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Abstract: This study presents some quantitative evidence from a number of simulation 

experiments on the accuracy of the productivity growth estimates derived from growth 

accounting (GA) and frontier-based methods (namely Data envelopment Analysis-, 

Corrected ordinary least squares-, and Stochastic Frontier Analysis-based Malmquist 

indices) under various conditions. These include the presence of technical inefficiency, 

measurement error, misspecification of the production function (for the GA and 

parametric approaches) and increased input and price volatility from one period to the 

next. The study finds that the frontier-based methods usually outperform GA, but the 

overall performance varies by experiment. Parametric approaches generally perform 

best when there is no functional form misspecification, but their accuracy greatly 

diminishes otherwise. The results also show that the deterministic approaches perform 

adequately even under conditions of (modest) measurement error and when 

measurement error becomes larger, the accuracy of all approaches (including 

stochastic approaches) deteriorates rapidly, to the point that their estimates could be 

considered unreliable for policy purposes. 

Keywords: Data envelopment analysis, Productivity and competitiveness, Simulation, 

Stochastic Frontier Analysis, Growth accounting 

                                                 
1
 Corresponding Author: Email address: giralead@aston.ac.uk (D Giraleas) 

 1

mailto:giralead@aston.ac.uk


1 Introduction 

The study of productivity is a very important topic. The UK Office of National Statistics 

((ONS, 2007)) states that: ‘Statistics relating to productivity are vital to understanding 

the economy and how it changes’. It also states that: ‘it is crucial that both experts and 

the general public can depend on the accuracy and relevance of ONS productivity 

measures’. The Organisation for Economic and Social Development (OECD) also 

states that one of its major aims is to improve the measurement of productivity 

growth2.  

The pursuit of productivity growth and productivity convergence is also one of the 

central goals of the European Union (EU). Probably the main instruments to achieve 

those goals are the so-called Structural funds, which are distributed based on Gross 

Domestic Product (GDP) per capital differentials between the various EU regions. 

Changes in GDP per capital are also used as simple measures of productivity growth 

and although probably sufficient for setting policy at this stage, a more refined 

productivity indicator is required to evaluate the effects of the funds and the degree of 

convergence. The issue of converge is critical, since the underlying aim of the 

Structural funds is to increase GDP by providing the relatively poorer regions with the 

tools to achieve the productivity/efficiency potential of the more advanced regions, 

rather than raising GDP simply through factor accumulation.  

More complex approaches that seek to estimate Total Factor Productivity growth 

(TFP) can provide the required granularity of information, by examining the sources of 

GDP growth that are not due to such factor accumulation. The EU seems to support 

the development and use of such approaches, given the emphasis the Directorate 

General for Economic and Financial Affairs (DG-ECFIN) has placed on the EU KLEMS 

project ((EU KLEMS, 2008)), an EU-wide research project that aims to provide 

estimates of aggregate TFP growth in the EU member states together with the data 

necessary for the estimation. The DG-ECFIN (Koszerek, 2007) states that the 

productivity indicators provided by EU KLEMS are ‘essential for understanding recent 

EU productivity trends’, ‘fundamental in assessing progress with the Lisbon Strategy’, 

‘can complement the "Structural Indicators" Programme’, and ‘provide an additional 

data source for refining the potential growth rate estimates used in the EU’s budgetary 

surveillance process’. 
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Productivity growth in the EU KLEMS database is estimated based on growth 

accounting (GA). GA is an index number-based methodology for measuring 

productivity growth which is based in the early work of Tinbergen (Tinbergen, 1942) 

and independently, Solow (Solow, 1957) and is the method of choice when measuring 

aggregate (ie country- or sector-wide) productivity growth for most interested agents, 

namely statistical agencies (national and international), central banks and government 

bodies (see for example the US Bureau of Labor Statistics technical note on 

multifactor productivity3 and ONS (ONS, 2007)). A major factor in the widespread 

adoption of GA is the fact that estimates can be (relatively) easily produced using 

country- or sector-specific National Accounts data, without recourse to information 

from outside the country or the sector examined; on the other hand, GA requires the 

adoption of a number of simplistic (potentially unrealistic) assumptions, most notably 

those relying on the existence of perfect competition, which could lead to unreliable 

estimates.  

Given the stated need for accurate productivity growth estimates, the first aim of this 

study is to assess the impact on the accuracy of the GA estimates when some of the 

assumptions central to the notion of perfect competition are violated. This is achieved 

by undertaking a number of simulation experiments, which utilise randomly generated 

data for which the parameters of interest (most importantly productivity change) are 

known a-priori; when GA (or any other productivity change measurement approach) is 

applied to the same dataset, a measure of the overall accuracy of the approach can be 

devised by comparing the estimate of productivity change to its true value.  

Frontier-based methods offer an attractive alternative for the measurement of 

aggregate productivity change. Unlike the more traditional GA methods, they allow for 

the production to occur inside the frontier, thereby explicitly allowing for inefficiency in 

the production process and relaxing the stringent assumptions required when using 

growth accounting methods. In addition, frontier-based methods also allow for the 

decomposition of productivity growth, which could be of great interest to the users of 

productivity change estimates.  

There are a number of applications of frontier based methods for the measurement of 

aggregate productivity growth in the academic literature. Färe et al. (Färe, Grosskopf, 

Norris, & Zhang, 1994) was one of the first studies that utilised Data Envelopment 
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Analysis (DEA), the more widely-used non-parametric frontier based approach, to 

construct Malmquist indices of productivity growth; the approach has since been 

adopted in numerous other studies (for a comprehensive list of applications of DEA-

based Malmquist indices see (Fried, Lovell, & Schmidt, 2008) and (Del Gatto, Di 

Liberto, & Petraglia, 2008)). Kumbhakar et al. (Kumbhakar & Lovell, 2000) introduced 

another way to construct a Malmquist index of productivity growth that relies on 

parametric frontier models, such as Corrected Ordinary Least Squares (COLS) and 

Stochastic Frontier Analysis (SFA); such models have also been widely used in the 

literature (see Sharma et al. (Sharma, Sylwester, & Margono, 2007) for a list of sample 

studies). 

However, despite the adoption of such frontier-based methods in the academic 

literature and the theoretical advantages offered by frontier-based methods compared 

to the more traditional GA approach, there has been limited research on quantifying 

how these advantages translate into improved accuracy of the resulting productivity 

change estimates and under which conditions one frontier-based approach is more 

accurate than another. As such, the second aim of this study is to employ the 

aforementioned simulation experiments to provide quantitative evidence on the 

accuracy of the more widely adopted frontier-based approaches, namely DEA-, COLS- 

and SFA-based Malmquist indices, under a number of conditions that violate the 

assumptions made under perfect competition.  

In more detail, this research aims to examine the accuracy of both GA and frontier-

based productivity change estimates: 

– when technical inefficiency, in various degrees of severity, is present,  

– when inputs and prices are volatile from one period to the next,  

– when the production function is miss-specified, and finally 

– when the factors of production are measured inaccurately (again in various 

degrees of severity). 

2 Methodology of the current research  

2.1 Productivity measurement approaches considered  

Each simulation experiment examines the performance of the following approaches: 

– GA, 

– DEA-based circular Malmquist indices, 
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– COLS-based Malmquist indices, and 

– SFA-based Malmquist indices, (only when measurement noise is included in the 

experiment). 

All frontier-based approaches examined in this analysis rely on the notion of what has 

come to be known as the Malmquist productivity index (Diewert, 1992), which has 

been used extensively in both the parametric (see for example Kumbhakar et al. 

(Kumbhakar & Lovell, 2000)) and the non-parametric (see for example Thanassoulis 

(Thanassoulis, 2001)) setting. Furthermore, the productivity index produced by GA can 

be considered as a special case of the Malmquist productivity index (see OECD 

(OECD, 2001)).  

Given the nature of the approaches considered, the analysis focuses on the production side of 

the economic process.  

Growth Accounting  

Growth Accounting (GA) is an index number-based approach that relies on the neo-

classical production framework, and seeks to estimate the rate of productivity change 

residually, ie by examining how much of an observed rate of change of a unit’s output 

can be explained by the rate of change of the combined inputs used in the production 

process. There are many modifications that could be applied to the more general GA 

setting ((Balk, 2008); (Del Gatto, et al., 2008)); however, most applications still utilise 

‘traditional’ growth accounting methods, as described in OECD (OECD, 2001) (see for 

example O'Mahony et al. (O'Mahony & Timmer, 2009)).   

GA postulates the existence of a production technology that can be represented 

parametrically by a production function relating gross output (Y), to primary inputs 

labour (L) and capital services (K) as well as intermediate inputs such as material, 

services or energy (M). 

),,( MLKFY          (1) 

If gross output is measured net of intermediate inputs, ie using a Gross Value Added 

(GVA) measure, (1) becomes: 

),( LKFYGVA          (2) 

GA assumes that productivity changes (TFP) are Hicks-neutral type, i.e. they 

correspond to an outward shift of the production function, such that: 
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TFPLKFYGVA  ),(        (3) 

A number of assumptions are required to parameterise (3), namely that: 

– the production function is Cobb-Douglas and exhibits constant returns to scale;  

– each assessed unit minimises the costs of inputs for any desired level of output 

and can adjust the level of primary inputs that it utilises at any moment and without 

additional costs;  

– input markets are perfectly competitive and all production happens on the frontier; 

– all relevant inputs and outputs are taken into account and measured without error.  

For a more detailed discussion on the assumptions required for GA, see Annex 3 of 

the OECD manual (OECD, 2001). 

If the above assumptions hold, once the Cobb-Douglas production function is 

differentiated with respect to time, the rate of change in output is equal to the sum of 

the weighted average of the change in inputs and the change in productivity. The input 

weights are the output elasticities of each factor of production; under perfect 

competition conditions, the marginal revenue generated by each factor is equal to its 

price and, as such, the output elasticity of each factor is equal to its share in the total 

value of production.  

Therefore, productivity change is estimated by:  
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where is the average share of labour in periods t and t-1, is the average share of 
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It should be noted that the price of capital is not observable; therefore analyses that 

utilise GA usually rely on an imputed price of capital. This is discussed in more detail in 

section 2.2 (Price data). The use of arithmetic averages for the input shares was 
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adopted for consistency with the EU KLEMS methodology. An alternative option would 

be to use geometric averages; this has been examined in some of the initial simulation 

experiments, but it had almost no impact on the resulting estimates. As such, results 

using geometric averages of shares are not reported in this paper.  

As is apparent from the above, one of the major advantages of GA is that it does not 

require any information outside of the assessed unit to estimate productivity growth. To 

do so however, the analysis must adopt a number of restrictive assumptions as noted 

above and also have access to price information, which is necessary to parameterise 

the aggregate production function.  

DEA-based Circular Malmquist index 

The most common non-parametric approach for productivity measurement utilises 

Data Envelopment Analysis (DEA) to construct Malmqusit indices of productivity 

change. This approach was first proposed by Caves et al. (Caves, Christensen, & 

Diewert, 1982) and later refined by Färe et al. (Färe, et al., 1994).  

This study utilises the notion of a circular Malmquist-type index (thereafter referred to 

as circular Malmquist), as first proposed by Pastor et al. (Pastor & Lovell, 2005) and 

refined by Portela et al. (Portela & Thanassoulis, 2010).  

The circular Malmquist index is based on the observation that, although a measure of 

distance between two multidimensional points observed at two different time periods 

can be satisfactory calculated directly, as per the ‘traditional’ Malmquist index, a similar 

measure of distance can be calculated indirectly, by comparing the multidimensional 

points of the two periods relative to a common reference point, or in this case, to a 

common frontier. This common frontier is defined as the ‘meta-frontier’ and since it 

envelopes all data points from all periods, it allows for the creation of a Malmquist-type 

index which is circular. To draw this ‘meta-frontier’, one must assume that convexity 

holds for all data points across different time-periods. This actually translates to the 

assumption that what was technologically feasible in a given time period will always be 

feasible in any future time period, a standard assumption in so-called sequential 

technology (Tulkens & Vanden Eeckaut, 1995). Distances can then be measured 

using the ‘standard’ DEA models.  

The main advantages of the circular Malmquist index relative to the ‘traditional’ (Färe 

1994) Malmquist index are the ease of computation and the ability to accommodate 
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unbalanced panel data. For a more detailed discussion, see Portela et al. (Portela & 

Thanassoulis, 2010). 

Corrected OLS 

Corrected OLS is a deterministic, parametric approach and one of the numerous ways 

that have been suggested to ‘correct’ the inconsistency of the OLS-derived constant 

term of the regression when technical inefficiency is present in the production process.  

Two different COLS model specifications were tested within these simulations. Both 

are based on a pooled regression model (ie all observations are included in the same 

model with no unit-specific effect). The first model assumes a Cobb-Douglas functional 

form and is used for those experiments where the data is generated using the Cobb-

Douglas production function. In more detail, the functional form used is: 

)*exp(***

itit

a

itit tKLY          (7) 

where it*  are the estimated OLS residuals. The standard logarithmic transformation 

converts (7) into: 

itititit tLY *lnlnln ***         (8). 

It should be noted that the above specification matches perfectly the data generating 

process, when measurement error is not included in the experiments. 

The second COLS model specification assumes a translog functional form and is 

used, together with the Cobb-Douglas functional form specification, for those 

simulation experiments where the data is generated using the piecewise-linear 

production function. The translog COLS model is given by: 
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Inefficiency estimates are derived by: 

          (10) )max( ***

itititu  

Productivity change is calculated based on the same formula as used for the 

calculation of true productivity change, substituting the true parameters with the 

various parametric estimates (see section 2.2 and Kumbhakar et al. (Kumbhakar & 

Lovell, 2000). So, productivity change is given by:  
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dtTCddtECddtTFPd
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it /ln/ln/ln       (11) 

where  is the COLS-estimated efficiency change and  is the COLS-

estimated technical change. Note that (11) does not include a scale efficiency change 

component, since all experiments assume constant returns to scale (see section 2.2 

for more details). 

COLS
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1 itit
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*/ln dtTCd
COLS
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for the Cobb-Douglas function and  

     (14) 
itLtitKtttt

COLS

it LKtdtTCd lnln/ln  

for the translog function.  

Stochastic frontier analysis 

The pre-eminent parametric frontier-based approach is Stochastic Frontier Analysis, 

which was developed independently by Aigner et al. (Aigner, Lovell, & Schmidt, 1977) 

and by Meeusen et al. (Meeusen & van Den Broeck, 1977). The approach relies on 

the notion that the observed deviation from the frontier could be due to both genuine 

inefficiency but also random effects, including measurement error. SFA attempts to 

disentangle those random effects by decomposing the residual of the parametric 

formulation of the production process into noise (random error) and inefficiency. 

As is the case with the COLS approach, two separate SFA model specifications are 

used: a Cobb-Douglas functional form is employed for those experiments where the 

data are generated through a Cobb-Douglas production function, and both a Cobb-

Douglas and translog functional form for those experiments where the data are 

generated through a piecewise linear production function. The models are very similar 

to those used under COLS; in fact, the only difference lies in the specification of the 

residual.  

In more detail, the Cobb-Douglas model is given by: 

ititititit uvtLY  *** lnlnln        (15) 

whereas the translog model is given by:     
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where represents the inefficiency component (and as such ) and  

represents measurement error ( ). The inefficiency component is estimated 

based on the JMLS (Jondrow, Knox Lovell, Materov, & Schmidt, 1982) estimator.  

itu 0itu itv

),0(~ 2

vit Nv 

Two different distributions for the inefficiency component are tested: 

–  the exponential distribution,  )(~ uit Expu 

– the half-normal distribution,  ),0(~ 2

uit Nu 

When the data is generated using the Cobb-Douglas production function, the 

exponential Cobb-Douglas SFA model is perfectly specified, since the data generation 

process also generates the inefficiency values from an exponential distribution. The 

estimates from the half-normal distribution are included in the experiments to examine 

the impact of misspecification in the inefficiency distribution to the SFA productivity 

change estimates. Productivity change is measured in exactly the same way as with 

COLS, ie using (11)-(14).  

2.2 Data generating process 

Since the focus on this analysis is on the production side of the economic process, 

information on inputs and output(s) is sufficient for the estimation of productivity 

change under the frontier-based approaches. However, GA also requires information 

on prices for both inputs and output(s) in order to parameterise the production function 

(see section 2.1), so price information that is consistent with the quantities of inputs 

used and outputs produced by each assessed unit also needs to be generated.  

Given that the analysis includes both parametric and non-parametric approaches, the 

choice of the production function which would be used to generate the output values 

for the simulations can have a significant impact on the accuracy of the resulting 

estimates. If the functional form adopted by the parametric approaches matches the 

functional form of the underlying production function, it is expected that the resulting 

parametric-based estimates would be more accurate relative to when functional form 

misspecification is present. In addition, GA implicitly assumes that the underlying 

production function is Cobb-Douglas, and as such it would also be pertinent for the 
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analysis to examine what happens when this assumption is violated. To assess the 

effects of such functional form misspecification on the overall accuracy of the 

estimates, two sets of simulations are undertaken: the first set adopts a Cobb-Douglas 

production function and the second set adopts a piecewise-linear production function. 

In all cases, the production function assumes that two inputs are used to produce a 

single output, which is also the norm when measuring aggregate productivity change 

with value added as the output and labour and capital quantities as the inputs.     

For the first set of simulations, which utilise a Cobb-Douglas production function, output is 
given by: 

 

)exp( ititititit utKLY          (17)  

where is the output of unit i in time t, is the labour input of unit i in time t,  is the 

capital input of unit i in time t, 

itY
itL itK

it is measurement error (noise) and is the technical 

efficiency of unit i in time t. An element of technical change is also included in the form 

of the time trend t. Output elasticities are given by the parameters α and β for labour 

and capital, while γ represents technical change. The values for the elasticity 

parameters in these experiments are set to α=β=0.5 and γ=0.02, ie the experiments 

assume constant returns to scale. Measurement error is normally distributed with zero 

mean and variance that changes according to aims of each simulation experiment 

(some simulation experiments assume no measurement error, while others assume 

varying degrees of measurement error).  

itu

For the second set of simulations, which utilise a piecewise-linear production function, output 

is given by: 

 

 

           

 

y
*
i =           (18) 

0.06Li+2.09Ki for Li/Ki>3.22 

0.19Li+1.67Ki for Li/Ki>2.01 and Li/Ki<=3.22

0.40Li+1.25Ki for Li/Ki>1.14 and Li/Ki<=2.01

0.46Li+1.18Ki for Li/Ki>1.03 and Li/Ki<=1.14

1.04Li+0.59Ki for Li/Ki>0.73 and Li/Ki<=1.03 

1.84Li+0.13Ki for Li/Ki<=0.3 

1.53Li+0.22Ki for Li/Ki>0.3 and Li/Ki<=0.73

 

 

The labour coefficients, the number of ‘pieces’ (or facets) and the breakpoints in the 

above function were randomly generated, while the capital coefficients where 

calculated such that the above function would be convex in K and L (as in all 
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input/output correspondences belong to a convex set), monotonic, continuous and 

display constant returns to scale4.  

The y*
i parameter represents ‘clean’ output, ie before the effects of inefficiency, 

technical change and possible measurement error are included. The output value used 

in the simulation experiments includes all those elements and is given by: 

)exp(*

ittititit vTCTEyy         (19) 

 

where  represents technical efficiency and is given by  itTE

)exp( itit uTE          (20). 

 

tTC  represents technical change and is a function of time (t) and a constant γ and is 

given by: 


tTCt           (21), 

 

and  represents measurement error, which is normally distributed with zero mean 

and variance that changes according to the aims of each simulation experiment. 

itv

All simulations rely on a panel dataset of 20 units, observed over five periods (ie the 

total number of observations is 100). The input sets for all units in the first period are 

randomly generated following a uniform distribution U[0,1]; in subsequent periods, they 

are scaled by a random, normally-distributed number; the default assumption is that 

this scaling factor follows N(0,0.10), but this paper also examines the condition of 

increased volatility, by setting the standard deviation to 0.25. It should be mentioned 

here that the same scaling factor is used to generate input prices (as discussed in the 

following section).  

Efficiency is also randomly generated and follows the exponential distribution. Two 

cases, corresponding to different levels of average inefficiency are examined: 

– for the ‘average levels of inefficiency’ experiments, the inefficiency term follows Exp(1/7), 

which results in an average inefficiency of approximately 12%. 

– for the ‘higher levels of inefficiency’ experiments, the inefficiency term follows Exp(1/2), 

which results in an average inefficiency of approximately 32%. 

                                                 
4
 The function represents a production process under constant returns to scale since when input values are doubled, so does the 

total output, for all ‘pieces’ or facets of the function. 
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The definition of productivity change used for this analysis relies on the notion of what 

has come to be known as the Malmquist productivity index. The Malmquist productivity 

index is the product of the index of efficiency change , scale efficiency change 

itSE  and technical change itTC  (otherwise known as technological change or frontier 

shift). Taking logs and differentiating across time provides the definition of produc

change across time: 

itEC

tivity 

                                                

dtTCddtSEddtECddtTFPd ititit

true

it /ln/ln/ln/ln      (22) 

All of the simulation experiments assume constant returns to scale and thus the 

change in scale efficiency measure can be ignored5. Thus, following Kumbhakar e al. 

(Kumbhakar & Lovell, 2000), the expression in (22) can be rewritten as: 




 )(

/ln/ln/ln

1 itit

itit

true

it

uu

dtTCddtECddtTFPd
      (23) 

Since all parameters in the right-hand side of the above equations are known in the 

generated dataset the calculation of true productivity change (in the context of the 

generated dataset) is trivial. 

Price data  

To generate price information for the experiments consistent with each production 

function, the analysis relies on micro-economic production theory and assumes that 

each producer attempts to minimise costs (Samuelson, 1947), ie: 

),(

..

min

iii

K

i

L

ii

KLfy

ts

KwLwC





        (24) 

 assuming that producers utilise two inputs, capital and labour, with prices  and  

respectively to produce a given level of a single output. To explore the optimal solution 

for (24), the Lagrangian form is required, ie: 

K

iw
L

iw

)),(( iii

K

i

L

i KLfyKwLwE          (25) 

where λ is the Lagrangian multiplier. Combining the first order conditions resulting from 

solving equation (25) yields: 

 
5
 Scale efficiency for all units is always equal to one, and thus scale efficiency change is equal to zero. 
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which provides the structural relationship that links input prices to production 

characteristics. Note that due to the duality theory, the same relationship applies even 

if the producer is assumed to be output maximising.   

For the simulation experiments that assume the Cobb-Douglas function specified in 

(17), equation (26) becomes: 
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where α is the output elasticity of labour, β is the output elasticity of capital,  and  

are the prices of capital and labour respectively for unit i in time t. 
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For the simulation experiments that assume the piecewise-linear function specified in 

(18), equation (27) becomes:  
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w
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           (28) 

where αj is the output elasticity of labour for the jth ‘piece’ of the piecewise linear 

function, βj is the output elasticity of capital for the jth ‘piece’ of the piecewise linear 

function and  and  are the prices of capital and labour respectively for unit i in 

time t. 

K

itw
L

itw

Note that this analysis and (26) specifically assume that allocative inefficiency, is either 

zero or time-invariant for each assessed unit.  

Given the above, input prices are generated using the following approach: 

– First, prices for labour that are unique for each unit are generated for the first 

period of the analysis as random draws from a uniform distribution (U(0,0.1]). 

– These values are then scaled by a random, normally-distributed number to 

generate values for the subsequent periods, similar to the approach used for the 

generation of the input quantities. As with the input quantities, the experiments test 
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– (27) or (28) are then used to calculate the true price of capital input, depending on 

whether the simulation experiments assume a Cobb-Douglas or a piecewise linear 

production function respectively. Note that the true price of capital is not 

observable by the researcher and as such, it is not used directly in the simulation 

experiments (this is discussed in more detail below). 

Next, output prices are generated by equating total revenues to total costs: 

it

L

itit

K

ititit LwKwYp *          (29) 
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it

it
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itit

K

it
it

Y

LwKw
p


         (30) 

where  is the price of output of unit i in period t and is the efficient level of output 

of unit i in period t. By using the efficient level of output in equations (29) and (30), the 

analysis explicitly assumes that only the producers that operate on the frontier are able 

to fully recover their total costs; this way, the effects of technical inefficiency can be 

linked to total costs and revenues. Note that the above does not mean that an efficient 

producer achieves zero profits. Rather, the price of capital includes an element 

commonly referred to as the ‘user cost of capital’, which ensures that an efficient 

producer receives an ‘appropriate’ return on the capital invested (ie achieves a 

‘normal’ level of profits). By extension, an inefficient producer will receive a lower 

return of capital. Also note that this analysis assumes that no producer has sufficient 

market power to generate ‘above normal’ profits.     

itp *

itY

The data generation process described above is fully consistent with the economic 

theory of production, but unfortunately produces data, and specifically data for the 

price of capital inputs, that are not available in the majority of real life applications and 

certainly within the bounds of the National Accounts data. In the majority of real-life 

situations, the ‘user cost of capital’, which is a component necessary for the calculation 

of the price of capital, is not observable; as such the real price of capital cannot be 

measured with certainty. So to calculate the full price of capital, most GA applications 

(see for example OECD (OECD, 2001) and O'Mahony et al. (O'Mahony & Timmer, 

2009)) adopt an endogenous ‘user cost of capital’, which is calculated residually. This 
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is achieved by setting capital compensation (ie the cost of capital) to be equal to Value 

Added (which is equivalent to revenue in the setting of these simulations) minus the 

labour compensation (ie the cost of labour). Since the quantity of capital can be 

estimated using national account data, the price of capital based on an endogenous 

‘user cost of capital’ can be derived by: 

it

it

L

itititGAK

it
K

LwYp
w


,         (31) 

So, to ensure that the constructed data used for the simulations are similar to what is 

available in real-life applications, the analysis also uses this ‘GA-adjusted’ price of 

capital ( ) to generate GA productivity change estimates. This modification 

ensures that input shares add up to one and thus allows the use of GA in such a way 

that is consistent with EU KLEMS and the methodology proposed by the OECD.   

GAK

itw
,

Finally, in a very few cases in the simulations, the cost of labour could exceed total 

revenue, and as such the GA-adjusted price of capital is negative. Although negative 

capital prices are not inconsistent with theory (Berndt & Fuss, 1986), they are 

incompatible with the standard GA framework, since they result in negative capital 

shares. To avoid this, the analysis follows the EU KLEMS practice of setting all 

instances of negative prices to zero.  

2.3 The simulation experiments 

As mentioned in the introduction, the aim of this analysis is to assess the impacts to 

the accuracy of the produced productivity change estimates from GA and a number of 

frontier-based approaches when the underlying data do not adhere to the perfect 

competition assumptions. To do so, elements of both technical inefficiency and 

measurement error (noise) are gradually introduced to the production function used to 

generate the simulated output. More specifically, different experiments are undertaken 

assuming two different levels of technical inefficiency: ‘average’ levels ( ) 

and ‘higher’ levels ( ) and three different levels of noise: zero noise 

(

)7/1(~ Expuit

)2/1(~ Expuit

0it for all i and t), ‘modest’ noise relative to inefficiency ( )05.0,0(~ Nit ) and 

‘extensive’ noise relative to inefficiency ( )2.0,0(~ Nit ). 

This paper also examines the impact of functional form misspecification in the 

estimates derived from the parametric approaches and GA; as noted in section 2.2, 
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this is achieved by subdividing the simulation experiments into two sets. Those in the 

first set (denoted as S1) use the data generating process that assumes a Cobb-

Douglas production function, while those in the second set (denoted as S2) use the 

data generating process that assumes a piecewise linear production function. 

Lastly, this paper examines the effects of input and price volatility from one period to 

the next; this is achieved by generating a new set of data for each simulation 

experiment which is based on a more volatile scaling factor (default scaling factor is 

randomly generated and follows N(0,0.10), while the more volatile scaling factor 

follows N(0,0.25)). The way all of the above parameters enter into the production 

function is described in detail in section 2.2. As a reminder, all data generated come 

from production functions that display constant returns to scale and also include and 

element of time-invariant technical change (which corresponds to approximately 1% 

p.a. increase in output). 

Table 1: Simulation experiments 

 Production function Technical inefficiency Noise Input and price Volatility assumptions 

S1.1 Cobb-Douglas ‘average’ levels  zero both ‘default’ and ‘higher’ volatility 

S1.2 Cobb-Douglas ‘higher’ levels  zero both ‘default’ and ‘higher’ volatility 

S1.3 Cobb-Douglas ‘average’ levels  ‘extensive’  both ‘default’ and ‘higher’ volatility 

S1.4 Cobb-Douglas ‘average’ levels  ‘modest’  both ‘default’ and ‘higher’ volatility 

S2.1 Piece-wise linear ‘average’ levels  zero both ‘default’ and ‘higher’ volatility 

S2.2 Piece-wise linear ‘higher’ levels  zero both ‘default’ and ‘higher’ volatility 

S2.3 Piece-wise linear ‘average’ levels  ‘extensive’  both ‘default’ and ‘higher’ volatility 

S2.4 Piece-wise linear ‘average’ levels  ‘modest’  both ‘default’ and ‘higher’ volatility 

S2.5 Piece-wise linear ‘higher’ levels  ‘extensive’  both ‘default’ and ‘higher’ volatility 

S2.6 Piece-wise linear ‘higher’ levels  ‘modest’  both ‘default’ and ‘higher’ volatility 

 

It should also be mentioned that the original analysis also tested whether the inclusion 

of fully efficient units would have any impact on the summary accuracy measures6; the 

analysis found that the accuracy measures from the simulations which included fully 

efficient units are almost indistinguishable from the base case and thus these results 

are not reported in this paper.   

                                                 
6
 The data generation methodology implemented for these simulations ensures that no unit is fully, ie 100%, technically efficient.  
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2.4 Measures of accuracy 

The productivity change estimates produced by each approach are compared to the 

true rate of productivity change (derived by (23)). Three different measures are 

employed to judge the accuracy of the estimates under each approach: 

The mean absolute deviation (MAD) of productivity change, given by: 





5,

1,1

/
n

ti

EST

it

TRUE

it NTFPTFPMAD      (32) 

where  is true productivity change and  is the estimated productivity 

change derived from the approach under examination. The MAD measure provides a 

robust central estimate of the overall accuracy of each approach, regardless of the 

sign of the deviation between the true and the estimated value. Lower MAD scores 

represent better overall accuracy. 

TRUE

itTFP
EST

itTFP

The mean square error (MSE) of productivity change, given by: 


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it
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The MSE measure plays a complementary role to the MAD measure, since it gives 

more weight to larger deviations and thus provides a better picture of ‘extreme’ 

deviation. Lower MSE scores represent better overall accuracy. 

The mean absolute deviation of the 25th percentile (‘top’ MAD or TMAD) of 

productivity change, which is the MAD of the top 25% of observations when sorted in 

descending order according to the absolute deviation from the true value. In other 

words, the analysis calculates the absolute deviation of all observations and then takes 

into account only the top 25% of those, in order to calculate the TMAD measure. This 

results in a measure that is quite similar to the MSE measure, with the notable 

exception that it uses the same units as the MAD measure (absolute deviations rather 

than squared deviations), and is thus easier to interpret and the fact that it provides a 

clearer indication of the maximum deviation. As is the case with both MAD and MSE 

measures, lower TMAD scores represent more accurate estimates.  

In addition to calculating the above measures, the analysis also included statistical 

testing to determine whether the pair-wise differences in those measures between 

 18



approaches are statistically significant, for all combinations7. Both standard pair-wise 

Student’s t-tests (assuming unequal variance) and the signed-rank tests were used for 

this purpose.  

3 Results 

Tables 1-8 provide a summary of the three main accuracy measures for all of the 

assessed approaches, as well as the relative accuracy rankings of each approach, 

taking into account the results of the statistical tests for the difference in mean 

accuracy estimates8.  

[insert tables 1-4 here] 

3.1 S1 simulation experiments 

In general, the analysis found that the most accurate approaches in the simulation 

experiments that adopted a Cobb-Douglas production function are the parametric 

approaches, ie COLS when measurement error was not included in the analysis and 

SFA when measurement error was present (with one exception discussed below). This 

is not an unexpected result, since the parametric models that are ranked highest in 

each experiment are perfectly specified, in that they utilise the same functional form as 

the adopted production function and, in the case of the best-performing SFA models, 

assume the correct distribution for the inefficiency term.  

Regarding the two non-parametric, determinist approaches, the overall performance of 

GA was perhaps surprisingly robust, even if the approach displayed the worst (or joint 

worst accuracy) in the majority of the experiments. In most cases, the difference in 

accuracy scores between GA and DEA was quite small and for the experiments that 

included measurement error, the difference was statistically insignificant. The analysis 

however identified some conditions where the accuracy of the GA quickly deteriorates: 

– As technical inefficiency becomes more prevalent in the data that include no 

measurement error, the accuracy of the GA estimates rapidly deteriorates. In the 

S1.2 experiment, GA was ranked last, while both COLS and DEA were assessed 

to be substantially more accurate.  

                                                 
7
 For example, the average MAD score of the DEA estimates over all simulation runs in a single experiment is tested against the 

average MAD score of the GA, COLS and SFA (where applicable) estimates. 
8 In order to put the various MAD and TMAD measures into context, note that the data generation process adopted, both for the 

Cobb-Douglas and the piecewise-linear function, results in an average true productivity change of 2% p.a. but with a standard 
deviation of approximately 20%. 
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– When volatility in inputs and input prices increases from one period to the next, the 

accuracy of the GA deteriorates at a faster rate that the other approaches. This is 

the case  in almost all of the S1 experiments (the exception is experiment S1.4, 

which includes both relatively high technical inefficiency and measurement error 

levels, where the overall accuracy of all approaches considered does not change 

when volatility is increased).  

As for the performance of DEA, the analysis raises three major points: 

– DEA is the most accurate approach based on the MAD measure when technical 

inefficiency is found at relatively high levels in the data that also do not include any 

measurement error. This is a rather surprising result, since as was mentioned 

above, the COLS model that is also assessed in the relevant experiment (S1.2) is 

perfectly specified, given that the S1.2 data are constructed using a Cobb-Douglas 

functional form and contain no measurement error. And indeed, the COLS 

approach is more accurate than DEA in this experiment based on the TMAD 

measure and equally accurate based on the MSE measure, which suggests that 

the performance of COLS improves for the units that occupy outlying positions in 

the dataset. 

– The accuracy of the DEA-based estimates decreases at a lower pace relative to 

the accuracy of the other deterministic approaches when inputs and input prices 

become more volatile from one period to the next, in the experiments that do not 

include any measurement error (ie S1.1 and S1.2). 

In addition to the points made above, some more general comments can be made 

when considering the analysis as a whole:  

– When technical inefficiency is modest, there is no measurement error and the 

input levels and prices between subsequent periods are relatively stable (S1.1 

experiment), all approaches provide quite accurate estimates of true productivity 

change.  

– Increased volatility in inputs and prices in subsequent periods adversely affects 

accuracy of all approaches, when no measurement error is included in the 

constructed dataset. The DEA estimates are the least affected, while the GA 

estimates are the most affected. Interestingly, when measurement error is 

introduced in the analysis, the increased volatility appears to have very little 
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– When measurement error is present, the SFA approaches provide the most 

accurate estimates. However, when measurement error is more severe, even the 

best performing SFA model demonstrates quite large deviations from the true 

productivity change values (MAD scores of approximately 12.5%). In addition, 

when measurement error is more moderate, the gains in accuracy achieved by the 

SFA models are quite modest compared to the deterministic approaches (eg GA 

and DEA MAD scores are 5.8%, while the best performing SFA model has a MAD 

score of 5% in S1.3). 
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Table 5: Summary accuracy results for the S1 experiments, default volatility 

 Measure GA COLS DEA 
SFA 

(exponential) 
SFA (half-
normal) 

MAD 0.90% 0.40% 0.70%   

MSE 0.21 0.04 0.2   S1.1: CRS CD, 12% 
average inefficiency, no 
noise TMAD 4.10% 1.30% 4.10%   

MAD 2.80% 1.70% 1.20%   

MSE 1.57 0.62 0.46   S1.2: CRS CD, 32% 
average inefficiency, no 
noise TMAD 10.10% 4.80% 5.90%   

MAD 22.50% 22.40% 22.50% 12.50% 13.70% 

MSE 79.52 78.87 79.08 27.8 32.13 S1.3: CRS CD, 12% 
average inefficiency, 
noise~N(0,0.2) TMAD 62.00% 61.70% 61.40% 40.00% 41.30% 

MAD 5.80% 5.70% 5.80% 5.00% 5.40% 

MSE 5.3 5.06 5.34 4.04 4.64 S1.4: CRS CD, 12% 
average inefficiency, 
noise~N(0,0.0.05) TMAD 16.30% 15.90% 16.20% 14.20% 15.10% 

 

Table 6: Accuracy rankings for the S1 experiments, default volatility
9
 

 Measure GA COLS DEA 
SFA 

(exponential) 
SFA (half-
normal) 

MAD 3 1 2   

MSE 3 1 2     S1.1: CRS CD, 12% 
average inefficiency, no 
noise TMAD 2 1 2     

MAD 3 2 1   

MSE 3 1 1     S1.2: CRS CD, 32% 
average inefficiency, no 
noise TMAD 3 1 2     

MAD 4 4 4 1 2 

MSE 4 4 4 1 2 S1.3: CRS CD, 12% 
average inefficiency, 
noise~N(0,0.2) TMAD 4 4 4 1 2 

MAD 4 3 4 1 2 

MSE 4 3 4 1 2 S1.4: CRS CD, 12% 
average inefficiency, 
noise~N(0,0.0.05) TMAD 4 3 4 1 2 

 

                                                 
9
 The rankings take into consideration the results of the statistical tests for the difference in mean accuracy scores 
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Table 7: Summary accuracy results for the S1 experiments, increased volatility 

 Measure GA COLS DEA 
SFA 

(exponential) 
SFA (half-
normal) 

MAD 2.50% 0.80% 1.20%   

MSE 1.7 0.16 0.5   S1.1: CRS CD, 12% 
average inefficiency, no 
noise TMAD 11.80% 2.70% 6.10%   

MAD 7.60% 3.00% 2.20%   

MSE 12.92 1.92 1.99   S1.2: CRS CD, 32% 
average inefficiency, no 
noise TMAD 30.60% 9.30% 12.70%   

MAD 22.90% 22.50% 23.10% 12.50% 13.90% 

MSE 82.76 79.75 83.16 28.11 33.43 S1.3: CRS CD, 12% 
average inefficiency, 
noise~N(0,0.2) TMAD 63.90% 62.50% 63.20% 40.00% 42.00% 

MAD 6.30% 5.80% 6.00% 5.00% 5.40% 

MSE 6.53 5.17 5.66 3.96 4.67 S1.4: CRS CD, 12% 
average inefficiency, 
noise~N(0,0.0.05) TMAD 18.5% 15.9% 16.7% 14.1% 15.2% 

 

Table 6: Accuracy rankings for the S1 experiments, increased volatility
10

 

 Measure GA COLS DEA 
SFA 

(exponential) 
SFA (half-
normal) 

MAD 3 1 2   

MSE 3 1 2   S1.1: CRS CD, 12% 
average inefficiency, no 
noise TMAD 3 1 2   

MAD 3 2 1   

MSE 3 1 2   S1.2: CRS CD, 32% 
average inefficiency, no 
noise TMAD 3 1 2   

MAD 4 4 4 1 2 

MSE 4 4 4 1 2 S1.3: CRS CD, 12% 
average inefficiency, 
noise~N(0,0.2) TMAD 4 4 4 1 2 

MAD 5 3 4 1 2 

MSE 5 3 4 1 2 S1.4: CRS CD, 12% 
average inefficiency, 
noise~N(0,0.0.05) TMAD 5 3 4 1 2 

 

 

                                                 
10

 The rankings also take into consideration the results of the statistical tests for the difference in mean accuracy scores 
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[insert tables 5-8 here] 

3.2 Summary results for the S2 simulation experiments 

In the S2 experiments, it is the non-parametric approaches that are generally 

assessed as more accurate, with the exception of the simulations that assume 

‘extensive’ noise. This was not unexpected, given that the underlying production 

function (piecewise linear) is not a perfect match to the functional form adopted by the 

parametric approaches. The experiments however demonstrate that the effect of this 

functional form misspecification can be quite severe. For example, when no 

measurement error is present, the COLS Cobb-Douglas specification displays MAD 

scores that are at least twice as large as those displayed by the DEA estimates and 

the discrepancy in MSE scores is significantly larger (at least three times higher). 

Furthermore, the overall accuracy of the COLS specification that adopts a translog 

functional form is even worse; in almost all experiments, the COLS translog 

specification was ranked last in terms of overall accuracy. The SFA translog models 

however do perform relatively better, compared to their COLS counterparts, especially 

in the simulations that assume ‘modest’ noise levels. In the ‘extensive’ noise 

simulations do the Cobb-Douglas SFA models perform relatively better, but the 

difference in MAD scores is quite small (albeit statistically significant), relative to the 

overall accuracy of the estimates.  

Another important issue revealed by the S2 simulations is the relative 

underperformance of the SFA models under conditions of ‘modest’ noise; in both such 

experiments (ie S2.3 and S2.6), GA and DEA, both deterministic approaches, perform 

better that the stochastic models. In addition, the Cobb-Douglas SFA models that 

(incorrectly) assume that the inefficiency is half-normally distributed is more accurate 

than the correctly specified Cobb-Douglas SFA exponential model, again under 

conditions of ‘modest’ noise. Only when measurement error is more severe (is the 

standard deviation is increased from 0.05 to 0.20), is the correctly specified SFA 

(exponential) model deemed to be more accurate. Its should be noted however that 

the overall accuracy of  all approaches examined under these conditions (ie 

‘extensive’ noise) is relatively low (the better performing SFA models display MAD 

scores of 14.6% and 22.7% in experiments S2.4 and S2.5 respectively). This was also 

the case for the S1 experiments and suggests that additional research would be 

required to identify approaches that can produce robust estimates under these 

seemingly adverse conditions.  
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It should also be mentioned that the analysis encountered some difficulties when 

estimating the SFA models using datasets that included relatively large technical 

inefficiency levels. The problem was that the skew of the residual of the affected 

models was wrong, which meant that the SFA estimation could not proceed. Although 

the analysis circumvented this issue by discarding the problematic datasets, this 

would not be a possible solution in a productivity measurement exercise utilising real 

data.     

Overall, the S2 experiments revealed that GA and DEA  provide reasonably accurate 

estimates under various conditions. In the case of GA, this is a somewhat surprising 

result, given that the approach does not acknowledge the presence of technical 

inefficiency, which is a not inconsiderable component of productivity change in these 

experiments. However, DEA is revealed to be the more accurate approach of the two, 

and, one could argue, the more accurate approach overall, in the S2 experiments.  

Another advantage of the DEA-derived estimates is their apparent robustness under 

conditions of increased volatility in inputs and prices. The S2 simulations showed that 

increased volatility reduces the accuracy of all estimates, but to a different degree for 

each approach; the same experiments also showed that the DEA-based estimates are 

in the majority of cases the ones that are least affected.  

Table 5: Summary accuracy results for the S2 experiments, default volatility 

 Measure GA COLS 
COLS 

(translog) DEA SFA  
SFA 

(translog) 
SFA (half-
normal) 

MAD 0.9% 2.4% 2.9% 0.8%    

MSE  0.20   1.08   70.31   0.22     

S2.1: CRS PWL, 
12% average 
inefficiency, no 
noise TMAD 4.1% 8.2% 21.6% 4.1%    

MAD 2.2% 2.4% 4.9% 1.1%    

MSE  1.09   1.20   132.12   0.39     

S2.2: CRS PWL, 
32% average 
inefficiency, no 
noise TMAD 8.8% 8.8% 32.1% 5.4%    

MAD 5.8% 6.3% 6.5% 5.8% 7.1% 6.1% 6.4% 

MSE  5.33   6.24   7.81   5.23   9.11   6.12   6.96  

S2.3: CRS PWL, 
12% average 
inefficiency, 
noise~N(0,0.05) TMAD 16.2% 17.6% 20.6% 16.0% 21.6% 17.7% 18.5% 

MAD 22.9% 23.0% 23.4% 22.8% 14.3% 15.4% 16.6% 

MSE  86.21   86.93   95.96   85.38  38.41   43.70   49.76  

S2.4: CRS PWL, 
12% average 
inefficiency, 
noise~N(0,0.2) TMAD 67.7% 67.8% 71.3% 67.4% 48.8% 51.4% 52.2% 

MAD 23.6% 23.6% 24.8% 23.4% 21.5% 22.2% 22.9% 

MSE  91.33   91.50   148.54   89.94  76.76   82.49   86.35  

S2.5: CRS PWL, 
32% average 
inefficiency, 
noise~N(0,0.2) TMAD 69.1% 69.5% 82.0% 68.7% 63.6% 66.4% 67.4% 

MAD 6.2% 6.2% 8.7% 5.8% 7.1% 6.5% 6.2% 

MSE  6.09   6.12   287.07   5.33   8.56   6.77   6.16  

S2.6: CRS PWL, 
32% average 
inefficiency, 
noise~N(0,0.05) TMAD 17.5% 17.4% 47.2% 16.3% 20.4% 18.6% 17.4% 
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Table 6: Accuracy rankings for the S2 experiments, default volatility
11

 

 Measure GA COLS 
COLS 

(translog) DEA SFA  
SFA 

(translog) 
SFA (half-
normal) 

MAD  1   3   4   1     

MSE  1   3   4   1     

S2.1: CRS PWL, 
12% average 
inefficiency, no 
noise TMAD  1   3   4   1     

MAD  2   3   4   1     

MSE  2   3   4   1     

S2.2: CRS PWL, 
32% average 
inefficiency, no 
noise TMAD  2   2   4   1     

MAD  1   5   5   1   7   3   5  

MSE  2   4   6   1   7   3   4  

S2.3: CRS PWL, 
12% average 
inefficiency, 
noise~N(0,0.05) TMAD  1   4   6   1   7   4   4  

MAD  5   5   7   4   1   2   3  

MSE  5   5   7   4   1   2   2  

S2.4: CRS PWL, 
12% average 
inefficiency, 
noise~N(0,0.2) TMAD  5   5   7   5   1   2   2  

MAD  5   5   7   3   1   2   3  

MSE  5   5   7   3   1   2   3  

S2.5: CRS PWL, 
32% average 
inefficiency, 
noise~N(0,0.2) TMAD  5   5   7   3   1   2   3  

MAD  3   3   7   1   6   5   3  

MSE  3   3   7   1   6   5   3  

S2.6: CRS PWL, 
32% average 
inefficiency, 
noise~N(0,0.05) TMAD  3   3   7   1   6   5   3  

 
Table 7: Summary accuracy results for the S2 experiments, increased volatility 

 Measure GA COLS 
COLS 

(translog) DEA SFA  
SFA 

(translog) 
SFA (half-
normal) 

MAD 2.5% 6.8% 9.0% 1.6%    

MSE 1.77 8.64 20.57 0.96    

S2.1: CRS PWL, 
12% average 
inefficiency, no 
noise TMAD 12.4% 23.4% 35.5% 7.1%    

MAD 5.7% 6.8% 17.4% 2.2%    

MSE 8.22 9.00 73.56 1.62    

S2.2: CRS PWL, 
32% average 
inefficiency, no 
noise TMAD 25.6% 24.2% 63.6% 10.8%    

MAD 6.3% 8.9% 11.4% 5.9% 8.9% 11.4% 8.6% 

MSE 6.54 13.40 27.97 5.47 14.59 29.43 13.08 

S2.3: CRS PWL, 
12% average 
inefficiency, 
noise~N(0,0.05) TMAD 18.7% 27.6% 38.8% 16.5% 29.0% 39.8% 27.6% 

MAD 23.5% 24.4% 26.6% 23.3% 14.7% 19.3% 17.3% 

MSE 90.67 97.77 116.72 89.43 41.05 67.99 54.33 

S2.4: CRS PWL, 
12% average 
inefficiency, 
noise~N(0,0.2) TMAD 68.9% 71.1% 78.3% 68.4% 50.5% 61.7% 54.5% 

MAD 23.9% 23.9% 31.8% 22.9% 21.7% 28.1% 23.3% 

MSE 94.84 94.30 177.16 87.49 78.90 140.91 89.70 

S2.5: CRS PWL, 
32% average 
inefficiency, 
noise~N(0,0.2) TMAD 72.1% 71.4% 95.4% 69.1% 65.8% 87.6% 70.0% 

MAD 8.4% 9.1% 19.1% 6.2% 9.8% 14.6% 9.0% 

MSE 13.00 13.72 81.15 6.56 16.34 49.48 13.71 

S2.6: CRS PWL, 
32% average 
inefficiency, 
noise~N(0,0.05) TMAD 28.5% 27.7% 66.1% 18.9% 29.6% 53.1% 28.2% 
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Table 6: Accuracy rankings for the S2 experiments, increased volatility
12

 

 Measure GA COLS 
COLS 

(translog) DEA SFA  
SFA 

(translog) 
SFA (half-
normal) 

MAD        2              3                 4         1     

MSE        2              3                 4         1     

S2.1: CRS PWL, 
12% average 
inefficiency, no 
noise TMAD        2              3                 4         1     

MAD        2              3                 4         1     

MSE        2              3                 4         1     

S2.2: CRS PWL, 
32% average 
inefficiency, no 
noise TMAD        3              2                 4         1     

MAD        2              4                 6         1              4              6               4  

MSE        2              4                 6         1              4              6               4  

S2.3: CRS PWL, 
12% average 
inefficiency, 
noise~N(0,0.05) TMAD        2              4                 6         1              4              6               4  

MAD        5              6                 7         4              1              3               2  

MSE        5              6                 7         4              1              3               2  

S2.4: CRS PWL, 
12% average 
inefficiency, 
noise~N(0,0.2) TMAD        4              6                 7         4              1              3               2  

MAD        4              4                 7         2              1              6               4  

MSE        4              4                 7         2              1              6               4  

S2.5: CRS PWL, 
32% average 
inefficiency, 
noise~N(0,0.2) TMAD        4              4                 7         2              1              6               4  

MAD        2              3                 7         1              5              6               3  

MSE        3              3                 7         1              5              6               3  

S2.6: CRS PWL, 
32% average 
inefficiency, 
noise~N(0,0.05) TMAD        3              3                 7         1              5              6               3  
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4 Summary and recommendations  

The major findings of this simulation study on the accuracy of the productivity change 

estimates are summarised below: 

– Deterministic approaches perform adequately even under conditions of (modest) 

measurement error. 

– When measurement error becomes larger, the accuracy of all approaches 

(including SFA) deteriorates rapidly, to the point that their estimates could be 

considered unreliable for policy purposes. 

– Functional form misspecification has a severe negative impact on the accuracy of 

all parametric approaches.  

– The SFA models that adopt a translog specification appear to be more accurate in 

general than the Cobb-Douglas SFA models when the underlying (true) 

production function is piecewise linear. The opposite is true for the COLS models, 

is the Cobb-Douglas COLS models are more accurate than their translog 

counterparts in such circumstances.   

– Misspecification of the inefficiency distribution in the SFA models does not appear 

to have a significant effect on the overall accuracy of said approach. 

– Increased volatility in inputs and prices from one period to the next adversely 

affects the accuracy of all approaches, in almost all experiments. The DEA 

estimates are the least affected, while the GA estimates are the most affected. 

This analysis demonstrates that no productivity change measurement approach has 

an absolute advantage over another, but rather under some specific circumstances, a 

specific approach is likely to be more accurate than its counterparts. The analysis also 

demonstrates that frontier-based approaches can usually produce at least as 

accurate, and in most cases more accurate, productivity change estimates than the 

more traditional GA approach. And given that high quality databases on measures of 

economic growth, employment creation and capital formation are becoming 

increasingly available (EU KLEMS, 2008), the adoption of frontier-based approaches 

when measuring aggregate productivity growth can only help improve our 

understanding of this elusive and complex topic.  
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