchange rate adjustment toward theoretical

PPP equilibrium. On the other hand, when considering the GIRFs,

the shocks are more problematic, since they does not seem to have

a clear path. It’s interesting to note that TPS concerns for a larger

scaled dataset17 so that our result can be seen, nevertheless all the

mentioned empirical problems, as a reasonable approximation to it.

6 Conclusions

In this article we studied the empirical support for the PPP the-

ory after 1998 by using different methodologies in both linear and

nonlinear scenario in order to compare and update the available em-

pirical literature.

The general result is ambivalent: the analysis of a dataset of 16

real exchange rates does not support the PPP hypothesis when a

linear scenario is used. In particular, the CVAR analysis show the

16Moreover, the GRT method for GIRF is based on several strong assump-
tion: parametric distribution; the mean as statistic measure of baseline forecasts,
"[. . . ] which under stationarity is the unconditional mean" (Koop et al. (1996,
pag.130)); the GIRF is zero if the initial shock is zero. We note that the second
assumption is the most problematic one because when shocks have asymmet-
ric effect,"[. . . ] then averaging across phases of the business cycle will tend to
weaken or hide the evidence of asymmetry"(Ibidem).

17TPS used a sample of 288 observations, an horizon of 200 observation and
a set of six shocks going from 5 to 50
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two cases in which weak PPP holds are found to be strongly I(2).

Panel methods for unit root and cointegration confirm the rejection

of the theory, although the BMO’s critique suggests to take such re-

sults very carefully. Things seem different in the nonlinear scenario:

13 rates on 16 are nonlinearly mean reverting, where the change in

regime is located in correspondence of the crisis. This implies that

the financial crisis in 2008 has been a source of nonlinear behav-

ior which allowed to explain the movements for some rates better

than using a linear framework. In particular, two findings are puz-

zling: first, the qualitative analysis of the nonlinear part of several

STAR models shows a quasi-linear transition function, a fact that

leads us to suspect a sort of neglected dynamic asymmetry in tran-

sition functions due to a gap in the econometric methodology used.

Second, data are not able to support the choice of an ESTAR-type

of nonlinearity in favor of an LSTAR-type; that is, contrarily to

TPS, the speed of adjustment of exchange rates varies according to

the over(under)valuation of the numeraire. We conclude that the

solution of the two PPP puzzles needs a methodological approach

slightly different form the TPS one when considering a nonlinear

scenario. In particular, the problem of capturing the effect of the

dynamically asymmetry in model parameters is still today unsolved

by the econometric literature. Hence standard nonlinear models can

be reasonably used only when strongly nonlinear transition functions

are estimated. Our modified General-to-Specific modelling strategy

seems being an help but only as a very preliminary step. However, for

what concerns the Second Puzzle, TIRFs for estimated real exchange

rates for an horizon of one year confirm the nonlinear adjustment of

the real exchange rates towards their theoretical PPP value and, in

an approximate way, the TPS result. This is consistent with the eco-

nomic intuition underlying the use of LSTAR as transition function:

in period of crisis shocks in real exchange rates tends to no return

to their previous level.

Finally, we suggest some lines for future research. Extending our to
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the multivariate scenario could be the natural extension of this work,

but the problem of neglected asymmetry before mentioned could be

exacerbated. For this reason we think that relaxing the assumption

of symmetry in transition functions could be a preferable strategy.

This would require a re-examination of the whole structure of STR

family. We remind this extension to further works.
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A Appendix

A.1 Data

Our original dataset is constituted of monthly series of spot rates (cur-
rency basis United States Dollar and Euro) and consumers’ price indices.
Sample: 1999:01-2009:12 (132 observation). Spot rate series with basis
USD source: FED of St. Louis. Series names:
Canada: EXCAUS, Board of Governors of Federal Reserve System;
Denmark: EXDNUS, Board of Governors of Federal Reserve System;
Japan: EXJPUS, Board of Governors of Federal Reserve System;
Norway: EXNOUS, Board of Governors of Federal Reserve System;
Sweden: EXSDUS, Board of Governors of Federal Reserve System;
Switzerland: EXSZUS,Board of Governors of Federal Reserve System;
U.K.: United Kingdom, Exchange Rates, OECD;
EU: EU-12-Extra EU, Exchange Rates, OECD.

Spot rate time series with basis EUR source: European Central Bank.
Dataset name: Exchange Rates; frequency: monthly; currency denomi-
nator: Euro; exchange rate type: spot; series variation - EXR context:
average or standardized measure for given frequency. Series names:
Canadian dollar: EXR.M.CAD.EUR.SP00.A;
Danish krone: EXR.M.DKK.EUR.SP00.A;
Japanese yen: EXR.M.JPY.EUR.SP00.A;
Norwegian krone: EXR.M.NOK.EUR.SP00.A;
Swedish krona: EXR.M.SEK.EUR.SP00.A;
Swiss franc: EXR.M.CHF.EUR.SP00.A;
U.K. pound sterling: EXR.M.GBP.EUR.SP00.A;
U.S. dollar: EXR.M.USD.EUR.SP00.A.

CPI series source: OECD. Series names:
Canada: CAN CPI - All items - Index publication base - units: 2005=100;
Denmark: DNK CPI - All items - Index publication base - units: 2005=100;
Japan: JPN CPI - All items Tokyo - Index publication base - units:
2005=100;
Norway: NOR CPI - All items - Index publication base - units: 2005=100;
Sweden: SWE CPI - All items net - Index publication base - units:
2005=100;
Switzerland: CHE CPI - All items - Index publication base - units:
2005=100;
U.K.: GBR CPI - All items - Index publication base - units: 2005=100;
U.S: USA CPI - All items SA - Index publication base - units: 2005=100;
E.U.: EMU CPI HICP - All items - Index publication base - units:
2005=100.
All CPI series (except USA CPI which is seasonally adjusted) has been
de-seasonalised by X-12 ARIMA procedure. Then, these preliminary data
has been transformed in logarithms, from which PPP series has been built.
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A.2 Tables and Graphs

Table 1: Univariate Tests on Real Exchange Rates

US numeraire EU numeraire

Lag 0 1 2 3 0 1 2 3

ADF

CAN -1.776 -2.320 -2.300 -2.411 −3.283• -2.990 -3.037 -2.743
DN -2.900 -2.940 -2.687 -2.579 -2.174 -1.468 -1.412 -1.858
JPN -1.314 -1.873 -2.085 -1.731 -1.620 -2.265 -2.302 -2.318
NW -2.358 -2.911 -2.742 -2.828 -2.825 −3.480∗ -2.951 -2.951
SD -2.058 -2.531 -2.189 2.420 -2.323 -2.455 -2.455 −3.269•

SZ -3.067 -3.106 -2.887 -2.650 -1.635 -1.656 -1.601 1.798
UK -1.433 -1.982 -2.039 -2.091 -2.458 -2.580 -2.235 -2.239
EU -3.001 -2.919 -2.701 -2.613 - - - -
US - - - - -2.990 -2.958 -2.709 -2.679

DF-GLS

CAN -2.108 -2.143 -2.143 -1.485 -1.514 -1.504
DN -1.495 -1.296 -1.308 -0.844 -0.959 -1.232
JPN -1.792 -2.047 -1.732 -1.770 -1.779 -1.837
NW -2.248 -2.019 -2.067 -2.134 -1.819 -1.950
SD -1.831 -1.617 1.898 -1.925 -1.842 -2.560
SZ -1.495 -1.381 -1.291 -1.418 -1.377 1.481
UK -1.807 -1.828 -1.922 -1.299 -1.156 -1.178
EU -1.412 -1.243 -1.272 - - - -
US - - - - -1.475 -1.293 -1.330

KPSS

CAN 1.060••• 0.541••• 0.369••• 0.284••• 0.591••• 0.311••• 0.216∗∗ 0.168••

DN 0.799••• 0.414••• 0.285••• 0.221••• 1.310••• 0.675••• 0.460••• 0.352•••

JPN 1.190••• 0.612••• 0.421••• 0.326••• 1.080••• 0.559••• 0.384••• 0.297•••

NW 0.694••• 0.359••• 0.248••• 0.192•• 0.885••• 0.463••• 0.324••• 0.254•••

SD 0.837••• 0.430••• 0.294••• 0.226••• 0.755••• 0.394••• 0.273••• 0.212••

SZ 0.686••• 0.359••• 0.349••• 0.194•• 1.200••• 0.620••• 0.423••• 0.324•••

UK 1.150••• 0.586••• 0.399••• 0.306••• 1.110••• 0.581••• 0.402••• 0.312•••

EU 0.843••• 0.437••• 0.301••• 0.233••• - - - -
US - - - - 0.860••• 0.446••• 0.307••• 0.238•••

• Rejection at 10% of the null hypothesis; •• rejection at 5% of the null hypothesis; • • •
rejection at 1% of the null hypothesis. Software used: RATS 7.2

Table 2: McLeod-Li test for no ARCH-effects in ∆PPP (p-value)

US numeraire EU numeraire

Lag 1 2 3 4 1 2 3 4

DN 0.442 0.013 0.034 0.049 0.753 0.839 0.894 0.502
CAN 0.867 0.732 0.847 0.937 0.807 0.969 0.592 0.489
JPN 0.152 0.082 0.171 0.285 0.000 0.000 0.000 0.000
NW 0.000 0.000 0.001 0.002 0.017 0.000 0.000 0.000
SD 0.009 0.032 0.048 0.092 0.097 0.016 0.013 0.014
SZ 0.115 0.247 0.320 0.471 0.380 0.427 0.023 0.047
UK 0.000 0.000 0.000 0.000 0.011 0.015 0.022 0.039
US - - - - 0.048 0.012 0.031 0.056
EU 0.175 0.004 0.010 0.012 - - - -

Software used: RATS 7.2
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Table 3: Cointegration Analysis for System of Country j

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
j SC HQ p Dummies Normality Autocorr. Autocorr. Rank Test Rank Test Sim. Rank Test Sim. Rank Test

(p-value) (LM 1) (LM 2) (p-value) (Bartlett-corr.) (p-value) (Bartlett-corr.)

U.S. numeraire

CAN 2 2 3 2005:08 0.000 0.320 0.865 0.107 0.164 0.265 0.361
DN 2 2 3 2005:09, 2007:11 0.001 0.242 0.116 0.231 0.325 0.228 0.329
JPN 1 2 1 2005.09, 2008.11 0.128 0.102 0.174 0.369 0.451 0.079 0.121
NW 2 2 3 2003:01, 2005:09, 0.001 0.174 0.770 0.000 0.000 0.003 0.008

2008:10
SD 1 2 1 - 0.000 0.151 0.120 0.012 0.030
SZ 1 2 2 2003:03, 2005:09, 0.352 0.083 0.064 0.000 0.000 0.120 0.173

2008:10, 2008:11
UK 2 2 1 2005:09, 2008:11 0.171 0.535 0.216 0.076 0.117 0.004 0.009
EU 2 2 2 2008:11 0.003 0.056 0.152 0.142 0.197 0.080 0.119
US - - - - - - - - - - -

E.U. numeraire

CAN 1 1 3 - 0.036 0.109 0.556 0.019 0.022 0.095 0.104
DN 1 1 2 2007:11 0.006 0.977 0.617 0.247 0.301 0.315 0.377
JPN 1 1 1 2008.10 0.067 0.240 0.250 0.000 0.000 0.000 0.000
NW 2 1 3 2003:01, 2008:12 0.018 0.697 0.496 0.000 0.000 0.000 0.000
SD 1 1 1 2008:12, 2009:08 0.000 0.056 0.634 1.000 1.000 0.398 0.418
SZ 1 1 2 2008:10 0.002 0.476 0.188 0.024 0.037 0.013 0.020
UK 2 2 2 2008:12 0.008 0.451 0.836 0.000 0.000 0.000 0.000
EU - - - - - - - - - - -
US 1 2 2 2005:09, 2008:12 0.035 0.088 0.271 0.080 0.110 0.060 0.093

Legend : Column (1): Countries for which the PPP is tested; columns (2)-(3): results of Shwartz and Hannan and Quinn Information criteria for lag selection; column (4): selected lag;
column (5) shift dummies introduced in order to take in account of shocks in the sample; column (6): Shenton-Bowman test for normality in p-values; columns (7)-(8): Ljung-Box tests
for first-order and second-order residual autocorrelation; column (9) Johansen’ Trace test statistic in p-value; column (10): Bartlett nonparametric corrected Trace test; column (11):
simulated Johansen’ Trace test; column (12): Bartlett–corrected simulated Trace test. Simulation technique: Bootstrap; no. of draws: 2500 Software used: CATS
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Table 4: Panel unit root test for Real Echange Rates (lag=1)

Lag =1

US numeraire EU numeraire

Method Statistics p-value Statistics p-value Obs

Null: unit root (common unit root is assumed)
LLC t∗ -1.697 0.045 -1.540 0.062 1040

Null: unit root (individual unit root is assumed)
IPS w-statistic -1.683 0.046 -1.290 0.099 1040
CADF Z(t-bar) -0.818 0.207 0.472 0.682 1040
ADF Fisher χ2 21.543 0.159 21.272 0.168 1040
PP FIsher χ2 18.615 0.289 20.993 0.179 1040

Null: no unit root (common unit root is assumed)
Hadri Z-statistic

(assuming heterosk. across disturbances) 55.907 0.000 60.480 0.000
Hadri Z-statistic

(assuming serial dependance across disturbances) 5.956 0.000 6.653 0.000
NH∗ (i.i.d. RW errors) 5.210••• - 5.192•••

NH∗∗ (nonparametric adjustment of LRV, lag=1) 2.760••• - 2.730•••

Lag =2

US numeraire EU numeraire

Method Statistics p-value Statistics p-value Obs

Null: unit root (common unit root is assumed)
LLC t∗ -1.519 0.064 -1.233 0.109 1032

Null: unit root (individual unit root is assumed)
IPS w-statistic -1.761 0.039 -1.247 0.106 1032
CADF Z(t-bar) -1.132 0.129 0.347 0.636 1032
ADF Fisher χ2 17.691 0.342 17.026 0.394 1032
PP FIsher χ2 19.825 0.228 21.870 0.147 1032

Null: no unit root (common unit root is assumed)
Hadri Z-statistic

(assuming heterosk. across disturbances) 55.907 0.000 60.480 0.000
Hadri Z-statistic

(assuming serial dependance across disturbances) 5.956 0.000 6.653 0.000
NH∗ (i.i.d. RW errors) 5.208••• - 5.192•••

NH∗∗ (nonparametric adjustment of LRV, lag=2) 1.924••• - 1.898•••

Lag =3

US numeraire EU numeraire

Method Statistics p-value Statistics p-value Obs

Null: unit root (common unit root is assumed)
LLC t∗ -1.005 0.157 -0.826 0.2043 1024

Null: unit root (individual unit root is assumed)
IPS w-statistic -1.538 0.062 -1.074 0.141 1024
CADF Z(t-bar) -1.308 0.096 0.319 0.375 1024
ADF Fisher χ2 16.899 0.392 19.690 0.235 1024
PP FIsher χ2 20.446 0.201 22.824 0.112 1024

Null: no unit root (common unit root is assumed)
Hadri Z-statistic

(assuming heterosk. across disturbances) 55.907 0.000 60.480 0.000
Hadri Z-statistic

(assuming serial dependance across disturbances) 5.956 0.000 6.653 0.000
NH∗ (i.i.d. RW errors) 5.210••• - 5.192•••

NH∗∗ (nonparametric adjustment of LRV, lag=3) 1.499••• 1.477•••

• Rejection at 10% of the null hypothesis; •• rejection at 5% of the null hypothesis; • • •
rejection at 1% of the null hypothesis; ∗ No lag specified for LRV; ∗∗ With lag 1, 2 or 3 for
LRV; Software used: STATA 10.
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Table 5: Pedroni and Westerlund test on panel cointegration*

Pedroni tests Westerlund test

Case Z̃ρ p-value Ztρ̂NT
p-value Pγ Z-value p-value p-value Lag

(yt ∼ I(0)) (Robust) (AIC)

(p − αsUS − βpUS) 0.888 0.375 0.485 0.628 -5.383 2.136 0.984 0.952 1

(sUS − αp − βpUS) -2.517 0.012 -2.977 0.003 -11.012 -0.219 0.413 0.379 1

(pUS − αsUS − βp) 0.598 0.550 0.190 0.849 -9.920 -0.237 0.594 0.542 1

(p − αsEU − βpEU ) 0.942 0.346 0.540 0.589 - - - - -

(sEU − αp − βpEU ) -11.355 0.000 -11.963 0.000 -11.736 -0.522 0.301 0.268 1

(pEU − αsEU − βp) -0.190 0.849 0.437 0.662 - - - - -

∗ Common Features: H0: no cointegration; deterministic term: constant + linear trend.
Westerlund test features: lag range: (0 - 3); lead range: (0 - 1); width of Bartlett’ s Kernel
window: 3; bootstrap n. of replications: 1000; Software used: RATS (Pedroni test), STATA
10 (Westerlund).

Table 6: Linearity testing and model selection: SETAR

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Series BIC AIC HQ Hinich test p Tsay test Tsay test Tsay test d Model

(H-statistic) d=1 d=2 d=3

US numeraire
DN 2 2 2 0.000 2 0.129 0.098 0.732

CAN 1 1 1 0.999 4 0.612 0.703 0.347
JPN 1 2 2 0.000 1 0.964 0.456 0.028 3 SETAR(1; 1, 3)
NW 2 2 2 0.000 2 0.475 0.097 0.406
SD 2 4 2 0.050 2 0.388 0.227 0.119
SZ 1 2 2 0.000 3 0.281 0.359 0.568
UK 2 2 2 0.000 2 0.204 0.273 0.731
EU 2 2 2 0.000 2 0.059 0.073 0.0564

EU numeraire
DN 2 5 4 0.085 3 0.034 0.238 0.376 1 SETAR(1; 3, 1)

CAN 1 1 1 0.000 1 0.095 0.846 0.920
JPN 2 2 2 0.000 2 0.143 0.110 0.008 3 SETAR(1; 2, 3)
NW 2 3 2 0.000 2 0.023 0.024 0.036 1 SETAR(1; 2, 1)
SD 1 1 1 0.000 1 0.003 0.311 0.194 1 SETAR(1; 1, 1)
SZ 1 1 1 0.000 1 0.425 0.337 0.407
UK 1 1 1 0.000 1 0.005 0.768 0.759 1 SETAR(1; 1, 1)
US 1 1 2 0.000 1 0.489 0.386 0.664

Legend. (1): Countries; (2): Swartz-Bayesian information criterion; (3): Aikake information
criterion; (4): Hannan-Quinn information criterion; (5) Hinich test statistics in p-values for
third order autocorrelation and serial dependence from non gaussian errors; (6): selected order
p using the following rule: p = k + n, k = max{AIC, BIC, HQ} is the maximum number
selected by standard information criteria, n = {1, 2, 3}) are the eventually additional order
suggested by Hinich test; (7)-(9): Tsay test for threshold linearity in p-values using d={1, 2, 3}
delay parameters; (10): chosen delay parameter d; (12) selected SETAR(k;p,d), k = {1, . . . , N}
regimes. Software used: RATS

Table 7: Hansen’ threshold effect test (bootstrapped p-values)

Rate supLM expLM aveLM supLMh expLMh aveLMh

y
£/e
t 0.050 0.088 0.391 0.040 0.083 0.407

Software used: RATS
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Table 8: Linearity testing and model selection: STAR

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Series BIC AIC HQ Hinich test p st FL F4 F3 F2 Model

H-statistic* selected F-value F-value F-value F-value

US numeraire
DN 2 2 2 0.000 2 yt−1 4.6 e−27 7.2 e−1 9.1 e−2 9.1e−30 LSTR1

CAN 1 1 1 0.999 4 yt−1 1.8 e−24 9.2 e−1 6.8 e−1 4.8 e−28 LSTR1
JPN 1 2 2 0.000 1 - - - - - Linear
NW 2 2 2 0.000 2 t 1.3 e−2 8.4 e−2 7.4 e−1 4.4 e−3 LSTR1
SD 2 4 2 0.050 4 yt−1 1.5 e−28 1.7 e−1 5.6 e−1 1.7 e−31 LSTR1
SZ 1 2 2 0.000 2 yt−1 2.1 e−23 3.8 e−1 6.1 e−2 1.9 e−25 LSTR1
UK 2 2 2 0.000 2 t 1.1 e−2 5.9 e−2 7.0 e−2 7.6 e−2 LSTR1
EU 2 2 2 0.000 2 yt−1 5.5 e−27 2.3 e−1 9.9 e−2 3.3 e−29 LSTR1

EU numeraire
DN 2 5 4 0.085 3 - - - - - Linear

CAN 1 1 1 0.000 1 t 3.2 e−2 4.0 e−2 2.3 e−1 1.1 e−1 LSTR1
JPN 2 2 2 0.000 2 t 3.4 e−3 5.6 e−2 1.4 e−1 8.3 e3 LSTR1
NW 2 3 2 0.000 2 t 3.1 e2 4.9 e−1 4.6 e−1 4.1 e−3 LSTR1
SD 1 1 1 0.000 1 t 2.1 e−2 3.6 e−2 5.0 e−1 3.2 e−2 LSTR1
SZ 1 1 1 0.000 1 t 3.9 e−3 3.9 e−2 5.9 e−2 2.9 e−2 LSTR1
UK 1 1 1 0.000 1 yt−2 2.5 e−4 1.4 e−1 3.2 e−5 6.0 e−1 LSTR2
US - - - - - - - - - - -

Legend. (1): Countries; (2): Swartz-Bayesian information criterion; (3): Aikake information criterion; (4): Hannan-Quinn information criterion; (5) Hinich test statistics (p-values) for
third order autocorrelation and serial dependence from non gaussian errors; (6): selected order p using the following rule: p = k +n, k = max{AIC, BIC, HQ} is the maximum number
selected by standard information criteria, n = {1, 2, 3}) are the eventually additional order suggested by Hinich test; (7): transition variable; (8): Saikkonen-Lukkonen-Teräsvirta
linearity test by statistics LM2 (equation 13 on page 12) or LM3 (equation 16 on page 12); (9)-(11): results for Teräsvirta rule for the choice of the from of transition variable (see
sequence of nested hyphotheses 17 on page 12); (12) Selected model for transition function. Software used: JMulTi 4
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Table 9: STAR models estimates

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)
Series φ0 φ1 φ2 θ0 θ1 θ2 γ c1 c2 Restr R̄2 J-B ARCH-LM(p) σ2

ǫ SDǫ

US numeraire

DN
3.978 - -0.639 2.679 - 0.639 0.567 -1.997 -

y
DN/$

t−2
0.982

0.922 5.711
0.001 0.023(0.402) - (0.187) (0.300) - (0.187) (0.000) (0.026) - - -

[0.000] - [0.001] [0.000] - [0.001] [0.000] [0.000] - [0.631] [0.004]

CAN
-1.158 - -0.436 1.442 - 0.436 0.507 -0.360 -

y
CAN/$

t−2
0.979

371.000 0.195
0.000 0.020(0.000) - (0.174) (0.000) - (0.174) (0.000) (0.030) -

[0.000] - [0.014] [0.000] - [0.014] [0.000] [0.000] - [0.000] [0.094]

NW
-0.596 1.216 -0.510 0.596 -1.216 0.510 0.991 221.762 -

const, y
NW/$

t−1
, y

NW/$

t−2
0.912

4.525 30.505
0.002 0.042(0.071) (0.143) (0.144) (0.071) (0.143) (0.144) (0.063) (6.166) -

[0.000] [0.000] [0.006] [0.000] [0.000] [0.006] [0.000] [0.000] - [0.104] [0.000]

SD
-11.794 - -1.525 11.794 - 1.525 0.105 -3.435 -

constant, y
SD/$

t−2
0.957

0.160 0.167
0.001 0.026(3.195) - (0.400) (3.195) - (0.400) (0.020) (0.751) -

[0.000] - [0.000] [0.000] - [0.000] [0.000] [0.000] - [0.923] [0.955]

SZ
-1.127 - -0.656 1.220 - 0.656 0.615 -0.388 -

y
SZ/$

t−2
0.960

4.419 1.078
0.001 0.023(0.272) - (0.303) (0.330) - (0.303) (0.162) (0.052) -

[0.000] - [0.032] [0.000] - [0.032] [0.000] [0.000] - [0.110] [0.343]

UK
0.011 1.327 -0.350 0.490 -1.327 0.350 53.692 123.025 -

y
£/$

t−1
, y

£/$

t−2
0.960

7.113 3.205
0.000 0.020(0.011) (0.085) (0.086) (0.013) (0.085) (0.086) (30.565) (0.565) -

[0.308] [0.000] [0.000] [0.000] [0.000] [0.000] [0.081] [0.000] - [0.029] [0.044]

EU
-0.811 - -0.745 1.544 - 0.745 0.556 -0.027 -

y
e/$

t−2
0.979

4.400 12.057
0.001 0.024(0.000) - (0.228) (0.000) - (0.228) (0.000) (0.000) -

[0.023] - [0.014] [0.008] - [0.014] [0.105] [0.528] - [0.111] [0.149]

EU numeraire

CAN
0.067 1.135 - 0.067 -1.135 - 14.865 135.977 -

constant, y
CAN/e
t−1

0.800
0.474 5.593

0.001 0.030(0.016) (0.039) - (0.016) (0.039) - (3.794) (1.574) -
[0.001] [0.000] - [0.001] [0.000] - [0.001] [0.000] - [0.789] [0.693]

JPN
-0.656 3.202 -2.335 0.953 -3.202 3.395 0.189 132.43 -

y
JPN/e
t−1

0.985
6.526 14.715

0.001 0.027(0.607) (0.000) (0.000) (1.227) (0.000) (0.000) (0.079) (0.000) -
[0.282] [0.000] [0.007] [0.438] [0.000] [0.002] [0.018] [0.041] - [0.038] [0.065]

NW
-15.142 - -6.470 15.142 - 6.470 19.286 86.444 -

y
NW/e
t−1

-
12.905 118.97

1.656 1.287(6.473) - (3.128) (6.473) - (3.128) (0.000) (3.643) -
[0.029] - [0.041] [0.029] - [0.041] [0.261] [0.000] - [0.002] [0.000]

SD
0.055 1.026 - -2.428 -1.026 - 11.233 123.205 -

y
SD/e
t−1

0.974
45.300 19.380

0.000 0.013(0.052) (0.024) - (0.500) (0.024) - (3.396) (1.702) -
[0.288] [0.000] - [0.000] [0.000] - [0.001] [0.000] - [0.000] [0.013]

SZ
0.015 1.041 - -0.015 -1.041 - 6.849 147.861 -

constant, y
SZ/e
t−1

0.967
172.224 9.957

0.000 0.010(0.007) (0.017) - (0.007) (0.017) - (1.567) (4.099) -
[0.037] [0.000] - [0.037] [0.000] - [0.000] [0.000] - [0.000] [0.268]

UK
-0.019 1.287 -0.245 0.069 -1.424 1.299 6.585 -0.141 -0.541 -

0.983
48.886 10.177

0.000 0.015(0.007) (0.090) (0.095) (0.016) (0.395) (0.363) (4.357) (0.004) 0.006
[0.011] [0.000] [0.011] [0.000] [0.000] [0.001] [0.133] [0.000] 0.000 [0.000] [0.000]

Legend. (1): Countries; (2)-(4): parameters φ of linear AR-part; (5)-(7): parameters θ of nonlinear AR-part; (8)-(10): parameters of transition function G(·); (11): parameters under restriction θ = φ; (12)

Adjusted R2; (13) Jarque-Brera statistic; (14) Engle’s LM test for no ARCH effects for p lags; (15) variance of ǫ; (16) standard deviation of ǫ. Line 1: parameters’ estimates; Line 2 (brakets): standard deviations;
Line 3 (square brakets): p-values. Software used: JMulTi 4
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Table 10: Diagnostic tests for estimated STAR models

Serial Correlation No remaining nonlinearity Parameter Constancy

F -values F -values DF1 DF2 H1 H2 H3

Lag 1 2 3 4 5 6 7 8

U.S. numeraire
DN 0.658 0.871 0.582 0.510 0.747 0.687 0.721 0.762 0.322 6 118 2.636 1.545 1.883

CAN 0.312 0.293 0.229 1.661 1.291 1.282 1.389 1.309 0.801 12 110 1.704 1.186 1.420
NW 0.295 0.644 1.846 1.718 1.622 1.797 1.559 1.675 0.165 6 118 19.031 10.739 10.408
SD 1.639 2.373 1.775 1.708 2.437 2.075 1.864 1.650 0.782 12 110 2.374 1.644 1.717
SZ 0.174 0.319 0.412 0.400 0.340 0.361 0.605 0.570 0.408 6 118 2.418 1.391 1.711

UK* 0.276 1.135 1.103 1.491 1.367 1.314 1.251 1.172 0.698 6 118 1.835 1.801 NaN
EU 0.669 0.769 0.510 0.417 0.836 0.761 0.765 0.760 0.420 6 118 1.474 0.777 0.614

E.U. numeraire
CAN 5.094 2.742 1.563 1.013 0.775 0.898 0.875 1.179 0.032 3 123 32.968 18.208 12.649
JPN 0.418 0.737 0.615 1.029 0.876 0.791 0.585 0.457 0.001 6 118 0.676 0.005 0.005
NW 2.997 3.541 2.500 1.965 1.576 1.928 1.935 1.744 3.82 e−34 6 120 72,934 36,508 29,320
SD 3.090 1.658 3.886 3.008 2.586 2.316 1.974 1.852 0.000 3 123 0.030 0.024 0.004
SZ 1.547 0.749 0.650 0.642 0.496 0.414 0.759 0.676 0.118 3 123 0.082 0.104 0.658
UK 0.344 0.174 0.142 0.096 0.118 0.326 0.575 0.537 0.962 3 118 1.272 1.333 1.753

P -values P -values DF1 DF2 H1 H2 H3

Lag 1 2 3 4 5 6 7 8

U.S. numeraire
DN 0.419 0.421 0.628 0.728 0.590 0.660 0.654 0.637 0.924 " " 0.037 0.150 0.044

CAN 0.578 0.747 0.876 0.164 0.273 0.272 0.217 0.247 0.648 " " 0.154 0.314 0.168
NW 0.588 0.527 0.142 0.151 0.160 0.106 0.155 0.113 0.986 " " 0.000 0.000 0.000
SD 0.203 0.098 0.156 0.153 0.034 0.062 0.082 0.119 0.667 " " 0.056 0.120 0.073
SZ 0.677 0.728 0.745 0.809 0.888 0.902 0.751 0.119 0.873 " " 0.052 0.208 0.074

UK* 0.601 0.325 0.351 0.209 0.242 0.257 0.282 0.323 0.651 " " 0.098 0.057 NaN
EU 0.545 0.466 0.676 0.796 0.527 0.603 0.618 0.639 0.865 " " 0.233 0.543 0.719

E.U. numeraire
CAN 0.026 0.068 0.202 0.404 0.569 0.499 0.529 0.318 0.992 " " 0.000 0.000 0.000
JPN 0.519 0.481 0.607 0.395 0.500 0.579 0.767 0.884 1.000 " " 0.001 NaN NaN
NW 0.858 0.032 0.063 0.104 0.172 0.082 0.071 0.096 1.000 " " 0.000 0.000 0.000
SD 0.081 0.195 0.011 0.021 0.030 0.038 0.065 0.075 1.000 " " 0.000 0.000 0.000
SZ 0.216 0.475 0.584 0.633 0.779 0.868 0.623 0.712 0.950 " " 0.000 0.000 0.000
UK 0.559 0.840 0.935 0.983 0.988 0.922 0.775 0.827 0.413 " " 0.276 0.211 0.042

*Statistic for No remaining nonlinearity refers to the case st = yt−1. Software used: JMulTi 4
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Figure 1: PPP series (in logs)
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Figure 2: Plots of transition functions for estimated STAR models

(a) PPPDNUS (b) PPPCANUS (c) PPPSZUS

(d) PPPUKUS (e) PPPEUUS (f) PPPCANEUR

(g) PPPNWEUR (h) PPPSDEUR (i) PPPSZEUR

(j) PPPUKEUR (k) PPPNWUS (l) PPPSDUS
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Figure 3: Impulse Response Functions
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(h) CAN/e: GIRF
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