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1 Introduction

Usually, during periods of financial distress, there is a nearly contemporaneous
increase in financial market volatilities in a multitude of countries. Literature
on volatility spillovers claims that one reason for such global and simultaneous
volatility clusters is transmission of volatility from one country to the others.
Since the seminal papers by Engle, Ito, and Lin (1990) and by Hamao, Masulis,
and Ng (1990), volatility spillovers have been extensively studied and, especially,
different GARCH model specifications have been popular.1

A quintessential research question has been: Does a rise in the price volatility
in one country affect the volatilities in other countries? An alternative hypoth-
esis is that the volatilities are country specific phenomenons and determined
by countries’ fundamentals. Most of the empirical studies find evidence of the
inter-market dependencies in market volatilities. However, in a contrast to the
abundance of empirical studies, the theoretical literature on causes of these
volatility dependencies is much more limited (Soriano and Climent (2006)).
Literature is especially scarce on what it comes to papers trying to estimate
theoretical models. It is there where this papers provides its contribution.

In this paper I present a method to estimate the theoretical signal-extraction
model of King and Wadhwani (1990). In the model, the transmission of volatil-
ity is ultimately a consequence of information asymmetries between rational
investors; uninformed investors use observable price changes as signals in their
efforts in trying to infer informed investors’ private information. King and Wad-
hwani were unable to identify–and hence to estimate–their model. And, to the
best of my knowledge this is the first paper that tries to estimate it.

The estimation is based on the idea of interpreting the King and Wadhwani
model as a structural vector autoregressive (SVAR) model. Then, by using
a recent identification method by Lanne and Lütkepohl (2010), we are able
estimate the model’s volatility transmission parameters. However, in order to
be able to use this identification method, we need to augment the King and
Wadhwani model with an additional assumption concerning the distribution
of the error terms. As it is discussed in the paper, this assumption is fully
consistent with the assumptions of the King and Wadhwani model.

Then, based on the theoretical model and the applied identification method,
a new test for the volatility transmissions is derived. Along the way, an issue
with the Lanne and Lütkepohl identification method is discussed. More pre-
cisely, it is shown that the identification method, as such, only guarantees a
partial estimation of the structural model parameters. This, however, is shown
to be enough for the validity of our volatility transmission test. But, the full es-
timation of the parameters requires additional information. These requirements
are also discussed, and a method to for the full estimation is proposed.

This paper most closely relates to the few empirical studies that try to
estimate theoretical models explaining the volatility spillovers. Especially, Lin,
Engle, and Ito (1994) present and estimate a signal-extraction model that closely
resemble that of King and Wadhwani.2 However, they consider stock markets

1Soriano and Climent (2006) provide an extensive survey on volatility transmission litera-
ture. Also, Hong (2001) shorty reviews this literature. Savva (2009) reviews the most popular
GARCH model specifications in use.

2Actually, Lin, Engle, and Ito (1994) present two models that they call aggregate-shock
model and signal-extraction model, where the first one is technically closer to the King and
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(New York and Tokyo) that do not overlap in trading. Once, one is interested in
analyzing volatility transmission across overlapping markets with simultaneous
trading hours, for example inside the eurozone, the Lin, Engle and Ito estimation
method is not applicable as such.

In addition, this paper is related to the fast growing literature on financial
contagion. The King and Wadhwani model can be interpreted as a contagion
model. This relation is shortly explored later. Also, the paper contributes
to the literature on SVAR model identification as it is pinpointed on which
assumption the uniqueness of the Lanne and Lütkepohl identification method
especially relies on. We also consider an exogenous source of information that
can help us to justify a given assumption.

Finally, two prevailing themes in the finance literature concerning the ef-
fects of news (or information) on stock markets are (1) transmission on infor-
mation across national borders and (2) filtering of news in order to extract
relevant information. This paper encompasses both of these two themes. In
the related literature, Wongswan (2006) shows that information from major
economies (the United States and Japan) gets transmitted to smaller economies
(Korea and Thailand) and has short-lived effect on the stock market volatilities
there. The empirical results of this paper show that information gets trans-
mitted also between small countries stock markets. Concerning the filtering of
news, Groß-Klußmann and Hautsch (2011), when analyzing effects of randomly
arriving company news, find that only relevant information (news) affects the
volatility of company’s shares. From the point of view of this paper, especially
interesting in their analysis is that the news data they use is filtered in real time
by a software that uses linguistic patterns to label news either positive, neutral
or negative, and either relevant or not. Their study illustrates the important
difference between a piece of news as such and its information content. That
difference is an essential theme in the King and Wadhwani model.

The rest of the paper is organized as follows. Section 2 presents the original
King and Wadhwani model. Section 3 discusses the additional assumptions that
we need to make in order to be able to estimate the model. The section also
shows how to test for the volatility transmission effects and how, actually, to
estimate the model. As an empirical application, section 4 tests for the volatility
transmissions and fits the model to the eurozone stock market data. Finally,
section 5 concludes. Appendices provide both formal proofs of the results that
are used in section 3 and details on the data that is used in section 4.

2 Model of volatility transmissions

The King and Wadhwani (1990) model of volatility transmissions (henceforth
the KW model) is a variant of the Grossman and Stiglitz (1980) model on the
impossibility of prices in a competitive equilibrium to fully reveal all informa-
tion. Before presenting the general version of the KW model, the two country
case is considered. The model exposition follows quite closely that of the original
article.

Wadhwani model. Basically the difference of their two models comes from assuming news
arrival process either possessing conditional heteroskedasticity or not. Their analysis supports
there being ARCH-effects in news arrival process.
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2.1 The KW model with two countries

Assume two countries with one stock market in each, and risk-neutral investors
in both countries with no trading in stocks across the borders3. It is assumed
that both markets are continuously open around the clock. The model also
assumes that news in both countries consists of two components: systematic in-
formation u that globally affects the equity values, and idiosyncratic information
v that has relevance only to local equity values.

Both of these information components come in two different types, depending

on whether the piece of information is observed in country 1 or 2. Hence, if η
(i)
t

denotes the news in country i at time t, we have the following decomposition

η
(i)
t = u

(i)
t + v

(i)
t (1)

for i = 1, 2. Superscripts denote in which country, 1 or 2 respectively, the in-
formation is observed4. All the four information variables are assumed to be
uncorrelated of each others and follow white noise processes. The assumption
that u(1) and u(2) are uncorrelated implies a restriction that news affecting stock
market valuations in both countries are never (correctly) interpreted simulta-
neously but always only in one of the countries.5 Hence in the model domestic
investors are always the informed ones whereas the foreign investors are unin-
formed (section 2.1.1 discusses the assumption on information asymmetry).

A change in the stock market indexes between time t− 1 and t is a function
of the news released during that time period. Given that foreign investors
never directly observe the domestic systematic information, they need to form
expectations. Let Ei denote the expectation operator of country i investors
conditional on all information observed in market i at time t. The stock market
price indexes will then follow the following equations:

∆S
(1)
t = u

(1)
t + α12E1

(

u
(2)
t

)

+ v
(1)
t , (2)

3According to the authors, if we allowed risk neutral investors with possibility of arbi-
trage between national stock markets, in the equilibrium all information would be revealed.
Prohibiting international trade in stocks allows a non-fully-revealing equilibrium (equilibrium
with information asymmetries) in a model with risk-neutral investors. This simplifies the
model’s structure, making the price changes equations linear. Alternatively, one could permit
international trade in stocks and obtain the non-fully-revealing equilibrium by assuming risk-
averse investors. This would however complicate the model structure with little additional
insights.

4Decomposition 1 is similar to that of Grossman and Stiglitz (1980) who assume that the
return u of a risky asset is decomposable to u = θ + ε. Both θ and ε are random variables

but θ is observable at a cost c and ε is unobservable. In the KW model u
(i)
t –and hence also

v
(i)
t –is always observable to the investors of country i but never to those of country j.

5In the era of modern information technology and international news agencies, it might feel
hard to accept an assumption that foreign investors would not be able to observe information
as well as domestic investors–surely news are widespread almost instantaneously. King and
Wadhwani point out that there is a difference between news in the media and information as
an assessment on consequences of the news to the equity valuations. This type of valuation
assessment is not costless and some investors might be better prepared to perform it than
others who may find it less costly to try to infer the new valuations from the market price
changes. Alternatively, one could argue that some (institutional) investors are specialized to
specific regions and, hence, possess better technical and informational capabilities to infer
relevant information from regional specific news. In such a case–in a contrast to what is said
in the main text, it would probably be large foreign investors who are better equipped to
analyze information. This is exactly what Bailey, Mao, and Sirodom (2007) argue based on
analysis on Thai and Singaporean stock markets.
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∆S
(2)
t = α21E2

(

u
(1)
t

)

+ u
(2)
t + v

(2)
t , (3)

where ∆S
(i)
t denotes the percentage return in country i stock market between

time t − 1 and t measured by the change in the logarithm of the price index.
Parameter αij controls for the importance of systemic information revealed in
market j on to the equity prices in market i.

It is assumed that the only information available to the foreign investors
about the domestic systematic information is the contemporaneous domestic
price change. For example, consider the market 1 investors forming their expec-
tations on market 2 systematic information u(2). Although the unconditional

expectation E(u
(2)
t ) is zero,

E1

(

u
(2)
t

)

6= 0

conditional on a nonzero realization of ∆S
(2)
t . The price change provides in-

formation to market 1 investors about the information observed in market 2.
However, because the price change ∆S

(2)
t is a function of both systematic in-

formation u(2) and idiosyncratic information v(2), the signal to market 1 is con-
taminated by the country 2 idiosyncratic information. In addition, the market 1
investors understand that, simultaneously to them forming conditional expecta-

tions on u
(2)
t , the market 2 investors will form conditional expectations on u

(1)
t .

Hence, the market 1 investors need to adjust their expectations accordingly.
Symmetric reasoning applies to the market 2 investors.

The KW model assumes that the structure of the model is of common knowl-
edge. Then the following minimum-variance estimators provide then the solu-
tion to the investors’ signal extraction problem:

Ei

(

u
(j)
t

)

= λj

[

∆S
(j)
t − αjiEj

(

u
(i)
t

)]

,

where
λj = σ2

u(j)/
(

σ2
u(j) + σ2

v(j)

)

for i, j = 1, 2 and i 6= j, and σ2
x denotes the (known) variance of x. Substituting

these estimators into the equations (2) and (3) and using the combined news

η
(i)
t notation of equation (1) yields us

∆S
(1)
t = (1− α12α21λ1λ2) η

(1)
t + α12λ2∆S

(2)
t , (4)

∆S
(2)
t = (1− α12α21λ1λ2) η

(2)
t + α21λ1∆S

(1)
t . (5)

Because the α and λ parameters are not separately identifiable, let us define

βij = αijλj

for i, j = 1, 2 and i 6= j. Using this notation and solving the system of equations
(4)–(5) with respect to the price changes, we finally get the equilibrium laws of
motions for the stock market returns as a function of the combined news:

∆S
(1)
t = η

(1)
t + β12η

(2)
t , (6)

∆S
(2)
t = β21η

(1)
t + η

(2)
t . (7)
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Then, for example, the volatility of the market returns in country 1 becomes

Var
(

∆S
(1)
t

)

= σ2
η(1) + (β12)

2
σ2
η(2) . (8)

So, as long as β12 6= 0 volatility in country 2 gets transmitted to country 1.
Note that, due to the information asymmetries, it is the combined (total)

news released in market i, η
(i)
t , that affects the price index volatility in market j.

Hence, the idiosyncratic shocks v
(1)
t and v

(2)
t , that are country specific volatility

factors, get also transmitted across the borders and increase the volatility of
price changes in both countries. This is in contrast to a regime where prices
fully reveal all information–and hence there are no information asymmetries (for
details see the original paper by King and Wadhwani). With full information

the ”excess” volatility, that idiosyncratic shock v
(i)
t creates, is not transmitted

across borders.
It is worthwhile to consider what β12 = 0 would imply. Remember that

the only reason why idiosyncratic shocks get transmitted across the countries is
that we assume there being common shocks (u(i)) that affect the valuations in
both countries but are not observable by all investors. From the definition of
β12 we see that, once we assume σ2

u(2) 6= 0, β12 = 0 if and only if α12 = 0. The

”systematic” information u(2) has no effect on the equity values in the country 1
and it actually becomes country 2 specific news. Alternatively, σ2

u(2) = 0 would
also mean that news in country 2 consist only of idiosyncratic information. In
both cases, the news in country 2 has no economic value to country 1’s stock
market valuations.

The authors were not, however, able to estimate the transmission param-
eters β12 and β21. The reason is that the model in equations (6)–(7) is not

identifiable6; the variances and the covariance of ∆S
(1)
t and ∆S

(2)
t provide us

only three equations while there are four parameters (β12, β21, σ
2
η(1) , σ

2
η(2)) to be

estimated. In order to surpass this identification obstacle, in section 3, we will
augment the structural model with an assumption concerning the distribution

of the total news vector ηt = (η
(1)
t , η

(2)
t )′. As discussed more in detail at that

occasion, this assumption is consistent with the assumptions of the KW model.

2.1.1 On the assumption of information asymmetry

In the KW model it is assumed that only the domestic investors are able to
(correctly) detect the information content of news about their home country. Is
there any empirical support for such an assumption of information asymmetries
between domestic and foreign investors?

Frankel and Schmukler (1996) analyze differences in the Mexican stock mar-
ket valuations and the valuations of Mexican closed-end country funds (traded

6Although King and Wadhwani (1990) are unable to estimate their full model, they utilize
overlapping opening hours of London and New York stock exchanges to test for implications
of their model. Their structural model implies that the opening of NYSE should be visible
as a jump in the London price index as the investors (traders) in London try to infer US
(New York) specific information from the opening prices of NYSE. They find evidence of
such a jump. And, what is still more interesting and fully in-line with the assumptions of the
model, it seems that for the traders in London, more important than the main US macro news
themselves–these are released an hour before New York opens–is how the New York trades
infer these US specific news.
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in NYSE) and argue that around the Mexican devaluation in December 1994
local investors were better informed, reacted first to negative local news, than
international investors and were the first ones to turn more pessimistic in their
expectations. King, Sentana, and Wadhwani (1994) find that changes ”ob-
servable” factors summarizing information of several macroeconomic variables
explain quite poorly time-variation in covariances of national stock markets.
Much better explanation is provided by ”unobservable” common factors. The
authors propose that investor sentiment could be one unobservable common ex-
planatory variable. Then, one can speculate, that some of the variation could be
a result of time-variation in the importance the international markets (foreign
investors) put on the systematic information of a specific country. This would
lead into time-variating β coefficients of the KW model (something that is not
allowed here).

More recently, Chen and Choi (2012) analyze the stock market values of 56
Canadian companies listed both in Toronto Stock Exchange (TSX) and New
York Stock Exchange (NYSE). They find evidence of local (TSX) investors
being better informed than the foreign (NYSE) investors. This information
asymmetry, they argue, explains the small share price premiums detected in the
NYSE prices over the TSX prices of these companies. Also, Chan, Menkveld,
and Yang (2008) find evidence of information asymmetries between Chinese
and foreign investors being an explanation of the price differences between the
locally owned (A-)shares and the foreign own (B-)shares of Chinese companies.

2.1.2 The KW model as contagion model

In the KW model, because of the asymmetric information, idiosyncratic shocks
get transmitted across borders. Also, as the authors show in their paper, the
correlation between the market returns is higher in the KW model than in a
comparable model with full information. For these reasons, the authors label
the model that was presented in section 2.1 as ”contagion model”. This is
in-line with the contagion literature where many authors7 define contagion as
spreading of an idiosyncratic shock–or crisis–to other countries.

Comparable to the KWmodel, Kodres and Pritsker (2002) analyze contagion
in a informed–uniformed investor set up. As in the KW model, in their model
contagion is a consequence of uninformed investors trying to infer informed in-
vestors’ private information from price changes. One interesting insight of their
analysis is worth to emphasize: according to their analysis, the magnitude of
contagion–or volatility transmission in the KW model’s concept–depends on the
share of the informed investors over the uninformed ones. Hence, for a given
number of the uninformed investors, increasing the amount of the informed
investors, in the limit, makes contagion vanish. The intuition is that, as the
relative share of the informed investors increases, the assets prices will better
reflect their private information and this makes the price system more informa-
tive.

Both, King and Wadhwani (1990) and Kodres and Pritsker (2002), consider
the share of the informed investors over the uninformed ones as an exogenous

7For example, Kaminsky and Reinhart (2000); Kodres and Pritsker (2002); Corsetti, Peri-
coli, and Sbracia (2005); Dungey, Fry, Gonzalez-Hermosillo, and Martin (2005); Pesaran and
Pick (2007). For surveys on contagion literature, see for example Pericoli and Sbracia (2003);
Dungey, Fry, Gonzalez-Hermosillo, and Martin (2005); Dornbusch, Park, and Claessens (2000).
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variable. However, at least to some extend, due to costs of acquiring information
(examples of such costs are individual time and effort, payments for professional
analysts, and so on), some investors might actually choose to stay ignored about
macroeconomic details of a specific country. Calvo and Mendoza (2000) analyze
investors’ incentives to pay for such information. In their model an investor
has a choice either to pay a cost to learn country’s fundamentals or to remain
uninformed. In the latter case she simply tracks a generic global stock market
portfolio. Hence, the share of the uninformed investors over the informed ones
becomes an endogenous variable.

The authors show that, once there are exogenous information costs or bind-
ing institutional or legislative constraints on short-selling, it is possible that the
globalization of financial markets induces a rational investor to stay ignored
about (macroeconomic) details of any specific country. The intuition is that,
for example, the constraints on short-selling limit the opportunities of the in-
formed investors. This decreases the expected value of information which, in its
turn, decreases the incentives to pay for it. Meanwhile, however, more global
financial markets permit investors to more easily, by mimicking a generic market
portfolio, take advantage of the benefits of diversification.

2.2 Generalization of the KW model

The KW model generalizes easily to a multiple country case. All the time
following the exposition in King and Wadhwani (1990), assume n ≥ 2 markets.
Then prices in these markets are set by the following equation (comparable to
the two market case equations (2) and (3))

∆St = ηt +Aet, (9)

where ∆St is a n× 1 vector of the price changes at time t, ηt is a n× 1 vector
of the total news at time t with a typical element

η
(i)
t = u

(i)
t + v

(i)
t

depicting news released in country i, A is a n × n coefficient matrix with a
typical element αij , i, j = 1, . . . , n, and αii = 0 for all i = 1, . . . , n (all the main
diagonal elements), and finally et is a n×1 vector of the conditional expectations
on the systemic informations u(i), i = 1, . . . , n, held by agents in other markets
j 6= i at time t.8

The solution to the signal extraction problem is

et = Λ (∆St −Aet) , (10)

where Λ is a n × n diagonal matrix with parameter λi as the ith element on
its main diagonal. Then, by combining equations (9) and (10) and solving for

8Although it is not explicitly stated in King and Wadhwani (1990), and it might be evident,
note that equation (9) indicates that, for example, in a three market case we would have

E1(u
(2)
t ) = E3(u

(2)
t ). That is, conditional expectation in markets 1 and 3 about the systematic

information observed in market 2 are equal. Otherwise e couldn’t be a n × 1 vector. This
result is an implication of the assumption that the model structure is of common knowledge
and the information components are uncorrelated.
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∆St, one gets the laws of motion of the price changes in n market setup as a
function of the total news:

∆St = (In +B)ηt (11)

where B = AΛ is n× n matrix, and its ijth element βij is the response of the
market i prices to the price changes in market j. The matrix In is n×n identity
matrix. As the matrix B consists of the volatility transmission coefficients, a
simple test for the existence of such a transmission effect, for example, from
market j to market j is to test whether the element βij equals zero or not.
Note that by construction the main diagonal elements βii for all i = 1, . . . , n
are zero.

3 Estimation of the volatility transmission model

Consider the n country KW model. Then, the stock market prices follow equa-
tion (11). By defining η̃t = (In +B)ηt, we get the following simple identity

∆St = η̃t. (12)

This equation can be interpreted as a zero order reduced form vector autore-
gressive (VAR) model. Vector η̃t consists of reduced form errors (here equal to
price changes). Also, define B̃ = (In +B), to rewrite equation (11) equally well
as

∆St = B̃ηt. (13)

This, in its turn, can be interpreted as a n variable, zero order SVAR model.
Hence, the n×1 random vector ηt (the KW model total news vector) represents
structural shocks of the underlying structural model9.

Equations (12) and (13) give us the following equality between reduced form
errors (changes in stock prices) and structural shocks (total news):

η̃t = B̃ηt. (14)

This equality is consistent with the so-called B-model framework of SVAR mod-
els (see, e.g., Lütkepohl (2005), p.362–64) where the n-dimensional reduced form
error term (η̃t) depends on the n structural shocks (ηt) via the n×n coefficient
matrix (B̃). The fundamental question of SVAR models is how to estimate the
coefficient matrix and, hence, identify the structural shocks. If we mark the
covariance matrix of the reduced from errors as Ση̃ and that of the structural
shocks as Ση (which is by assumption diagonal), we get from equation (14)

Ση̃ = B̃ΣηB̃
′.

Typically, a SVAR model is normalized by assumption Ση = In which gives us
the following system of n equations:

Ση̃ = B̃B̃′ (15)

9In the KW model, the news η
(i)
t and η

(j)
t of all countries i, j = 1, . . . , n with i 6= j were

assumed to be uncorrelated with each other which is consistent with the usual assumption of
structural shocks also being (at least) uncorrelated.
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where Ση̃ can be estimated consistently with standard estimation methods.

However, as the matrix B̃ consists of n×n unknown parameters and equation
(15) provides only n (n+ 1) /2 equations, extra information is needed to be able
to estimate the matrix B̃. One standard method is to use economic theory or
institutional knowledge to directly restrict (to zero) sufficiently many elements
of B̃. Other methods include, for example, restricting the signs of the impulse
responses of the system, or restricting long-run effects of the structural shocks on
the observed variables.10 However, most of the standard identification methods
are not suitable for the SVAR model at hand. Now, the non-diagonal elements
of B̃ are the volatility transmission coefficients. Our very goal is to test whether
or not some (or all) of these elements are equal to zero.

3.1 Testing the volatility transmission effects

In equation (13) the KW model is interpreted as a SVAR model, and equation
(12) shows the corresponding reduced form VAR representation. Now, assume
the reduced form errors η̃t, that is the price changes, follow a mixed-normal
distribution:

η̃t =

{

η̃1t ∼ N (0,Σ1) with probability γ,
η̃2t ∼ N (0,Σ2) with probability 1− γ.

(16)

Here N (0,Σ) denotes a multivariate normal distribution with zero mean and
covariance matrix Σ. The n × n covariance matrices Σ1 and Σ2 are assumed
to be distinct and γ ∈ (0, 1) is the mixture probability. In order to be able to
identify the parameter γ one needs to assume that Σ1 6= Σ2. Parts of Σ1 and
Σ2 may still be identical.

The random vector η̃t has zero mean and covariance matrix γΣ1+(1−γ)Σ2.
This distributional assumption is fully consistent with the assumptions of the
KW model in sections 2.1 and 2.2. There, it was assumed that the elements of
ηt (total news) are non-correlated. However, the elements of η̃t (stock market
price changes) might well be correlated depending on whether the matrix B̃

is diagonal or not. Or in other words, whether there is volatility transmissions
across the markets or not. Also, as the distribution (16) is non-normal and given
that non-normality is a general feature of financial time series, the assumption
seems reasonable in this respect.

Lanne and Lütkepohl (2010) show that, given the distributional assumption
(16), there exist a diagonal matrix11 Ψ = diag (ψ1, . . . , ψn) with ψi > 0 for all
i = 1, . . . , n, and a nonsingular n × n matrix W such that Σ1 = WW′ and
Σ2 = WΨW′. The model in equations (12) and (16) can be estimated by the
method of maximum likelihood (ML). The distribution of ∆St can be written
as (for details about deriving a conditional density for a VAR model with lagged
values of dependent variable, see Lanne and Lütkepohl (2010))

f (∆St) = γ det (W)
−1

exp
{

− 1
2∆S′

t (WW′)
−1

∆St

}

+(1− γ) det (Ψ)
−1/2

det (W)
−1

exp
{

− 1
2∆S′

t (WΨW′)
−1

∆St

}

.

10Kilian (2011) provides a good survey of the different SVAR model identification methods.
11Notation X = diag (x1, . . . , xn) means that matrix X is a n×n diagonal matrix with the

first main diagonal element being x1, the second x2, and so on.
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Collecting all the parameters into vector Θ, the log-likelihood function can be
written as

lT (Θ) =

T
∑

t=1

logf (∆St) .

This can be maximized with standard nonlinear optimization algorithms.
As long as all the elements ψi > 0 are distinct, the matrix W is unique apart

from changing all signs in a column. The covariance matrix of the reduced form
error vector η̃t can then be written as

Ση̃ = γΣ1 + (1− γ)Σ2 = γWW′ + (1− γ)WΨW′

which becomes
Ση̃ = W (γIn + (1− γ)Ψ)W′. (17)

Comparing this with equation (15) let us choose

B̃ = W (γIn + (1− γ)Ψ)
1/2

, (18)

where, as already mentioned, W is a nonsingular n × n matrix. Clearly, the
n×n matrix (γIn + (1− γ)Ψ) is diagonal. Hence, as long as all the n elements
ψi > 0 are distinct, the matrix B̃ is (locally) unique and the structural shocks
ηt are identified.

There is one severe limitation in a straightforward application of the identifi-
cation method of Lanne and Lütkepohl: as it is formally shown in the appendix
A, when equation (18) holds, we can equally well choose as our matrix B̃ the

following matrix B̂:

B̂ = [WP′][P(γIn + (1− γ)Ψ)P′]1/2

= (WP′)(γPP′ + (1− γ)PΨP′)1/2

= (WP′)(γIn + (1− γ)PΨP′)1/2

= ŴΨ̂
1/2

where P is an arbitrary n × n permutation matrix, Ŵ = WP′, Ψ̂ = γIn +
(1− γ)PΨP′, and we have used fact that PP′ = In. Matrix PΨP′ is diagonal
with a different permutation of the elements {ψ1, . . . , ψn} on its main diagonal

than their permutation on the main diagonal of the matrixΨ. Also, in matrix Ŵ

columns ofW have changed their place according to the permutation. However–
and this is important, the row indexes have remained the same.

Clearly B̃ in equation (18) is not equivalent to the matrix B̂ unless P =
In. The permutation matrix P was arbitrary. All in all, there are n! possible
matrices P. Hence, there are equally many possible matrices B̂ (the matrix B̃ in
equation (18) included, corresponding to P = In). An implication of this is that

the matrix B̂ will be unique once the permutation of the elements {ψ1, . . . , ψn}
is given12.

12This can be seen in the following way: assume we have some given permutation of the
main diagonal elements {ψ1, . . . , ψn} (not necessarily in order diag (ψ1, . . . , ψn)) that is a
result of matrix multiplication PΨP

′, where Ψ = diag (ψ1, . . . , ψn) and P can be identity
matrix or any other permutation matrix. Then, because each resulting permutation of the
elements on the main diagonal of PΨP

′ corresponds to some unique permutation matrix P,
if we fix the resulting order of the elements {ψ1, . . . , ψn}, we necessarily fix also the matrix

P. Then it follows that matrix WP
′–and subsequently matrix B̂ equally well–is given.
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So, one can conclude, the identification following the method of Lanne and
Lütkepohl is unique up to the given permutation of the elements {ψ1, . . . , ψn}.
In practice, this means that once we have estimated the model as described
above, and especially once we have our (initial) estimate of the matrix B̃

from equation (18), the actual (full) estimation of the structural KW model
parameters requires us to identify the ”correct” permutation of the elements
{ψ1, . . . , ψn}, or in other words the correct matrix Ψ̂.

However, as it is now explained, the partial estimation–referring to situation
when one does not (yet) know which of the all possible matrices Ψ̂ is the ”cor-
rect” one–of the KW model is sufficient for our first objective of testing whether
there is any volatility transmissions to market i from all the other n−1 markets
(combined). And also, whether there is volatility transmission from market i to
all the other n−1 markets. The first test would correspond to a null-hypothesis
of βik = 0, and the latter to βki = 0, for all k ∈ {1, . . . , n}/{i}.

In what it follows, for notational simplicity, let us denote B̂ = B̃. This
should not create any confusion as, whenever B̃ refers only to the matrix B̃ in
equation (18), this reference is made clear. Also, for convenience, let us denote

Ŵ = W and PΨP′ = Ψ. This way, unless other is stated, when we refer
to any of these matrices we refer–somewhat loosely–to the partially estimated
matrices, or in other words, to the case where the ”correct” permutation has
not yet been identified. Again. this should not cause any confusion.

In our volatility transmission testing everything is based on assuming the the-
oretical model in section 2 holds: daily stock market returns in our n countries
are function of total news (our structural shocks) η(i), i = 1, . . . , n. Then, the n!
possible permutations of our matrix B̃ correspond to all n! different ways to shuf-
fle the ordering of total news η(i), i = 1, . . . , n, in a n×1 vector. Only one of these
permutations will coincide with the correct order of ηt = (η(1), η(2), . . . , η(n))
where the country 1 total news is situated first, country 2 second, and so on.
Hence, only one permutation corresponds to the (correct) matrix B̃.

Then, the fact that all the n! possible matrices W differ only by the or-
der of their columns while the row indexes remain the same enables us to to
conduct our testing. The idea of the test is easiest to demonstrate with a
two country example. When n = 2 there are only two possible matrices Ψ:
Ψ(1) = diag (ψ1, ψ2), and Ψ(2) = diag (ψ2, ψ1). Let’s then redefine

Ψ̃
(i)

=
(

γIn + (1− γ)Ψ(i)
)1/2

,

for i = 1, 2. The matrices

Ψ̃
(1)

= diag(ψ̃1, ψ̃2) and Ψ̃
(2)

= diag(ψ̃2, ψ̃1).

correspond to the matrices Ψ(1) and Ψ(2), respectively, and differ only by the
order of their main diagonal elements {ψ̃1, ψ̃2}. As it is shown in the appendix
A, then there are two alternative B̃ matrices:

B̃(1) =

[

ψ̃
1
2
1 w11 ψ̃

1
2
2 w12

ψ̃
1
2
1 w21 ψ̃

1
2
2 w22

]

and B̃(2) =

[

ψ̃
1
2
2 w12 ψ̃

1
2
1 w11

ψ̃
1
2
2 w22 ψ̃

1
2
1 w21

]

.

Now, assuming our theoretical model in section 2 holds, one of these two
matrices B̃(1) or B̃(2) must correspond to the correctly identified permutation
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of the elements {ψ1, ψ2}. Only the correct permutation sets the (estimated)
total news into their correct ordering of ηt = (η(1), η(2)) where η(1) refers to
country 1 total news, and η(2) to country 2. Now, assume, for example, the
matrix B̃(1) corresponds to the correct permutation. Then, the only difference
that using B̃(2) instead of B̃(1) would do, is that it would set the total news into
their reverse order; namely to {η(2), η(1)} instead of {η(1), η(2)}. And, we would
then mistakenly interpret η(2) as country 1 total news and η(1) as country 2.

Of course, in reality we do not know which one the matrices, B̃(1) or B̃(2),
corresponds to the correctly identified model. However, from the equations
of these two matrices we see that the coefficient of volatility transmission, for
example, from country 2 to country 1 is either ψ̃0.5

2 w12 or ψ̃0.5
1 w11 (and the

other one will then be the country 1’s own total news effect). On the other
hand, according to the KW model the country 1’s own total news effect needs
to be non-zero. Hence, either ψ̃0.5

2 w12 or ψ̃0.5
1 w11 must be statistically different

from zero. So, in case we find that both of them are statistically different from
zero, we know that there must exist volatility transmission from country 2 to
country 1. In contrast, if we find that only one of them is statistically significant,
we will know that there is not volatility transmission from from country 2 to
country 1.

But, by assumption, both ψ1 and ψ2–and hence also ψ̃1 and ψ̃2–are dis-
tinct from zero. Hence, the only way ψ̃0.5

2 w12 and ψ̃0.5
1 w11 can be zero is by

the elements w12 and w11 being zero, respectively. So, the testing of statistical
significance of the elements βij , i, j = 1, 2, boils down to testing whether the
elements w12 and w11 are statistically significant or not. Repeating our argu-
ment, we can conclude that in case both w12 and w11 are found to be non-zero,
there must be volatility transmission from country 2 to country 1. Contrary,
in case only one of these elements is found statistically significant, the evidence
speaks against there being volatility transmission from country 2 to country 1.
Symmetric reasoning applies to testing volatility transmission from country 1
to country 2.

The test generalizes to all cases of n ≥ 2. So for example, in case all of the
elements wik, where k = 1, . . . , n, on the ith row of the matrix W are found
to be non-zero, then there is evidence of volatility transmission from all of the
other n − 1 countries to country i. On the contrary, if one finds that m + 1
row i elements (0 ≤ m ≤ n− 1) are non-zero, then there’s evidence of volatility
transmission from m countries to country i. And this irrespective of which of
the possible permutations of matrix W we are currently working with.

Especially, we can always test whether matrix W is diagonal or not. If
it happens to be diagonal, then also matrix B̃ is diagonal. In such a case,
we can conclude that there is no volatility transmissions across the markets.
In addition, then, we have also fully estimated the structural model. This is
because, as already explained, according to our theoretical model in section 2, for
each country, at least the country’s own total news must explain changes in its
stock market prices. Hence, if we have found matrix B̃ being diagonal, in which
case for each country there is one and unique statistically significant structural
shock (estimated total news), then necessarily, the estimated restricted model
corresponds to the structural model.
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3.2 Estimation of the KW model parameters

Lanne, Lütkepohl, and Maciejowska (2010) note the sensitivity of the estimated
matrix B̃ to different permutations of the main diagonal elements of Ψ. They
propose to use either the order from the smallest to the largest or from the largest
to the smallest. However, nothing guarantees that either of these two permu-
tations would identify the correct order of the total news (structural shocks).
Here, an alternative identification method is proposed.

Recall the identity in equation (14) between the reduced form error vector η̃t

(denoting stock market price changes) and structural shocks vector ηt (denoting
total news). Given any permutation of the elements {ψ1, . . . , ψn}, the Lanne
and Lütkepohl (2010) identification method guarantees a locally unique matrix
B̃. Assume this matrix is also invertible. Then, by premultiplying the equation
(14) with B̃−1, one gets

ηt = B̃−1
η̃t.

We can now calculate the covariance matrix of the total news as a function of
(the estimated) matrix B̃ and the covariance matrix of market volatilities Ση̃:

Ση = B̃−1Ση̃(B̃
′)−1. (19)

In the KW model the total news covariance matrix Ση is a diagonal but not an
identity matrix, hence, this equation is not a trivial identity. It gives us estimates
of the variances of the total news (σ2

η(i)) for each country (i = 1, . . . , n). In

particular, the estimated order of magnitude of these variances {σ2
η(1) , . . . , σ

2
η(n)}

depends on the specific matrix Ψ.
Hence, if we could find–from some other sources–some proximate variables

for the each country’s total news, we would be able to get an alternative estimate
for their variances. Especially, we are interested in the order of magnitude
of these proximate news’ variances. If the order of the proximate total news
variances is unambiguous in such a way that no two or more countries share
same ranking, we can use this alternative ranking and equation (19) to identify
the correct matrix B̃. We simply select among our n! possibilities the model
that produces the same ordering of the countries’ total news variances on the
main diagonal of Ση as does our alternative news’ ranking. In the next section
data from the Google trends is used as a proximate total news data.

As a last note, assume we have identified the correct Ψ, using equation
(18) to estimate matrix B̃ does not guarantee the resulting matrix would have
diagonal elements equal to one–as there should be based on the assumptions
of the KW model. The Lanne and Lütkepohl identification method is based
on normalizing the covariance matrix of structural shocks Ση to an identity

matrix. The elements of B̃ are let to vary freely. But, the KW model should
be interpreted as a SVAR model where, in contrast, the diagonal elements of
Ση are allowed to vary freely but the diagonal elements of B̃ are normalized to
one. These are simply two alternative ways to normalize a SVAR model. As
shown in appendix B, one can easily swap the first normalization to the latter
one in the following way: on each column k = 1, . . . , n of matrix B̃ provided by
equation (18), divide all the elements on that column [B̃]ik, i = 1, . . . , n, by the
main diagonal element [B̃]kk of the same column. We then get the estimate of
matrix B simply by B = B̃− In.
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Table 1: Summary statistics of volatilities

Mean SD Skewness Kurtosis
Italy (ITA) -0.00 0.02 -0.06 5.94
Spain (ESP) -0.00 0.02 0.57 9.55
Ireland (IRE) -0.00 0.01 -0.14 5.23
Greece (GRE) -0.00 0.03 0.71 6.52
Source: Yahoo! Finance, own calculations.

4 Application of the volatility transmission test

and estimation of the KW model

As an empirical example of how to test for volatility transmission and how to
estimate the KW model, let us consider the European stock markets. Since
early 2010, or late 2009, the eurozone has been in the middle of a debt crisis.
Some of the countries in the spotlight have been Italy, Spain, Ireland, and–
especially–Greece. Figure 1 (at the end of this paper) depicts how the equity
prices in these countries have changed during 2010–2011 (indexes have been
rescaled; for details about the data, see appendix C). In Greece the prices have
decreased by almost 80 percent, in Italy and Spain by around 30 percent, and
by less than ten percent in Ireland. Our empirical analysis will focus on these
markets. Of course, considering only four countries might be too restricted,
but this simplifies our model identification task considerably: for example the
number of possible models when n = 4 is only 24 compared to 120 if n = 5 was
chosen.13

4.1 Data

We will consider daily close-to-close price changes. Hence, consistent with what
was said in section 2.1, stock market returns are calculated from the daily closing
values of each stock market price index by first taking the logarithmic transfor-
mation of the price and then taking first differences:

∆Si
t = logP i

C,t − logP i
C,t−1,

where P i
C,t denotes the closing value of the price index in country i at date t,

and i ∈ {ITA,ESP, IRE,GRE} (for shortenings, see table 1).
There are 517 closing values for each country which gives 516 observations

of returns. However, as indicated in appendix C, for reasons of national bank-
ing holidays every country has some missing observations. I have substituted
these missing values with the closing value of the previous (open) trading day.
Table 1 summarizes the volatility data; the statistics indicate that the empirical
distributions of the returns differ from normal distributions. This lends support
to using a non-normal error distribution in our VAR model (see equation 16).
Time series of the returns are depicted in figure 2.

13Especially, dropping off Germany from the analysis could be questioned. However, the
correlation coefficient between Italian and German volatilities is 0.86, so perhaps it is plausible
to assume Italy also acts as proxy for Germany.
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Table 2: Estimation results of unrestricted model (estimated standard errors in
parentheses)

Elements of each vector
1 2 3 4

W[1, ·]× 100
1.10∗∗∗ 0.01 −0.16 0.04
(0.09) (0.43) (0.22) (0.21)

W[2, ·]× 100
0.95∗∗∗ 0.52 −0.22 0.15

(0.2) (0.37) (0.27) (0.26)

W[3, ·]× 100
0.74∗∗∗ 0.22 0.54∗∗∗ −0.18
(0.14) (0.34) (0.2) (0.40)

W[4, ·]× 100
0.78∗∗∗ 0.11 0.65 1.74∗∗∗

(0.22) (0.48) (1.13) (0.47)

Ψ
6.33∗∗∗ 4.37∗∗∗ 3.07∗∗∗ 2.56∗∗∗

(1.07) (0.68) (0.51) (0.49)

γ
0.66∗∗∗

(0.05)

NOTE:

Standard errors obtained from the inverse Hessian of the log-likelihood

function.

W[i, ·] indicates ith row of matrix W.

(∗∗) / (∗∗∗) indicates statistical significance at 5 % / 1 % significance level.

Results for W are reported for estimates multiplied by 100.

4.2 Testing volatility transmissions

Let us first test for volatility transmissions employing the testing procedure de-
tailed in section 3.1. The test consists of testing with the likelihood ratio (LR)
test the statistical significance of the elements of matrix W. In order to be
able to estimate the model we need, first, to determine some order for the main
diagonal elements of matrix Ψ. Following Lanne, Lütkepohl, and Maciejowska
(2010), let us first select the descending order. Then, as discussed in section
3.1, even if this permutation would not yet fully estimate the structural model
parameters, the partial estimation is enough for testing the number of volatil-
ity links between the countries. The actual full estimation of the structural
parameters is discussed below, in section 4.3.

There are now in total 21 parameters to be estimated. Table 2 reports the
estimation results for the model with the aforementioned descending order.14

First four rows of the table corresponds to the four rows of matrix W (multi-
plied by 100). The fifth row in the table shows the estimates of the matrix Ψ

main diagonal vector which are by assumption for the moment in a descending
order. The estimate of matrix Ψ do not have any particular interpretation.
The last table row reports the estimated mixture probability γ; with a proba-
bility of around 66.0 percent the VAR model errors are from the multi-normal
distribution with smaller variances.

To briefly recap what was said in section 3.1: always making sure that at least
one element on each row and column of matrix W remains non-zero, one can
test the existence of volatility transmission, for example, from other countries to
the first country by restricting to zero three elements on the first row of matrix
W. The results in table 2 suggest that at least some of the elements of matrix

14All calculations were done with programs in the GAUSS CMLMT library.

15



Table 3: Estimation results of restricted model (estimated standard errors in
parentheses)

Elements of each vector
1 2 3 4

W[1, ·]× 100
1.12∗∗∗ ·· −0.13∗∗∗ ··
(0.08) (0.03)

W[2, ·]× 100
1.00∗∗∗ 0.52∗∗∗ ·· ··
(0.08) (0.03)

W[3, ·]× 100
0.73∗∗∗ ·· 0.41∗∗∗ −0.53∗∗∗

(0.06) (0.12) (0.12)

W[4, ·]× 100
0.89∗∗∗ ·· 1.38∗∗∗ 1.08∗∗∗

(0.1) (0.27) (0.38)

Ψ
6.05∗∗∗ 4.30∗∗∗ 3.09∗∗∗ 2.80∗∗∗

(0.99) (0.68) (0.52) (0.52)

γ
0.66∗∗∗

(0.05)

NOTE:

Standard errors obtained from the inverse Hessian of the log-likelihood

function.

W[i, ·] indicates ith row of matrix W.

(∗∗) / (∗∗∗) indicates statistical significance at 5 % / 1 % significance level.

Sign ·· signifies the parameter is statistically insignificant.

Results for W are reported for estimates multiplied by 100.

W are statistically insignificant.
As a way forward, let us first restrict to zero all elements with the greatest

p-values and then test with the LR test if the restriction(s) are supported by
the data. Table 3 reports the estimation results of a restricted model that is
achieved by restricting to zero matrix W elements up to a point where no more
restrictions are supported. The LR test statistic for the joint restrictions in
the table is 1.99 which is less than 12.6, the critical value of χ2 distribution
at 5 % significance level and six degrees of freedom. Because in every possible
permutation of the elements {ψ1, . . . , ψ4} the row indexes of the matrix W

stay the same, the first row of matrix W refers to Italy, the second to Spain,
the third to Ireland, and the fourth to Greece. Hence, according to our test
results, there is evidence of volatility transmissions: from one of the other three
countries to Italy, same to Spain, and to Ireland and Greece from two other
countries.15 (Remember, the own total news effect needs to be significant for
every country by assumption.) Also, as a consequence of the results in table 3,
a test hypothesis of matrix W being diagonal–and there not being any volatility
transmissions–is clearly rejected.

4.3 Estimation of the KW model

Previous section concluded that there is evidence of volatility transmissions
between the four countries. In order to identify the source countries of spillovers
for each country, we need to fully estimate the KW model. To do this, it was

15As discussed in section 3.1 this interpretation relies on assuming the KW model of section
2.2 holds here, and the specific way in which different permutations of the main diagonal
elements of matrix Ψ shuffle the ordering of structural shocks.
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Table 4: Variances of the weekly percentage changes in search volume index,
and descending order rank of the countries according to the variances

Country Variance Rank
Italy 3831.0 1
Spain 1184.0 3
Ireland 367.0 4
Greece 1842.0 2
Source: Google Trends, own calculations.

suggested in section 3.2 that one could use some proximate variables that mimic
total news variances σ2

η(i) , i = 1, . . . , 4. This would provide an alternative

estimate for the ordering of these countries’ total news variances (structural
shock variances). Because each of the possible 4! = 24 matrices B̃ corresponds
to a specific matrix Ψ, one could possibly be able to identify the correct matrix
Ψ. Here, it is proposed that search volume data from Google Trends is used to
calculate proximate variables for the total news variances.

Figure 3 shows the rescaled index of global Google search volumes about
the economic conditions of the four countries considered here. The data covers
weekly observation for years 2010 and 2011 and is rescaled so that the first week
in 2010 equals 100.16 (More details on the data, and the actual search keywords,
are are provided in appendix C.) Hence, for example, when according to the
figure the global search traffic on the economic conditions of Greece peaked at
around 1600 during the spring 2010, it means that during that week the average
search volume on Greece–relative to the average of all search traffic in Google
that week–was 1500 percent larger than during the first week of the year. It
would then make sense to assume that such a heavy increase in search traffic on
the Greek economy somehow reflects new information, or news released, about
the country’s condition at that time.17

Figure 4 in its turn shows the weekly percentage changes in the search volume
index. This is now the data that I consider as a proxy for the arriving news,
and hence use the variances of these time series as a proximate variable for each
country’s total news variance18. Table 4 reports the variances and the country
ranking when the ranking is based on descending order of the variances. Italy
has the largest variance, followed by Greece, Spain, and lastly by Ireland. There
is only one matrix Ψ that creates this same ordering of the variances of total
news. The parameter estimates of this model are reported in table 5 (to save
some place I report only the estimates of the restricted model comparable to
the restricted model in table 3).

The structural model becomes identified and, hence, we can calculate the
estimates of the volatility transmission parameters of the KW model (for details

16In the data week is considered to start on Sunday, so week 1 in year 2010 began on Sunday
January 3rd, 2010.

17Of course, the peak coincides with the onset of the euro debt crisis and the first Greek
bailout package, but even so, this doesn’t contradict with what is said in the text.

18The results are, naturally, qualitatively the same if I, instead of percentage changes, use
either first differences or first differences of logarithmic transformations.
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Table 5: Estimation results of restricted KW model (estimated standard errors
in parentheses)

Elements of each vector
1 2 3 4

100×W[1, ·]
1.10∗∗∗ ·· ·· 0.13∗∗∗

(0.08) (0.03)

100×W[2, ·]
0.98∗∗∗ 0.51∗∗∗ ·· ··
(0.07) (0.03)

100×W[3, ·]
0.72∗∗∗ ·· −0.53∗∗∗ −0.42∗∗∗

(0.06) (0.12) (0.12)

100×W[4, ·]
0.87∗∗∗ ·· 1.09∗∗∗ −1.37∗∗∗

(0.10) (0.38) (0.28)

Ψ
6.28∗∗∗ 4.37∗∗∗ 2.70∗∗∗ 3.05∗∗∗

(1.04) (0.70) (0.50) (0.51)

γ
0.65∗∗∗

(0.05)

NOTE:

Standard errors obtained from the inverse Hessian of the log-likelihood

function.

W[i, ·] indicates ith row of matrix W.

(∗∗) / (∗∗∗) indicates statistical significance at 5 % / 1 % significance level.

Sign ·· signifies the parameter is statistically insignificant.

Results for W are reported for estimates multiplied by 100.

see section 3.2). That is we can estimate the structural equation (13)19:
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. (20)

In equation (20), for example, the last coefficient on the first row, −0.10, means
that one percent increase in stock market prices in Greece decreases the stock
market prices in Italy by 0.1 percent. But the effect on the volatility in Italy
is the squared value of the coefficient (see equation (8)). Here it would be
(−0.10)2 = 0.01. Table 6 reports the spillover effects on volatilities across all
countries. According to the estimates, volatility from Italy gets always trans-
mitted to the other countries, unlike that of Spain which doesn’t have any effect
on the others. Ireland and Greece affect each other, and Greece is the only
country whose volatility has had an effect to volatility in Italian stock markets.
Interestingly, the coefficient that the Irish volatility has on the Greece on is 4.28,
by far the greatest coefficient by its magnitude.

As it was shortly discussed in section 2.1, see below equation (8), the find-
ing that a particular volatility transmission coefficient is found insignificant, is
perhaps best understood as meaning that the markets consider news released
in–or on–the particular source country consisting (mostly) of idiosyncratic in-
formation. Hence for example, our estimation results suggest that, given our
group of countries, news in Spain are considered in markets as irrelevant infor-

19The sign ·· signifies that the parameter is not statistically significant.

18



Table 6: Estimated effects across countries’ volatilities

To
From

Italy Spain Ireland Greece
Italy 1.00 ·· ·· 0.01
Spain 0.79 1.00 ·· ··
Ireland 0.42 ·· 1.00 0.09
Greece 0.62 ·· 4.28 1.00

(··) indicates no effect

mation for the company valuations in the other countries. On the other hand,
given that Italy has significant coefficients against all the others, markets seem
to consider news in Italy having, at least some, effect on the valuations in other
countries. From the perspective of the contagion literature, there is evidence of
contagion (1) from Italy to other countries, (2) from Ireland to Greece, and (3)
from Greece to Italy and Ireland.

5 Conclusions and discussion

In this paper, first, an existing theoretical model, that provides an explanation
for volatility spillovers across overlapping stock markets, was presented. The key
insight of the theoretical model is that volatility transmission could be a result
of uninformed investors’ efforts to try to infer private information of informed
investors. The realized price changes work as signals of this private information.
But because this signal is contaminated by idiosyncratic shocks, also ”excess”
volatility gets transmitted from one country to the others.

Second, by interpreting the theoretical model as a structural VAR model
and by augmenting it with an additional distributional assumption, recently
introduced SVAR identification methodology was exploited to develop a new
test for volatility transmissions. However, as it was shown in the paper, the
distributional assumption only guarantees a partial estimation of the structural
model parameters. This turn out to be enough for the validity of our test but
not enough for one being able to fully estimate the structural model parameters.

Hence, it was also discussed, what sort of additional information one would
need to make in order to identify the correct model permutation that permits
us to estimate the underlying structural model. In the paper it was proposed
that one such source of information could be the data on weekly web searches
on economic conditions of given countries. Changes in web traffic would then
proximate news released in (or about) the country.

The empirical part of the paper demonstrates how to apply the test and, also,
to fully identify the structural model. The data is stock market data for four
eurozone countries: Italy, Spain, Ireland, and Greece. Statistical testing finds
evidence of volatility transmissions between several countries. The application
of the full estimation method, in its turn, shows that the volatility spillovers
across the stock markets of these countries seem quite asymmetric; Italy affects
all the countries, whereas Spain seems to have least effect on others. The purpose
of the empirical exercise was to demonstrate how to actually estimate the KW
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model. More detailed empirical analysis with more elaborated conclusions is a
task left for future research.

Appendices

A Note on Lanne and Lütkepohl identification

method

This appendix shows why the identification method of Lanne and Lütkepohl
(2010) provides only a partial estimation of the coefficient matrix B̃. Assume the
following n×n matrices: Ψ = diag (ψ1, . . . , ψn) with ψi > 0, for all i = 1, . . . , n;
and W. Assume also a mixture probability γ such that 0 < γ < 1. Also, assume
n× n reduced form error vector’s covariance matrix Ση̃ can be written as

Ση̃ = W (γIn + (1− γ)Ψ)W′ = WΨ̄W′, (21)

where In is n× n identity matrix, and Ψ̄ = γIn + (1− γ)Ψ. Clearly Ψ̄ is also
diagonal matrix with its ith main diagonal element being ψ̄i = γ + (1 − γ)ψi.
Hence, there is bijective mapping between Ψ̄ and Ψ. So, we can concentrate on
different permutations of Ψ̄.

Now, take an arbitrary n × n permutation matrix P such that P 6= In.
Because permutation matrices are orthogonal matrices, it holds that P′P = In,
where P′ denotes the transpose of P. Hence, we can write

Ση̃ = (WP′)
(

PΨ̄P′
)

(WP′)
′

= ŴΨ̂Ŵ′, (22)

where we have redefined Ŵ = WP′ and Ψ̂ = PΨ̄P′.
It is straightforward to see that the matrix Ψ̂ is diagonal with a different

permutation of elements {ψ1, . . . , ψn} on its main diagonal than the matrix Ψ̄.
First, write

Ψ̂ = P(Ψ̄
1/2

Ψ̄
1/2

)P′ = (PΨ̄
1/2

)(PΨ̄′
1/2

)′ = (PΨ̄
1/2

)(PΨ̄
1/2

)′,

which is possible because ψ̄i > 0 for all i. Mark as ek a 1× n vector whose kth
element equals one and all the other elements equal zero. Then the jth column

of Ψ̄
1/2

can be written as e′jψ̄
1/2
j . Now, consider the permutation

Π : {1, . . . , n} → {1, . . . , n}, Π(k) = πk ∀k ∈ {1, . . . , n},

that corresponds to the permutation matrix P. Then the ith row of P is eπi
.

And so, the ijth element of matrix PΨ̄
1/2

is

[

PΨ̄
1/2

]

ij
= eπi

e′jψ̄
1/2
j

that equals zero whenever πi 6= j and ψ̄
1/2
πi when πi = j. The ijth element of
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matrix (PΨ̄
1/2

)′ equals to the the jith element of matrix PΨ̄
1/2

. Hence,

[

Ψ̂
]

ij
=

[

(PΨ̄
1/2

)(PΨ̄
1/2

)′
]

ij

=
n
∑

k=1

(

eπi
e′kψ̄

1/2
k

)(

eπj
e′kψ̄

1/2
k

)

=

n
∑

k=1

ψ̄keπi
e′keπj

e′k

which equals zero whenever i 6= j and ψ̄πi
when i = j. Hence, the matrix

Ψ̂ is diagonal and the order of its main diagonal elements corresponds to the
permutation Π.

So, based on equations (21) and (22) we have now two equally possible
choices for matrix B̃ (see equation (18)):

B̃(1) = WΨ̄
1/2

or B̃(2) = ŴΨ̂
1/2
.

These two alternatives of matrix B̃ are not the same as long as P 6= In. Because
there are n! different matrices P, there will also be n! alternative matrices B̃.
Hence, unless we know which permutationP to use, the structural model param-
eters will not be (fully) estimated. Concerning our test of volatility transmission
effects in section 3.1, note that multiplying matrix W from right with permuta-
tion matrix P′ will only permute the columns of W. Hence, in Ŵ = WP′ only
the order of the columns of W has changed. Row indexes remain the same.

For demonstration, let’s consider the case of n = 2. Then we have only two
alternative permutation matrices:

P(1) =

[

1 0
0 1

]

and P(2) =

[

0 1
1 0

]

.

So there are two alternatives for matrix B̃:

B̃(1) =
(

WP′

(1)

)(

P(1)Ψ̄P′

(1)

)1/2

=

[

ψ̃
1
2
1 w11 ψ̃

1
2
2 w12

ψ̃
1
2
1 w21 ψ̃

1
2
2 w22

]

,

where we have used the fact that P(1) = I2, and

B̃(2) =
(

WP′

(2)

)(

P(2)Ψ̄P′

(2)

)1/2

=

[

w12 w11

w22 w21

] [

ψ̃2 0

0 ψ̃1

]1/2

=

[

ψ̃
1
2
2 w12 ψ̃

1
2
1 w11

ψ̃
1
2
2 w22 ψ̃

1
2
1 w21

]

.

Clearly, B̃(1) 6= B̃(2).
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B Swapping between alternative SVAR normal-

izations

The notation in this appendix is independent of the one used in the main text.
Assume, n × 1 reduced from error vector ut of a VAR model and n × 1 vector
of structural shocks εt of a SVAR model. The reduced from error vector is
assumed to be linear transformation of the structural shocks vector; ut = Bεt.
The structural shocks are distributed as εt ∼ (0,Σε) where Σε is a diagonal
matrix. The reduced form errors are distributed as ut ∼ (0,Σu) where Σu

is a general n × n matrix. We have the two following possible SVAR model
normalizations:

(1) Assume Σε = In but let the elements of B vary freely, or

(2) Assume diag(B) = 1n×1, but let the (diagonal) elements of Σε vary freely,

where 1n×1 refers to n× 1 vector with all elements equal to one.
The first normalization is used in the paper by Lanne and Lütkepohl (2010)

and the second in the KW model. From this papers point of view, the relevant
question is: How to switch from the normalization (1) to (2)?

First, assume normalization 1. For notational simplicity, let’s suppress time
indexation. Then, we have n × 1 random vectors ε and u, and n × n matrices
Σε and B, where Σε = In. Following the identity u = Bε, we have

Σu = E(uu′) = BE(εε′)B′ = BΣεB
′ = BB′, (23)

where E() is expectations operator.
Second, assume normalization 2. Then, we have n×1 random vectors ε̃ and

u, where ε̃ is not necessarily equal to ε in the previous paragraph. Also, we
have n × n matrices Σε̃ and B̃, where diag(B̃) = 1n×1. Again, following the
identity u = B̃ε̃, we also have

Σu = E(uu′) = B̃Σε̃B̃
′ =

(

B̃Σ
1
2

ε̃

)(

B̃Σ
1
2

ε̃

)′

(24)

Form equations (23) and (24) we get an identity

B = B̃Σ
1
2

ε̃ . (25)

For simplicity, let’s limit our discussion to the two variable case (n = 2).
Thus, we have

B =

[

b11 b12
b21 b22

]

, B̃ =

[

1 b̃12
b̃21 1

]

, and Σ
1
2

ε̃ =

[

σ̃1 0
0 σ̃2

]

.

Equation (25) becomes
[

b11 b12
b21 b22

]

=

[

σ̃1 σ̃2b̃12
σ̃1b̃21 σ̃2

]

.

This gives us following four equations:














b11 = σ̃1
b21 = σ̃1b̃21
b12 = σ̃2b̃12
b22 = σ̃2

.
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By solving for b̃12 and b̃21, we get

{

b̃21 = b21/b11
b̃12 = b12/b22

.

Hence, we have derived that

B̃ =

[

1 b12
b22

b21
b11

1

]

.

So, once we have an estimate of B that is based on normalization (1), we can
swap to normalization (2)–and get an estimate of B̃–by dividing every column
of B by the corresponding main diagonal element. Clearly, the result generalizes
to all n ≥ 2.

C Data details

Stock market data

The upper part of table 7 provides the details of the stock market price indexes
that are used in this paper. All the stock market data is downloaded from Yahoo!
Finance. In total the period under consideration covers 517 trading days. Due
to banking holidays, none of the individual stock exchanges were open at every
possible trading day. When there was a missing value for a trading day, I took
the closing value from the previous (open) trading day.

Google trends data

Google Trends provides data on how different topics (search terms) have been
searched (in English) over time and provides weekly observations of Google’s
search volume index. The search index reports the average amount of traffic
(Google searches) on the chosen topic relative to worldwide search traffic (in
Google) during a week. Given that the data is only available for searches in En-
glish, the generality of our results in section 4.3 could, of course, be questioned.
However, because we are actually interested in changes of the search volume
data, as long as the data for the English tracks well searches in other languages,
this shortcoming should not affect too much our results. It seems hard to imag-
ine that trends in particular searches done in English would considerably differ
(on average) from searches done in other languages.

The raw data that Google provides is scaled relative to the first observation of
each time series (this is the fixed scaling option that Google provides). However,
I have rescaled the time series so that for each series the first week in 2010 equals
to 100. So, the data tells the average global traffic for the topics relative to their
own global average traffic in week 1, 2010. The lower part of table 7 reports
the details of both the search topics I was interested to find data on and the
actual Google Trends keywords I used to find the time series. The bar sign
”|” between the keywords means that I wanted to find search data for searches
including at least one of the keywords. This labeling corresponds to the Google
Trends convention.

23



Table 7: Data details: Stock market indexes, and Google Trend search volume index

Stock market price indexes, daily closing values for time period Jan 4,2010–Dec 30, 2011

Country: Index [Yahoo! Finance ticker] Includes # trading days # of missing obs.

Italy: FTSE MIB [FTSEMIB.MI] 40 most traded stocks 512 5
Spain: IBEX 35 [ˆIBEX] 35 most traded stocks 513 4
Ireland: ISEQ Overall Index [ˆISEQ] All stocks 514 3
Greece: FTSE/ASE 20 [FTASE.AT] 20 most traded stocks 503 14

Topics and the specific keywords that were used in Google Trends

Search topic Actual keyword in Google Trends

Italian economy OR debt OR stock market (italy gdp) | (italy debt) | (italy stock)
Spanish economy OR debt OR stock market (spain gdp) | (spain debt) | (spain stock)
Irish economy OR debt OR stock market (ireland gdp) | (ireland debt) | (ireland stock)
Greece economy OR debt OR stock market (greece gdp) | (greece debt) | (greece stock)

24



References

Bailey, W., C. X. Mao, and K. Sirodom (2007): “Investment restrictions
and the cross-border flow of information: Some empirical evidence,” Journal

of International Money and Finance, 26(1).

Calvo, G. A., and E. G. Mendoza (2000): “Rational contagion and the glob-
alization of securities markets,” Journal of International Economics, 51(1).

Chan, K., A. J. Menkveld, and Z. Yang (2008): “Information Asymmetry
and Asset Prices: Evidence from the China Foreign Share Discount,” The

Journal of Finance, 63(1).

Chen, H., and P. M. S. Choi (2012): “Does information vault Niagara Falls?
Cross-listed trading in New York and Toronto,” Journal of Empirical Finance,
19(2).

Corsetti, G., M. Pericoli, and M. Sbracia (2005): “Some Contagion,
Some Interdependence: More Pitfalls in Tests of Contagion,” Journal of In-

ternational Money and Finance, 24(8).

Dornbusch, R., Y. C. Park, and S. Claessens (2000): “Contagion: Un-
derstanding How It Spreads,” The World Bank Research Observer, 15(2).

Dungey, M., R. Fry, B. Gonzalez-Hermosillo, and V. L. Martin

(2005): “Empirical modelling of contagion: a review of methodologies,”
Quantitative Finance, 5(1).

Engle, R. F., T. Ito, and W.-L. Lin (1990): “Meteor Showers or Heat
Waves? Heteroskedastic Intra-Daily Volatility in the Foreign Exchange Mar-
ket,” Econometrica, 58(3).

Frankel, J. A., and S. L. Schmukler (1996): “Country Fund Discounts and
the Mexican Crisis of December 1994: Did Local Residents Turn Pessimistic
Before International Investors?,” Open Economies Review, 7.

Groß-Klußmann, A., and N. Hautsch (2011): “When machines read
the news: Using automated text analytics to quantify high frequency news-
implied market reactions,” Journal of Empirical Finance, 18(2).

Grossman, S. J., and J. E. Stiglitz (1980): “On the Impossibility of Infor-
mationally Efficient Markets,” The American Economic Review, 70(3).

Hamao, Y., R. W. Masulis, and V. Ng (1990): “Correlations in Price
Changes and Volatility across International Stock Markets,” The Review of

Financial Studies, 3(2).

Hong, Y. (2001): “A test for volatility spillover with application to exchange
rates,” Journal of Econometrics, 103(1–2).

Kaminsky, G. L., and C. M. Reinhart (2000): “On Crises, contagion, and
confusion,” Journal of International Economics, 21(1).

Kilian, L. (2011): “Structural Vector Autoregression,” CEPR Discussion Pa-

per, (8515).

25



King, M. A., E. Sentana, and S. Wadhwani (1994): “Volatility and Links
between National Stock Markets,” Econometrica, 62(4).

King, M. A., and S. Wadhwani (1990): “Transmission of Volatility between
Stock Markets,” The Review of Financial Studies, 3(1).

Kodres, L. E., and M. Pritsker (2002): “A Rational Expectation Model of
Financial Contagion,” The Journal of Finance, 57(2).

Lanne, M., and H. Lütkepohl (2010): “Structural Vector Autoregressions
With Nonnormal Residuals,” Journal of Business & Economic Statistics,
25(1).

Lanne, M., H. Lütkepohl, and K. Maciejowska (2010): “Structural vector
autoregressions with Markow switching,” Journal of Economic Dynamics &

Control, 34(2).

Lin, W.-L., R. F. Engle, and T. Ito (1994): “Do Bulls and Bears Move
across Borders? International Transmission of Stock Returns and Volatility,”
The Review of Financial Studies, 7(3).

Lütkepohl, H. (2005): New Introduction to Multiple Time Series Analysis.
Berlin: Springer-Verlag, first edn.

Pericoli, M., and M. Sbracia (2003): “A Primer on Financial Contagion,”
Journal of Economic Surveys, 17(4).

Pesaran, M. H., and A. Pick (2007): “Econometric issues in the analysis of
contagion,” Journal of Economic Dynamics and Control, 31(4).

Savva, C. S. (2009): “International stock markets interactions and condi-
tional correlations,” Journal of International Financial Markets, Institutions

& Money, 19(4).

Soriano, P., and F. J. Climent (2006): “Volatility transmission models: A
survey,” Revista de Economia Financiera, Nov.(10), References to the Soriano
& Climent paper are based on the manuscript that is available at http:

//papers.ssrn.com/sol3/papers.cfm?abstract_id=676469.

Wongswan, J. (2006): “Transmission of Information across International Eq-
uity Markets,” The Review of Financial Studies, 19(4).

26



Figure 1: Stock market price indexes, daily closing values (January 4, 2010–
December 30, 2011)

Figure 2: Daily stock market returns (January 5, 2010–December 30, 2011)
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Figure 3: Rescaled Google search volume index of searches on the economic
conditions of the countries, weekly data (w1 2010=100)

Figure 4: Percentage changes in weekly Google search volume index
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