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Abstract: Our paper considers a “negotiation game” between two players which 

combines the features of two-players alternating offers bargaining and repeated games. 

Generally, the negotiation game in general admits a large number of equilibriums but 

some of which involve delay and inefficiency. Thus, complexity and bargaining in tandem 

may offer an explanation for cooperation and efficiency in repeated games. The Folk 

Theorem of repeated games is a very used result that shows if players are enough 

patience then it is possible to obtain a cooperative equilibrium of the infinite repeated 

game. We proof a new folk theorem for finitely repeated games and also we find new 

conditions (under stage number and minimum discount factor value) such that players 

cooperate at least one period in cooperative-punishment repeated games. Finally we 

present a study-case for Cournot oligopoly situation for n enterprises behavior under 

finitely and infinitely repeated negotiations. We found for this situation discount factor 

depends only on players number, not on different player’s payoffs.      
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1. Introduction 
 

Our paper considers a “negotiation game” which combines the features of two-
players alternating offers bargaining and repeated games. Generally, the negotiation game 

in general admits a large number of equilibriums but some of which involve delay and 
inefficiency. Thus, complexity and bargaining in tandem may offer an explanation for 

cooperation and efficiency in repeated games. 

The Folk Theorem of repeated games is a very used result that shows if players 

are enough patience then it is possible to obtain a cooperative equilibrium of the infinite 

repeated game.  A few contributions on folk theorem shows that the result survives more 



 

 
 

or less intact when incomplete (Fudenberg and Maskin, 1986) or imperfect public 
(Fudenberg, Levine, and Maskin, 1994) information is allowed, or when the players have 

bounded memory (Sabourian, 1998). 
These findings are made precise in numerous folk theorems

1.
 
Each folk theorem 

considers a class of games and identifies a set of payoff vectors each of which can be 
supported by some equilibrium strategy profile. There are many folk theorems because 

there are many classes of games and different choices of equilibrium concept. For 
example, games may be repeated infinitely or only finitely many times. There are many 

different specifications of the repeated game payoffs. For example, there is the Cesaro 
limit of the means, the Abel limit (Aumann, 1985), the overtaking criterion (Rubinstein, 

1979) as well as the average discounted payoff, which we have adopted. They may be 
games of complete information or they might be characterized by one of many different 

specifications of incomplete information. Some folk theorems identify sets of payoff 

vectors which can be supported by Nash equilibrium; of course, of more interest are those 

folk theorems which identify payoffs supported by subgame-perfect equilibrium. 

 Our paper develop Benoit and Krishna’s (1985, 1993) idée developing a new folk 

theorem applied for finite repeated games. Player’s strategies are “trigger” strategies. 

Players start by adopting a cooperative strategy and will play the same strategy as long as 

the other players also play cooperative strategies. If one player deviates from cooperative 

strategy (due on greater payoff) starting next stage he will be “punished” and his payoff 

will be “minmax” payoff.  

 Also, we found the conditions (the discount tare level) such that is is possible 

player’s cooperation, and the minimum stage number such that at lest one stage our 

players cooperate.        

Finally we present a study-case for Cournot oligopoly situation for n enterprises 

behavior under finitely and infinitely repeated negotiations, finding the discount factor 

level such that it is possible to enforce a cooperative behavior.      
 

 

2. Literature 
 

The Folk theorem gives economic theorists little hope of making any predictions in 

repeated interactions. However, as the aforementioned examples suggest, it seems that 

negotiation is often a salient feature of real world repeated interactions, presumably to 
enforce co-operation and efficient outcomes. Can bargaining be used to isolate 

equilibrium in repeated games?  
Busch and Wen (1994) analyze the following game: in each period, two players 

bargain - in Rubinstein’s alternating - offers protocol over the distribution of a fixed and 
commonly known periodic surplus. If an offer is accepted, the game ends and each player 

get his share of the surplus according to the agreement at every period thereafter. After 
any rejection, but before the game moves to the next period, the players engage in a 

normal form game to determine their payoffs for the period. The Pareto frontier of the 

                                                   
1 The strongest folk theorems are of the following loosely stated form: “Any strictly individually rational 

and feasible payoff vector of the stage game can be supported as a subgame-perfect equilibrium average 

payoff of the repeated game.” These statements often come with qualifications such as “for discount factors 
sufficiently close to 1” or, for finitely repeated games, “if repeated sufficiently many times.” 



 

 
 

disagreement game is contained in the bargaining frontier. The negotiation game 
generally admits a large number of subgame-perfect equilibrium, as summarized by 

Busch and Wen in a result that seems to be as the Folk theorem in repeated games.  
Considerable effort has gone into introducing considerations that reduce the 

equilibrium set of a repeated game. For instance, depending on the stage game, the set of 
equilibrium payoffs is known to shrink by varying degrees when complexity costs are 

(lexicographically) taken into account (Rubinstein, 1986, Abreu and Rubinstein, 1988, 
Piccione, 1992, Piccione and Rubinstein, 1993), when strategies and beliefs are restricted 

to be Turing-computable (Anderlini and Sabourian, 1995, 2001), or when asynchronous 
choice is allowed (Lagunff and Matsui, 1997).  

Obara (2009) proves a folk theorem with private monitoring and communication 
extending the idea of delayed communication in Compte (1998) to the case where private 

signals are not correlated. 

We should mention that many folk theorem results without communication have 

been obtained recently. However, most of them assume almost perfect monitoring 

(Bhaskar and Obara (2002), Ely and Välimäki (2002), Hömer and Olszewski (2006), and 

Mailath and Morris (2002)).
4 

One exception is Matsushima (2004) that allows for noisy 
private monitoring. However he assumes a certain type of conditional independence of 

private signals as in Compte (1998). The result of this note may be useful to deal with 
noisy correlated private signals even without communication, but that is left for future 

research.  
Olson (1965) was among the first to formally pose the puzzle of group formation 

and cooperation, and this has provoked a large literature seeking to understand group 
behavior. Thorsten and Lim (2009) introduce two incentive mechanisms to sustain intra-

group cooperation with prisoner's dilemma payoffs. They examine three-agent groups 
where relations may either be triadic one person interacting with two others/or tripartite, 

where all agents interact. Due to shirking incentives, sustained group cooperation 
requires a system of endogenous enforcement, based on punishments and reward 

structure and they found that both can ensure cooperation. 

Fudenberg and Levine (2007) proves a Nash-threat folk theorem when players’ 

private signals are highly correlated. Ashkenazi-Golan (2004) assumes that deviations are 

perfectly observable by at least one player with positive probability and proves a Nash-

threat folk theorem. These results, as well as the result of this note, apply to repeated 

games with two or more players. Finally, McLean, Obara and Postlewaite (2005) prove a 

folk theorem when private signals are correlated and can be treated like a public signal 

once aggregated. But this result requires at least three players. 
Also, there is an existing literature that seeks to model institutions and social 

networks in terms of endogenous enforcement. The use of incentive slackness in triadic 
relations to tie strategies across two party games or  domains, has been studied by Aoki 

(2001); Bernheim & Whinston (1990) while exogenous superior information or 
enforcement capability among group members compared to non- group members is used 

in (Fearon & Laitin 1996; Ghatak & Guinnane 1999). Moreover, such an institutional 
arrangement may itself be endogenous (Okada 1993).    

Fong and Surti (2008) study also the infinitely repeated Prisoners’ Dilemma with 

side payments and they found that Pareto dominant equilibrium payoffs are implemented 



 

 
 

by partial cooperation supported by repeated payments. That seems to confirm folk 
theorems for infinitely repeated games.  

The literature on repeated games with different time preferences is still relatively 
small. In an important contribution, Lehrer and Pauzner (1999) have studied how players 

in a repeated game exploit the difference in their time preferences by the intertemporal 
trade of instantaneous payoffs to enhance efficiency. Their paper provides the key insight 

that, by letting the impatient player consume more in the near future and the patient 
player consume more in the farther future, the set of feasible payoff vectors becomes 

larger than the convex hull of IR stage game payoffs identified by the folk theorem. They 
demonstrate that, keeping constant the relative patience of the players, as both become 

arbitrarily patient, they can achieve outcomes in equilibrium that would be infeasible 
were their time preferences identical. 

Benoit and Krishna (1985, 1993) analyze particular folk theorems for finite 

repeated games. They show that under such hypothesis it is possible to reinforce collusive 

equilibrium that not require any binding agreements to ensure that players conform. An 

important example given by Benoit and Krishna show that for constant cost Cournot 

duopoly with linear demand it is possible to obtain enterprises cooperation if finite 

repeated game contains enough stages and discount factor is close to 1.  

 

 

3. The Model 
 

A (one-shot) game, G, in normal or strategic form, consists of a set of n players, 

the strategy sets of the players, and their payoff functions.  

Thus, we define G = (S1, S2,…, Sn; U1, U2 . . . , Un), where Si is player i's strategy space 

and RSU i :  is i's payoff function, where S = S1 x S2 x ... x Sn. The strategy space is 

represented by player’s offers in negotiation process.  

We may also write n

i RSU : as the function whose i-th component is Ui. We 

will assume that the strategy spaces are compact sets and that the payoff functions are 
continuous. G(T) denotes the game that results when G is successively played T times (T 

is a positive integer). Let i  (0, 1) be the i’th player discount factor ant T enough large 

(eventually ). 

For t = 1, 2,.. ., T if Ssi   denotes the outcome of the game G( T) at time t, 

player i's average payoff in G(T) is given by 
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A strategy for player i in the game G(T) is a function si which selects, for any 

history of play, an element of Si.  A Nash equilibrium of G(T) is an n-tuple of strategies 
s

*, such that for all i, and any strategy or for player i: 
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. 

Let N(T) denote the set of Nash equilibrium outcome paths of G(T). We will 

assume that N(1) is not empty.  

 Let 
iu  denote player i's minmax payoff and let mi  Si denote a corresponding 

strategy combination. A payoff vector u  is said to  be  individually rational  if  for  all i: 



 

 
 

ui > vi. Again, for the game G, consider the set of all payoff vectors which may result 
from players' choices (the range of the function U). The convex hull of this set, denoted 

by F, will be called the feasible region of payoffs. Note that in both G and G( T), we are 
restricting attention to pure strategies only. The effect of this restriction is that minmax 

payoffs, which will play a significant role in what follows, may be higher than those 
attainable using mixed strategies.  

The notion of a subgame perfect equilibrium is made precise as follows:  
Definition: The  strategy profile a is a (subgame) perfect equilibrium of G(T) if 

(i) it is a Nash equilibrium of G(T), and (ii) for all T’ < T and all T’ period histories h 
(T’), the restriction of s to  h(T’) is also a Nash equilibrium of G(T –T’).  

 
In our paper we use an alternative offer negotiation game. Each player makes 

offers at every stage but they don’t have the possibility to reject the opponent’s offer. We 

study next two different situations. For the first situation we consider the infinitely 

repeated negotiation and for the second case, the finitely repeated negotiation. 

We suppose there exist in our negotiation game three different types of solutions: 

minmax equilibrium, corresponding to a punishment situation, a cooperation solution and 

a deviation situation.  The relationships between the payoffs of these three strategies are: 

deviation payoff is greater than cooperation payoff that is greater than minmax payoff.  

  

First case: the three phases of the game are: 

 Cooperation phase (T’ periods) from t = 0 to t = T’ – 1, with cooperation payoffs; 

 Deviation phase – one period – for t = T’: with deviation payoff for the player that 

deviate; 

 Punishment phase starts from T’ + 1 phase and continue all the game for the 

player that deviate from cooperative strategy 

 
The variables: 

 vi – cooperative payoff; 

 D

iv – deviation payoff; 

 iu – minmax payoff/punishment payoff ; 

 Relationships: 
ii

D

i uvv  ;  

      - minimum discount factor to cooperate; 

 δi  - player i discount factor. 

  a parameter 
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 that shows the relative gap between deviation from 

cooperation payoff and punishment payoff.  

 T is the number of game stages and T’ is the stage where player i deviates 

from cooperative phase.    

 

A. Infinitely repeated games 

 



 

 
 

First we consider the situation of infinitely repeated game (T =  ). Game solution of 
infinitely repeated game result from next theorem: 

 

Theorem 1. Folk Theorem  

Let G be a static, finite game of complete information and G(∞) the infinitely 

repeated game. Let iu the minmax payoff of G for any player i, so for any payoff vector   

v so that iuv ii )(,  , there exists a minimum level of discount factor 1 , such that 

)1,()(    there exists a subgame perfect Nash Equilibrium that achieves v as average 

payoff. (see proof in Appendix) 
  

This theorem show as also some interesting findings related to player’s behavior: 
 

The minimum level of discount factor such that the cooperation strategy depend 
on relative gain from deviation related on punishment possible to be implemented. 

Starting on these hypotheses we proof the following results: 

 If deviation payoff is close to cooperation payoff then players cooperates in every 
period of the game;  

 If cooperation payoff is close to punishment (minmax) payoff, then cooperative 
situation is not possible; 

 If deviation payoff is very large, then player’s cooperation is not possible for any 

period of the game. 

Corollary 1. If there exist a minimum level for discount factor   , then 
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 . (1) 

This corollary shows the discount factor depends on deviation payoff, cooperation 

payoff and punishment payoff.   
 

Corollary 2.  If deviation payoff is close to cooperation payoff ( C

i

D

i
uu  ) then 0  

and players cooperates in every period of the game. 

 

Corollary 3.  If cooperation payoff is close to punishment payoff ( P

i

C

i
uu  ), then 

1  and cooperative situation is not possible. 

 

Corollary 4.  If deviation payoff is very large, ( D

i
u ), then 1  and players 

cooperation is not possible for any period of the game. 

 

B. Finitely repeated games 

 
In the second situation we consider the finitely repeated negotiation game, where 

T represents the final stage of the game.  The strategies and the payoffs situation still are 
the previous ones. The game phases are: 

 Cooperation phase (t’ periods) from t = 0 to t = T’ – 1; 

 Deviation phase – one period – for t =Tt’; 

 Punishment phase, for T - T’-1  periods (from t = T’ + 1 to t = T).  



 

 
 

  
 The backward induction solution of finite repeated games shows that in every 

period of the game the players must play and repeat the Nash Equilibrium of stage game. 
However, a large number of authors show there exists equilibrium of repeated game 

different from repetition of Nash equilibrium of stage game (see Benoit-Krishna 
Theorem). 

 

Theorem 2. Benoit-Krishna Theorem 

Let G(T) a finite repeated game and 
*s a Nash equilibrium for stage game. Let ŝ a 

strategy such that )()ˆ( *susu  . Then it exists for T enough large, a time limit T’<T, 

such finite repeated game equilibrium is ŝ  repetition for T’ periods and  
*s  repetition for 

T – T’ periods.   

 

Benoit-Krishna theorem does not show the discount factor limit or the minimum 

number of game stages such that players cooperate.  

We solve this problems extending Benoit-Krishna Theorem. 

The first question we answer is: If T is enough large, which is the discount factor 
level starting players became the have a cooperative behavior?   

 

Corollary 5. If the discount factor not exceed 
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 then cooperation is not possible. 

 

Corollary 6. There exists  10, , solution of the equation:  

   01
1' 

AAi

TT

i  ,       (2) 

such that for every  
i

 the players  cooperate for T’ periods.  

 

Corollary 7. If  T is very large, then the condition form C1 is satisfied and we retrieve 

the folk theorem with 
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 , and  

i
.  

   

If we know players discount factors, which is the necessary number of stages (T) 
need to played to be possible the cooperative situation? 

 
Corollary 8.  The minimum number of stages to can obtain a cooperative game for T’ 

stages is 
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 Corollaries proof are retrieved in Theorem 3: 

  

Theorem 3 (Roman).  
Let G be a static, finite game of complete information and G(T) the finitely 

repeated game for T stages. Let iu the minmax payoff of G for any player i, so for any 

payoff vector v so that 1)(,)(,  iuv ii , (there  exists a minimum level of discount 



 

 
 

factor 1 ), for T enough large,  0')(),1,()(  T  there exists a subgame perfect 

Nash Equilibrium that achieves v as average payoff for the first T’ stages and for T-T’ 

stages the Nash equilibrium is the strategy that achieves iu  as average payoff. 

 

Proof. 

We suppose also there exists a deviation payoff, )(max auv i
a

D

i  > vi.  So 

ii

D

i uvv  . vi represent the i’th player cooperation payoff, and  iu represent the 

punishment payoff. 

Player i will play vi for T’ periods with vi payoff, then deviate, and his payoff will 

be )(max auv i
a

D

i  , and for the rest of the game (T-T’-1 stages) all other players will 

punish player i and he will receive minmax payoff iu . 

If  player i cooperates for T periods then his average cooperation payoff is: 
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       (4) 

If  player i cooperates for T ‘ , then deviates at T’ +1 period and for the rest of the 

game (T-T’-1 periods) his payoff will be iu (punishment payoff) then his average 

deviation  payoff is: 
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We found two different situations for our game. The first one give us the discount 
minimum level such that players cooperate (with  T and T’ done), and the second one 

show the minimum number of stages needs to repeat games such that at least T’ periods 
our players cooperates (if discount factor is done).  

So equilibrium condition such that players cooperate is: 
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Case. 1. For given δi > i  we find the minimum stage periods such that players 

cooperate: 
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Case 2. For given T and T’,  1,0i  is solution of equation: 
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Obs. It is easy to show there exists a unique solution of equation (1) in (0,1) interval.   

 

Let 
i

i
 max . So there exists a minimum level of discount factor 1 , such 

that )1,()(    there exists a subgame perfect Nash Equilibrium that achieves v as 

average payoff.         q.e.d. 

 

 

4. Study-case: Cournot oligopoly application 
 

We consider the Cournot case of oligopoly with linear demand functions, with n 

identical enterprises. Let xi denote the quantities of a homogeneous product produced by 

enterprise i. Let    P(X) = a – b X, (and b > 1) be the market clearing price function, 

where X is the aggregate quantity on the market ( 



n

i

ixX
1

). More precisely, inverse 

demand function is 








baXfor

baXforXba
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/,0
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We assume that the total cost for firm i is Ci (xi) = c xi
 .  For simplicity, there are 

no fixed costs for firm i and the marginal cost is equal with average cost and constant, c 

(we assume also c < a/b). Following Cournot suppose that the firms choose their 

quantities simultaneously. Each firm’s strategy space can be represented as ),0[ iS , 

the nonnegative real numbers. In this case a strategy is a quantity choice, xi . From 

players rationality principle, neither firm will produce a quantity xi > a/b (otherwise P(X) 

= 0 and no firm will have a positive profit).  The payoff for firm i will be represented by 

profit function:   ii

n

i

iiiiiii xcxxPxCxXPxx  
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)()()(, .    

 (where 
)1121 ,...,,,...,,( niii xxxxxx   ), quantities vector chosen by other players). 

 

A. One stage game 

a. Non-cooperative game situation  

 
We obtain the Cournot-Nash equilibrium solving for each firm the problem: 
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 The first order conditions for i’s firm optimization problem is both necessary and 

sufficient (if cbax j  /* , as well be shown to be true), it yields: 
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 Solving the linear equation system (8)  we obtain Cournot –Nash solution:  
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which is indeed less than a/b – c, as assumed. 

 

 The i’s player payoff is: 
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 for non-cooperative situation, that represents also the minmax payoff. 

 

b. The cooperative situation 

  
We obtain the solution of cooperative situation solving following problem: 
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where 
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, with equal payoffs for each player. 

 
First order conditions for (10) optimization problem is also both necessary and 

sufficient and we obtain: 
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Total payoff is:  
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and each firm cooperation payoff will be:  
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We can observe that  
i

C

i    for n > 1 and b > 1,  so enterprise’s payoffs are 

greater if firm cooperates (that means they form a cartel)  rather them adopt a non-

cooperative behavior.  

 

c. The deviation situation 

 

 There is another situation which one firm deviate from cooperative behavior 

trying to maximize his payoff (profit). In this case player i maximize his payoff for given 

quantities from cooperative situation: njji
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 First order conditions for (15) optimization problem is also both necessary and 
sufficient and we obtain: 
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and the deviation payoff is  
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 It is easy to verify that    
i

C

ii

D

i xx  ( , so it exist temptation to deviate from 

cooperative situation for any firm i.   

 

B. Infinitely repeated game 

    

 For infinitely repeated game, the minimum discount factor so that companies 

cooperate is : 
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  (see formula 1),  so for our game we obtain: 
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for n > 1. 

We can observe that discount factor depends only on firm numbers in oligopoly. 

 

Table 1. Evolution of minimum discount factor depending on enterprieses 

number 

Enterprises number 
n 

Minimum discount factor 

  

2 0.0535 

3 0.0394 

4 0.0285 

5 0.0212 

6 0.0163 

7 0.0129 

8 0.0104 

9 0.0086 

10 0.0072 

 

C. Finitely repeated game 



 

 
 

 If we consider to need at lest 20 stages of cooperation, for 
i

C

i

C
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 the 

minimum level for discount factor is (0,1) solutions of equation   01
20  AAii   

(see Corollary 6) are presented in table 2.  

 

Table 2. Evolution of minimum discount factor depending on enterprises 

number and for 20 stages of cooperation 

Enterprises number 

n 

Minimum discount factor 

  
A factor value 

 Stage number 

2 0.1127 7.875 20 

3 0.1304 6.667 20 

4 0.1287 6.771 20 

5 0.1220 7.200 20 

6 0.1142 7.758 20 

7 0.1066 8.381 20 

8 0.0996 9.040 20 

9 0.0933 9.722 20 

10 0.0876 10.419 20 

 

 

5. Conclusions 
 

In our paper we present the enterprises behavior on repeated negotiations. Based on 

new folk theorem for finitely repeated games we found conditions such that players 

cooperate at least some stages even backward induction told as this situation is not an 

Nash subgame perfect equilibrium. Other findings in our paper are: 

    

 For infinitely repeated negotiations there exists the possibility to implement a 

cooperative solution if player’s discount factor is close to 1 and cooperative 

payoff are not fare away from deviation payoff and punishment payoffs; 

 If deviation payoff is very large or cooperation payoff is close to punishment 
payoff then it is not possible to obtain a cooperative solution for infinitely 

repeated negotiations; 

 For finitely stages negotiations, first rational solution is to repeat Nash 

equilibrium of stage game every period (backward induction); 

 Another solution for finitely repeated games depends on limited (bounded) 

rationality of players: they starts with cooperative strategies and continue so on 

until one of other players deviate from cooperative strategy. Starting on this 
moment of negotiation, the other players punish deviating player for all periods 

until negotiations end. In this case it is possible to obtain some cooperative stages 
of the game but this situation is more complex; 

 Even we have the minimum stage number, if players discount factor is smaller 
like a certain level, cooperation it is not possible; 

 If the deviating payoff is enough large, the cooperation also it is not possible for 
any period of the game; 



 

 
 

 If the cooperative payoff is closer to the punishment payoff, then cooperation it is 
not possible; 

 There exists a minimum stages number such that it is possible to implement a 
cooperative behavior; 

 If stage number and cooperation stage number are known then it is possible to 

find the discount minimum level such that players cooperate.     

 

Our study-case shows that it is possible to reinforce a cooperative behavior between 

players that play Cournot oligopoly following bounded rationality and trigger strategies. 

Also, we find that discount factor minimum level does not depend on payoff‘s levels, 

only dependency factor is firm number. As long as firm number increases, we obtain a 

lower level of discount factor and if n tend versus infinity then δ is closer to zero and all 

players cooperates all game stages.       
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Appendix. 
 

Proof of Theorem 1 (Folk Theorem).  

Suppose that there exists a pure strategy such that vau )(  (with uv  ) and 

every player will play next strategy: „ I will play ai at stage 0 and I will continue to play  
ai such time previous period all players played a. Anywhere I’ll play  minmax strategies 

for the rest of the game.” How it is this possible for player i to improve his payoff 

playing this strategy? 

We suppose also there exists a deviation payoff, )(max auv i
a

D

i  > vi.  So 

ii

D

i
uvv  . 

Player i will play ai for t periods with vi payoff, then deviate, and his payoff will 

be )(max auv i
a

D

i  , and for the rest of the game all other players will punish player i and 

he will receive minmax payoff iu . 

So average deviation payoff at t stage is:  

i

tD

i

t

i

t

iD uvuu 1)1()1(    

This payoff is greater like vi as long as discount factor δi is smaller like a 

minimum level of discount factor i , given by relationship: 

iii

D

ii vuv   )1(  

So 
i

D

i

i

D

i

i
uv

vv




 .  

Let 
i

i
 max . So there exists a minimum level of discount factor 1 , such 

that )1,()(    there exists a subgame perfect Nash Equilibrium that achieves v as 

average payoff.          

q.e.d. 

 

 

Proof of Theorem 2 (Benoit-Krishna Theorem).  



 

 
 

To proof this theorem we use players rationality principle, so that our players try 

to maximize total payoff. If they play 
*s  strategy T periods then their mean payoff is: 
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If they play for T’ periods ŝ  strategy and Nash equilibrium 
*s  for T – T’ periods 

then expected payoff is: 
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From hypothesis )()ˆ( *susu  , that means )(),()ˆ( *  susu ii  for every player i, 

let be i1 the player such that  it obtain ))()ˆ((min *susu ii
Ii




. So for player i1 we have:  
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So, for each player is better to play at least T’ periods strategy ŝ , that is not a 
Nash equilibrium for stage game.   

          q.e.d.  
 


