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Abstract

Current experimental research seeks to estimate shape and parameterization of

utility functions. The underlying experimental games tend to be “simple” in that

best responses are salient and individual choices consistent, but the analyses ar-

rive at diverging results. I analyze how precision of estimation and robustness

of results depend on the choice models used in the analysis. Analyzing dictator

and public goods games, I find that regression models overfit drastically when

choices exhibit high precision (dictator games), that structural models with sim-

ple error structure (normal or extreme value) do not fit the curvature, and that

random behavior and random taste models do not identify social motives ro-

bustly. The choice process is captured well through the random utility model for

ordered alternatives (“ordered GEV”, Small, 1987).
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1 Introduction

Experimental research in economics has led to a wide range of nowadays consensual

insights. For example, experimental subjects have social preferences (Rabin, 1993,

Levine, 1998, and subsequent work), subjects do not play strict best responses with

respect to any utility function (Rosenthal, 1989, and McKelvey and Palfrey, 1995), but

choices are fairly consistent at the individual level (e.g. Andreoni, 1995a).1 Two in-

fluential papers, Andreoni and Miller (2002) and Goeree et al. (2002), then analyzed

individual choice patterns in dictator game and public goods games, respectively,

for varying tax/subsidy rates and endowments. Their results confirmed the hypoth-

esis that both social preferences and noisiness of choices shape individual decision

making—even in simple donation games, where best responses seem salient.

Current quantitative research therefore estimates social motives in relation to

econometric models specifying noisiness of choice. Such “structural models” come

in three flavors, essentially, and they differ with respect to the location of noise in the

choice process. In random behavior models (e.g. Fisman et al., 2007), subjects de-

viate stochastically from their individually optimal response, i.e. noise affects choice

after the determination on one’s best response. In random taste models (e.g. Cox

et al., 2007), the altruism coefficient fluctuates randomly, i.e. noise sets in prior to the

determination of the best response, and in random utility models (e.g. Cappelen et al.,

2007), the utilities of all options are perturbed randomly (usually i.i.d.).

Conte and Moffatt (2009, 2010) and Cappelen et al. (2010a) highlight that quan-

titative results such as the estimated population weights depend on the assumed struc-

ture of choice. Arguably, such dependence contributes substantially to the disagree-

ment displayed in the current literature on the social motives underlying pro-social

behavior, and thus it puts the underlying, but still unanswered question of Hey (2005)

and Loomes (2005) back onto the agenda: How should choice be modeled to robustly

identify social motives? The existing literature lacks guidance on this fundamental

question, as Card et al. (2011) discuss in detail.

In the present paper, I analyze the choice structure in dictator and public goods

games by revisiting the data of Andreoni and Miller (2002) and Goeree et al. (2002).

The objective is to understand which components of choice models improve precision

1There is further experimental research, e.g. on how choice patterns depend on circumstances

(Forsythe et al., 1994; Hoffman et al., 1994; Andreoni, 1995b). See Camerer (2003) for a survey.
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and robustness in estimating utility functions.2 The main results are that structural

models avoid significant overfitting,3 that random utility models yield qualitative ro-

bustness of identified motives across treatments, and that generalized errors to adjust

kurtosis improve both descriptive and predictive adequacy highly significantly. The

ordered GEV model (Small, 1987) has all three of these attributes, to my knowledge

currently exclusively, and indeed, its quantitative estimates are precise in-sample, it

exhibits insignificant overfitting, and the identified “social motives” (model compo-

nents) are qualitatively and quantitatively robust across treatments. Guided by the

general results, however, additional models may be developed in the future.

In addition, I analyze the reliability of regression models in this context, which

relates to a second current debate. The idea is that if one is interested in quantitative

estimates of treatment effects, as opposed to being interested in the underlying utility

functions as such, then one might circumvent the estimation of “deep” utility param-

eters and use regression modeling. Proponents of structural modeling argue that the

structural constraints reduce overfitting and thereby increase the quantitative robust-

ness of results in relation to say linear regression models (see e.g. Keane, 2010a,b,

Rust, 2010, and Nevo and Whinston, 2010). Proponents of non-structural modeling

argue that the assumption choice probabilities exactly take the say multinomial logit

form is ad hoc and invalid itself.

This debate, too, is one of robustness, as it concerns predictive adequacy with re-

spect to “nearby” treatment conditions. If estimates do not allow for nearby intra- or

extrapolation, they give faulty description of the underlying interdependence and can-

not be considered robust. Quantitative analyses of such robustness in game-theoretic

contexts hardly exist, however. Existing research on predictive robustness has largely

focused on decision making under risk and uncertainty (see e.g. Wilcox, 2008, 2011,

and Hey et al., 2010). Two exceptions are Cappelen et al. (2011) and Blanco et al.

(2011), but the present paper is the first comparative analysis (to my knowledge).

I find that regression models overfit highly significantly if subjects choose with

high precision, which applies to dictator games in my analysis, and in this case, their

estimates are unreliable quantifications of the treatment effects and of the conditional

2Robustness and predictive adequacy will be evaluated by “k-fold cross validation” across treat-

ments: The model is fit to a subset of the treatments, evaluated on the remaining treatments, and the

data set is rotated such that all observations are used exactly once in the evaluation stage.
3The difference between a model’s descriptive and predictive fits is used to measure its tendency to

overfit. Overfitting models implies underestimation of standard errors and possibly biased estimates.
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choice probabilities. If subjects choose with low precision, as in public goods games

in my analysis,4 then the linear approximations in regression models suffice in the

sense that they fit as well as structural models. Even in the latter case, however,

regression models do not yield robust identification of components, and including in-

teraction terms increases overfitting in either case. In contrast, structural assumptions

prevent models from overfitting in either case, and this holds for all choice specifi-

cations in my analysis (the choice specification affects the absolute fit, of course).

Thus, I conclude that structural models, and ordered GEV in particular, are preferable

to regression models in analyses of social donations.

To outline the intuition, by acknowledging the ordering of alternatives, ordered

GEV can represent probability distributions with thin peaks around the utility maxi-

mizer (excess kurtosis), which prevail in high precision games, or flat peaks around

the maximizer (platykurtosis), which prevail in low precision games. Such adjustment

of kurtosis is necessary to obtain efficient estimates and can be captured similarly

with generalized normal errors in random behavior and random taste models—but it

is largely absent in the current literature (an exception is Cox et al., 2007).

Random taste models fit about as well as ordered GEV in the high-precision

dictator games, but they fail to explain choice in public goods games (low-precision

choices seem too volatile to be rationalized effectively through “taste” variation). Re-

gression and random behavior models fit about as well in public goods games, but

they either fit poorly in the high-precision dictator games (regression) or the identified

components are not robust (random behavior). Thus, explaining noisiness of choice

as purely statistical “random behavior” proves inferior to relating it to the respective

utility differences as in random utility models. Finally, the multinomial logit model

of random utility does not allow adjustment of kurtosis, which implies weak levels

of goodness-of-fit, but by virtue of being a random utility model, it achieves quali-

tatively robust identification of components. Thus, all standard models have certain

strengths and weaknesses, and in relation to them, random utility with generalized

errors (ordered GEV) shares the strengths and avoids most weaknesses.

Section 2 reviews the dictator game experiment of Andreoni and Miller (2002)

and the public goods experiment of Goeree et al. (2002). Section 3 describes the

4The two experimental games are both games of social donations, but they differ with respect to

their strategic complexity, and observed choices therefore have either high or low precision. This

can be made quantitatively precise using the hypothetical benchmark model predicting the observed

relative frequencies. Its pseudo-R2 are .579 and .245 in dictator and public goods games, respectively.
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currently leading approaches to model choice in this context. Section 4 discusses the

independence of irrelevant alternatives (IIA) assumption and the ordered GEV model.

Section 5 describes the econometric approach to the analysis. Sections 6 and 7 present

and discuss the results for dictator games and public goods games, respectively. Sec-

tion 8 concludes. The supplementary material contains all parameter estimates, plots

illustrating the results, and further analysis illustrating their robustness.

2 Games and data

Dictator games and public goods games are frequently analyzed experimental games

and represent the standard frameworks to investigate “social donations.” The basic

difference between these games is that public goods games have more than one active

player. In applications, it may be difficult to distinguish between dictator games and

public goods games, however. A donation that is non-strategic in the eye of one per-

son may well be a strategic contribution to a public good (the welfare of the needy) in

the eyes of another, i.e. a dictator game can turn into a public goods game depending

on who is playing it. In turn, if utilities are linear in the opponents’ payoffs, or inde-

pendent of them, then optimal contributions to (linear) public goods are independent

of the opponents’ contributions. In such cases, a public goods game degenerates into

n independent dictator games. Due these cross-relations between dictator and public

goods games, I require a model of social donations to be valid in each of these games.

The data sets of Andreoni and Miller (2002) and Goeree et al. (2002) have been

selected for the analysis for three reasons. First, both of these experiments have been

designed to evaluate consistency of individual choice, which implies that they are

suited to identify the locus of noise. Second, in both experiments, each subject has to

make several decisions (eight and ten, respectively) for varying tax/subsidy rates and

endowments. This allows me to separate noisy donations from altruistic donations,

and thus to identify choice parameters and utility parameters econometrically. This

is a main prerequisite for predictive accuracy. Finally, the choice sets are discrete in

both experiments and of similar cardinality (ranging from 25 to 100 choices), which

suggests that the choice structure may indeed be similar in both cases.5

5Besides, let me also note that these data sets are made readily available by the authors, either on

the Internet (Andreoni and Miller, 2002) or as an appendix (Goeree et al., 2002).
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Table 1: Treatment parameters

(a) Dictator game parameters for payoff functions Eq. (1)

Endowment B 40 40 60 60 75 75 60 100

Hold value τ1 3 1 2 1 2 1 1 1

Pass value τ2 1 3 1 2 1 2 1 1

(b) Public goods game parameters for payoff functions Eq. (4)

Group size |N| 4 2 4 4 2 4 2 2 4 2

Internal return τI 4 4 4 2 4 4 2 4 2 4

External return τE 2 4 6 2 6 4 6 2 6 12

Dictator games

By Andreoni and Miller’s experimental design, the dictator (player 1) can give be-

tween 0 and B tokens to player 2, and each token has value τ1 for player 1 and τ2 for

player 2. Formally, 1’s choice set is S1 = {0,1, . . . ,B}, and the two players’ payoffs

are, for all s ∈ S1,

π1(s) = τ1(B− s) and π2(s) = τ2s. (1)

The three parameters τ1, τ2, and B vary between treatments,6 and overall, the

176 subjects of Andreoni and Miller made eight choices each.7 Table 1a lists the

treatment parameters and Figure 1a reviews the distributions of observations. The

data exhibits typical characteristics of dictator games. For example, the donations

are fairly moderate overall, they are decreasing in τ1 and increasing in τ2. A tobit

regression of donations on (B,τ1,τ2) yields

s1 =−8.172
(8.86)

+0.254
(0.066)

·B−4.348
(1.871)

· τ1 +4.878
(1.838)

· τ2 + ε (2)

where ε has standard deviation σ̂ = 27.645 (the standard errors are provided in paren-

theses). That is, the donation to player 2 is indeed increasing in the budget and in

the donation’s value τ2 for player 2, and it is decreasing in the costs τ1 for player

6I use the term “treatment” to refer to (within subject) variation of the economic environment.
7In one session, the subjects had to make three additional choices. I discard these observations, as

they are available only for a fifth of all subjects.
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1. The regression estimates suggest that the average donation falls by about 4.3 per

unit increase of τ1 and that it increases by about 4.9 on average per unit increase of

τ2. The reliability of such extrapolations is questionable, however, as it requires the

underlying model, the tobit model in this case, to have predictive accuracy.

In their analysis, Andreoni and Miller identified subjects with Cobb-Douglas,

Leontief, and linear utility functions, and with high or low precision in maximizing

utility. These utility functions are special cases of CES utilities

ui(πi,π j) =
(

(1−α) · (1+πi)
β +α · (1+π j)

β
)1/β

, (3)

where (πi,π j) denotes the payoff profile. Cobb-Douglas obtains for β → 0, Leontief

for β → −∞, and linearity for β = 1. Similar CES utility functions have been used

in most other analyses of dictator games (e.g. Fisman et al., 2007, Cox et al., 2007,

Cappelen et al., 2007, and Conte and Moffatt, 2009), and therefore my analysis will

be based on CES utilities, too.8

Public goods games

The experimental design of Goeree et al. (2002, 32 subjects and 10 treatments) varies

the group size n of players consuming the public good as well as external returns τE

and internal returns τI of individual contributions. The costs τK = 5 of contributions

were held constant and the choice sets are Si = {0, . . . ,25} for all players i ∈ N. The

payoff of i ∈ N is, for all s ∈×i∈N Si,

πi(s) = τK · (25− si)+ τIsi + τE ∑
j 6=i

s j. (4)

Table 1b and Figure 1b provide overviews of the treatment parameters and the re-

sulting choices. Again, the basic structure of contributions is fairly standard. For

example, tobit regressing contributions si on the treatment variables (N,τI,τE) yields

si =−4.721
(2.963)

+1.068
(0.515)

·N + 2.231
(0.5308)

· τI +0.8068
(0.1765)

· τE + ε (5)

8I use ui =−(abs(. . .))1/β in case the base in Eq. (3) is negative.
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Figure 1: Experimental observations

Note: For each treatment, transfer ratio (τ1/τ2 or τI/τE ), as well as mean m and standard deviation s of choices are given in parentheses.
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(b) Public goods games of Goeree et al. (2002)
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where ε has standard deviation σ̂ = 8.398. Thus, contributions are increasing in all

treatment variables, internal return, external return, and number of recipients, while

the internal return is of higher quantitative relevance than the external return (although

the external return is multiplied by N − 1). In their analysis, Goeree et al. identified

players with linear and Cobb-Douglas utility functions, which further underlines the

comparability with the data of Andreoni and Miller (2002), as those again are spe-

cial cases of CES utilities. However, other studies additionally identified “conditional

cooperators” (Keser and van Winden, 2000; Fischbacher et al., 2001). Such players

wish to contribute about as much as the other players contribute, i.e. their best re-

sponse functions are increasing with slope close to 1 in the opponents’ contributions.

In the present case, conditional cooperation can be modeled using Leontief prefer-

ences, and besides linear and Cobb-Douglas utilities, Leontief preferences are special

cases of the n-player CES aggregator

ui =
(

(1−α)π
β
i +

α
|N|−1 ∑ j 6=i π

β
j

)1/β
. (6)

Aside from the generalization of CES utilities to n-players, the main difference to the

dictator game analysis will be the requirement that donations must form a strategic

equilibrium in public goods games. The usual approach in (experimental) game the-

ory is to assume that players respond to the distribution of their opponents’ choices

(following McKelvey and Palfrey, 1995, and Turocy, 2005), about which they have

rational expectations. As for public goods games, however, Goeree et al. (2002, Foot-

notes 20,21) propose that players respond to the expected contributions of the oppo-

nents, rather than their full distribution. This approach separates social preferences

and risk aversion, as players with non-linear utilities otherwise are risk averse. Sim-

ilarly, empirical studies separate social motives and risk aversion by assuming that

players respond to the actual contributions of others (e.g. of their reference group, as

in Andreoni and Scholz, 1998, or the government, see Payne, 1998). For the sake of

comparability with these studies, I adopt Goeree et al.’s approach in the following.

3 Current approaches in modeling social donations

This section reviews the models currently used in the literature. Empirical studies on

charitable donations generally use regression models (for a review, see Schokkaert,
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2006), while experimental studies alternatively use structural models to estimate util-

ity functions (e.g. Cappelen et al., 2007, Cox et al., 2007, and Fisman et al., 2007).

Atheoretic regression Regression models are commonly used in analyses of dic-

tator donations, and some regression models are atheoretic in that they are based on

functional forms that are not derived from game-theoretic primitives such as prefer-

ence orderings and utility maximization. The model considered here regresses dona-

tions on treatment parameters (i.e. budget and transfer rates), which also constitutes

the standard approach in empirical analyses of charitable donations (see e.g. Auten

et al., 2002, and particularly recently, Bakija and Heim, 2011). Since donations in my

analysis are discrete, an interval regression with donation si as dependent variable is

required.

si =



































0, if 0.5 > ŝi

1, if 0.5 ≤ ŝi < 1.5

2, if 1.5 ≤ ŝi < 2.5
...

B, if si ≥ B−0.5

with ŝi = α+β1B+β2τ1 +β3τ2 + ε, (7)

and ε ∼ N (0,σ2). As a second, extended regression model, I will consider the model

that additionally contains the first-order interaction terms between the treatment vari-

ables (B,τ1,τ2), i.e. B× τ1, B× τ2, and τ1 × τ2. Such interactions are commonly

considered in experimental analyses, too.

Structural regression and random behavior The basic idea of random behavior

models is that players have deterministic preferences and constant best responses, but

they deviate randomly when making the donation. Random behavior models have

been used for example by Fisman et al. (2007) and Conte and Moffatt (2010). A

similar model structure underlies least squares approaches, which also is used fre-

quently in the literature. Least squares relaxes the distributional assumptions on the

the error term, but it cannot be used here, as predicting the distribution of donations

is impossible without specifying the error distribution.

Formally, let u(s|α,β) denote player 1’s utility from donating s ∈ S1 in a dicta-

tor game, and define BR(α,β) ∈ argmaxs∈S1
u(s|α,β) as the utility maximizing do-
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nation if the utility parameters are (α,β) in Eq. (3). Structural regression models

are non-linear regression models with the best response function as the deterministic

component. For the reasons discussed above, I use an interval regression with latent

variable

ŝi = BR(α,β)+ ε. (8)

I distinguish two such models. In the structural regression model, ε has normal dis-

tribution, and in the random behavior model, ε has a generalized normal distribu-

tion (the exponential power distribution). The former is a fairly standard non-linear

model. I call it “structural” as the deterministic component is not a general non-linear

function, but the best response. The second model is called “random behavior” to

emphasize the behavioral component implied by the generalized error distribution.

Their joint analysis will enable us to look at the relevance of the error specification.

Random taste An alternative approach toward explaining noisiness of choice is to

allow for one’s interest in the opponent’s well-being to fluctuate randomly (Cox et al.,

2007). That is, the altruism coefficient α or “taste” is random. The key limitation of

assuming random taste is that this limits choices to those rationalizable by variations

of α. This limitation does not seem too severe in dictator or public goods games,

where variations of α seem sufficient, but in general the random taste assumption

does not suffice. Formally, the donation in the random taste model is

si = BR(α+ ε,β), (9)

where ε again has a generalized normal distribution. The specification used here

follows Cox et al. (2007): α′ := α/(1−α) has exponential power distribution with

mean m, scale s, shape ρ, i.e. density f (α′) = ρ exp
{

(|α′−m|/s)ρ
}

/2sΓ(1/ρ). The

implied probability that i chooses an action s′i ≤ si equates with F(α∗) where α∗

solves ui(si|α
∗) = ui(si +1|α∗). See Cox et al. (2007, Appendix B) for illustrations.

Random utility assuming IIA The random utility model satisfying independence

of irrelevant alternatives (IIA), multinomial logit, is used very frequently in structural

analyses of experimental data (see Cappelen et al., 2007, and the references in the

next section). Here players maximize utility, while the utilities of the various op-
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tions fluctuate randomly. Hence players tend to deviate from the unperturbed optimal

choice but choose “better” options with higher probability. Similarly to random be-

havior, randomness of utilities may explain all deviations from utility maximization,

but now the probability of deviating to a given alternative depends on the loss that it

induces rather than its distance in the choice set.

Formally, the players are assumed to maximize ũ(s) = λu(s|α,β)+ εs over s ∈

S1, with λ ≥ 0 and εs being i.i.d. extreme value distributed (for all options s ∈ S1).

This distribution of εs yields choice probabilities with the multinomial logit form and

implies IIA (Luce, 1959),

∀s ∈ S1 : Pr(s) = eλu(s|α,β)/ ∑
s′∈S1

eλu(s′|α,β). (10)

4 Random utility without IIA

Random utility models as they are used in experimental game theory generally assume

i.i.d. random components εs. Examples include Anderson et al. (2001, 2002), Kübler

and Weizsäcker (2004, 2005), and Costa-Gomes et al. (2009).9 The independence of

the utility perturbations induces independence of irrelevant alternatives (IIA): when

a choice s ∈ S1 is eliminated from the choice set S1, the relative odds between any

remaining choices s′ and s′′ are unaffected. IIA has been criticized frequently in the

econometric literature, however. Tversky (1972) writes “the addition of an alternative

to an ordered set ‘hurts’ alternatives that are similar to the added alternative more

than those that are dissimilar to it,” and a similar point is made with the red bus-blue

bus example of McFadden (1973).10 General discussions of IIA can also be found in

McFadden (1976) and Samuelson (1985).

If choice sets are ordered, then similarity in Tversky’s sense may relate to the

proximity of choices. This idea has been introduced by Small (1987, 1994).11 Small’s

9This is different in other branches of economics, in particular in modeling demand functions e.g.

for residential location (McFadden, 1978), the use of telephone services (Train et al., 1987; Lee, 1999),

multi-product firms (Anderson and De Palma, 1992), for urban travel (see e.g. Train, 2003, for a

review), and also in modeling voting behavior (Whitten and Palmer, 1996).
10One can commute either by car or by bus, and initially, 50% of the commuters choose either

option. Now a second bus is introduced which is in all ways equivalent to the first one (and capacity

constraints were never an issue). Intuitively, 50% of the commuters still choose to go by car, but under

IIA, only a third of them is predicted to do so.
11The supplementary material contains further results for an alternative models relaxing IIA, a
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“ordered GEV” model essentially introduces a parameter ρ ∈ (0,1] to capture the cor-

relation of utility perturbations between proximate choices and “weights” to capture

how correlation ceases as options become more distant. The way the model is usually

defined, stochastic independence (i.e. multinomial logit) obtains for ρ = 1 and perfect

correlation obtains for ρ → 0.

To define the model, let M ∈N0 denote a bandwidth parameter, and define ρ > 0

and weights wm ≥ 0 for all m = 0, . . . ,M such that ∑M
m=0 wm = 1. In the analysis, I use

Gaussian weights.12 The ordered GEV choice probabilities are

ω(s) =
s+M

∑
r=s

wr−s exp
{

λu(s|α,β)/ρ
}

exp{Ir}
·

exp{ρIr}

∑B+M
t=0 exp{ρIt}

(11)

with inclusive value Ir = ln∑s′∈Br
wr−s′ exp

{

λu(s′|α,β)/ρ
}

for all r ∈ {0, . . . ,B+M}

and nests Br =
{

s ∈ {0,1, . . . ,B} | r−M ≤ s ≤ r
}

. That is, the player first chooses a

nest Br, r ∈ {0, . . . ,B+M}, and secondly he chooses an option s∈ Br in this nest. The

probability of choosing s conditional on having chosen Br is the first factor in each of

the summands of Eq. (11), and the probability of choosing nest Br in the first place is

the second factor above. The products of these probabilities are aggregated over all

neighborhoods containing s. Since every strategy belongs to M + 1 nests, nests are

overlapping and the model is “cross-nested” in the sense of Vovsha (1997). Ordered

GEV also is a special case of “elimination by aspect” (Tversky, 1972), as illustrated

by McFadden (1981, p. 225f).

Figure 2 illustrates the choice pattern implied by varying ρ in the ordered GEV

model. In general, ρ < 1 implies that options with high base utility attract probability

mass away from proximate options. To see this, consider two options with perfectly

correlated utility perturbations (i.e. ρ → 0). Now, the option with the higher base

utility between the two is preferred to the other one with probability one even after

perturbations. The effect is weakened but similar for all ρ < 1. Thus, the choice dis-

tributions have leptokurtosis (excess kurtosis), i.e. narrow peaks and fatter tails than

nested logit model, which further illustrate that models relaxing IIA are not particularly vulnerable

to overfitting. This models improve upon multinomial logit as well, but it is not as accurate as account-

ing for ordering directly (as in ordered GEV) and hence skipped for brevity.
12 That is, wm = fN (M/2,σ2)(m)/∑M

m=0 fN (M/2,σ2)(m) with free parameter σ, fN (µ,σ2) denotes the

density of the normal distribution with mean M/2 and variance σ2. The theoretical bandwidth is set

to be M = B/2 rounded up to the nearest even, but it is practically irrelevant, as the estimated σ will

be rather low. To improve comparability with the other structural models, which require up to four

parameters per component, I assume that σ is constant across components.
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Figure 2: Ordered GEV responses for three stylized utility functions

(a) u(x) =−|xi −12|
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(b) u(x) =−|xi −6|
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(c) u(x) =−|xi −0|
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Note: The OGEV responses, see Eq. (11), are given for choices from {0,1, . . . ,25}, with the standard

deviation of the Gaussian weights (Fn. 12) being 4, the value of ρ being as defined in the plots, and

λ being set such that the choice probability of the option maximizing base utility is 0.15 (to ensure

comparability).

they display in the multinomial logit case ρ = 1. Such distributions capture choice

patterns where the base utility maximizer is chosen with supra-proportional probabil-

ity but not exclusively. Arguably, such choice patterns can be expected if the utility

maximizers are particularly salient. In turn, ρ > 1 allows to express platykurtosis, i.e.

flat peaks and thin tails. Such models are not random utility models in the sense of

(McFadden, 1978), as respective choice probabilities cannot be explained by stochas-

tic utility perturbations, but they may fit choice patterns when utility maximizers are

not salient.

5 Econometric approach to the analysis

This section describes the general approach to the analysis and the two basic measures

for goodness of fit. As indicated before, both Andreoni and Miller (2002) and Goeree

et al. (2002) identified subjects with either linear, Cobb-Douglas, or Leontief utility

functions, and high or low precision. Subject heterogeneity of such discrete nature

is aptly modeled as a finite mixture (McLachlan and Peel, 2000), which in turn is

standard practice in experimental analyses. For example Stahl and Wilson (1995) and

Kübler and Weizsäcker (2004) model heterogeneity in strategic reasoning as finite

mixtures, Harrison and Rutström (2009), Bruhin et al. (2010), and Conte et al. (2011)

model choice under risk, Cappelen et al. (2007, 2010b) model dictator donations, and
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Bardsley and Moffatt (2007) model public good contributions.

To define the finite mixture model, let K denote the set of subject types (“com-

ponents”) in the population, e.g. K = {A,B,C} in a three-component population, let

(νk)k∈K denote the component shares, and for all k ∈ K, let Pk denote the parameter

profile characterizing component k. Now, if o j,t denotes the tth observation of subject

j ∈ J in the data set and if ω(o j,t |Pk) is the probability that j chooses o j,t conditional

on being of component k, the log-likelihood of the finite mixture model is

LL(P,ν|o) = ∑
j∈J

ln ∑
k∈K

νk L( j,k) with L( j,k) = ∏
t

ω(o j,t |Pk). (12)

In the models estimated below, members of different components have different utility

functions and different precision in maximizing their utilities. In conjunction, these

differences encompass the different motivations for their pro-social choices. For this

reason, I will occasionally refer to the identified components as the identified social

motives.

The choice probabilities ω(o j,t |Pk) needed to compute the likelihood follow im-

mediately from the above definitions. The model parameters are estimated by max-

imizing the likelihood function, which I maximize jointly over all parameters. This

helps to avoid certain issues with two-step estimators (e.g. inconsistency and inef-

ficiency, as discussed by Amemiya, 1978, and Arcidiacono and Jones, 2003) and it

allows to extract estimates of the standard errors from the information matrix. I use

the global maximizer CMAES for the initial approach toward the maximum (an evo-

lutionary strategy, see Hansen et al., 2003, and Hansen and Kern, 2004), subsequently

the derivative-free NEWUOA algorithm (Powell, 2008) to search the wider neighbor-

hood of the initial estimates (NEWUOA is a comparably robust algorithm, see Auger

et al., 2009, and Moré and Wild, 2009), and finally a Newton-Raphson algorithm to

ensure local convergence. In order to further ensure global convergence, the above

procedure had been restarted repeatedly varying the starting values.

Descriptive accuracy (model precision) Assessment of the goodness of fit of econo-

metric models are usually based on measures such as Bayes’ information criterion

BIC = −LL+ d/2 · lnO with d as the number of parameters of the model and O as

the number of independent observations (the number of subjects). The term d/2 · lnO

approximates the correction required to offset the fact that additional parameters nec-
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essarily raise the maximum of the likelihood function (for the underlying assump-

tions, see Schwarz, 1978). In finite mixture models, this correction is insufficient and

BIC tends to overestimate the number of components. Biernacki et al. (1999, 2000)

propose to use the complete-data likelihood of the mixture model (which additionally

accounts for the likelihood of the component membership indicators) instead of the

likelihood itself to address this shortcoming. The resulting integrated classification

likelihood (ICL) criterion is derived under assumptions otherwise equivalent to those

of BIC, and can be approximated by

ICL-BIC =−LL+d/2 · lnO+En(τ̂)

with En(τ̂) =−∑
j∈J

∑
k∈K

τ̂ jk ln τ̂ jk with τ̂ jk =
νk L( j,k)

∑k′∈K νk′ L( j,k′)
, (13)

where τ̂ jk is the posterior probability of j’s membership in component k based on

the parameter estimates. The “entropy” En(τ̂) of the classification matrix
(

τ̂ jk

)

j,k

penalizes mixture models with poorly separated, thus superfluous components. I will

use ICL-BIC in order to assess the goodness of fit in-sample. McLachlan and Peel

(2000, Chapter 6) discuss ICL-BIC and alternative measures in more detail.

Predictive accuracy (model robustness) A complementary approach toward model

validation is the assessment of its predictive accuracy, as this specifically measures

the degree to which the model captures the actual data generating process. For a gen-

eral discussion, let me refer to Keane and Wolpin (2007). The predictive accuracy

is especially interesting for models of social preferences, as their lack of robustness

between studies, and even within subjects (Blanco et al., 2011), is a current topic in

experimental analyses. For this reason, I analyze to which degree robustness across

treatments depends on model choice.13

That is, I evaluate predictive accuracy by treatment-based cross validation (Bur-

man, 1989; Zhang, 1993) with non-random holdout samples (Keane and Wolpin,

2007). The data set is partitioned into K = 4 “folds” containing two/three treatments

each. I use the observations from three folds to estimate the parameters and then

13An alternative approach would consider predictions that are both across treatments and across

subjects, e.g. across experiments. While this kind of robustness would be very desirable, it is left as

further research, as it builds on the results derived below and additionally requires analysts to efficiently

capture heterogeneity of subject pools (such as heterogeneity in their composition with respect to social

motives and levels of reasoning), which also is a current research topic.
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Table 2: Partitioning of the data sets to assess predictive accuracy

(a) Dictator game analysis

Treatments used for . . .

Training Validation

{1,2,3,4,5,7}  S1 = {6,8}

{1,2,3,4,6,8}  S2 = {5,7}

{1,3,5,6,7,8}  S3 = {2,4}

{2,4,5,6,7,8}  S4 = {1,3}

(b) Public goods analysis

Treatments used for . . .

Training Validation

{1,2,3,4,5,6,7}  S1 = {8,9,10}

{1,2,3,4,8,9,10}  S2 = {5,6,7}

{1,2,5,6,7,8,9,10}  S3 = {3,4}

{3,4,5,6,7,8,9,10}  S4 = {1,2}

compute their log-likelihood on the fourth fold to gauge their predictive accuracy. By

rotating such that each fold is used exactly once in the validation stage, and aggregat-

ing the likelihoods, I obtain the cross validation-based information criterion denoted

LLOut. Smyth (2000) discusses cross validation in the context of mixture models.

Using
(

P( f ),ν( f )

)

as the parameter estimates if fold S f ( f = 1, . . . ,4) is left out, and

LL(·|S f ) as the log-likelihood using these estimates evaluated on fold S f , this criterion

and its in-sample counter-part is

LLOut =−
4

∑
f=1

LL
(

P( f ),ν( f )|S f

)

, LLIn =−
4

∑
f=1

LL
(

P,ν|S f

)

, (14)

with (P,ν) as the whole-sample likelihood maximizers. The folds used in the analysis

are defined in Tables 2a and 2b. They are defined such that the respective holdout

samples are not “extreme” but different. For example, in the dictator game data,

with fold S3, I use 5 observations per subject for transfer rates 1 : x, x ≥ 1, and one

observation for 2 : 1, to predict donations in case of 2 : 1 and 3 : 1.

Using cross validation, I evaluate robustness in three (partially) complementary

ways. First, qualitative robustness obtains if no superfluous components are identi-

fied. It is assessed by comparing the number of components identified in the whole

sample with the number of components that are robust to cross validation. The for-

mer in-sample optimal number of components is the number that minimizes ICL-BIC,

while the latter out-of-sample optimal number of components is the smallest number

with predictive accuracy LLOut that is not significantly improved upon at α = 0.1 (this

moderate significance threshold is introduced to mildly penalize non-parsimonious

models, similarly to the effect of the BIC correction term in ICL-BIC).
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Second, quantitative robustness is assessed by evaluating the significance of dif-

ferences between training-sample estimates and whole-sample estimates. The possi-

ble approaches to evaluate these differences vary in the data on which the significance

of differences is evaluated. I use two such approaches. On the one hand, I evaluate

the significance on the data folds left out in the respective training samples. This

yields the null hypothesis LLIn = LLOut, which is evaluated in non-nested Vuong tests

where LLIn − LLOut > 0 is significant if it exceeds the BIC correction term signif-

icantly (adopting the suggestion of Vuong, 1989, Eq. 5.9). As this test evaluates a

model’s fallacy to overfit on the training samples, I refer to it as LR test of overfitting.

On the other hand, I evaluate the differences of whole-sample estimates and

training-sample estimates on the whole data set. This tests the robustness of model

estimates with respect to extending the data set from the training sample to the whole

sample. The respective null hypothesis LL(P( f ),ν( f )) = LL(P,ν) is evaluated (for

all folds f ) in Vuong tests without BIC correction, as the parameter spaces have the

same dimensionality and the respective data sets have the same number of indepen-

dent observations. Due to dropping the BIC correction, this is a rather strict test of

quantitative robustness. I refer to it as the LR test of robustness.

6 Modeling choice in dictator games

In the next two sections, I discuss the properties of the choice models with respect

to the dictator and public goods data, respectively. The key information for dictator

games is summarized in Tables 3 and 4 below. All parameter estimates and several

illustrating plots are provided as supplementary material.

First, Table 3 provides an overview of the in-sample fit for all models with up

two seven components. Further components are not required, as the predictive accu-

racy LLout (which has been estimated simultaneously) peaks for all but the random-

utility models at five components or less, and the in-sample fit ICL-BIC drops beyond

seven components for the random-utility models. This corresponds with Andreoni

and Miller (2002), who identified six distinct components in their analysis. Table 3

also lists the results of likelihood ratio tests between the models with the “in-sample

optimal” (by ICL-BIC) numbers of components. I consider differences that induce

p-values less than .01 to be significant. The following summarizes the main observa-
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Table 3: In-sample summary for the dictator games

(a) Descriptive adequacy ICL-BIC =−LL+d/2 · lnO+En(τ̂) (less is better)

Number of components

#Pars One Two Three Four Five Six Seven

Regression 5 4270 3773 3659 3473 3415 3381 3359

Extended regression 8 4274 3777 3657 2976 2918 2898 2879

Structural regression 3 4341 3407 3097 2969 2899 2872 2874

Random behavior 4 4337 3243 3088 2841 2686 2641 2646

Random taste 4 4316 3481 3053 2951 2713 2645 2645

Random utility 3 4724 3923 3258 3086 3042 3010 2935

Ordered GEV 4 4292 3046 2945 2846 2787 2682 2626

(b) LR tests on the descriptive adequacy using the in-sample-optimal number of components

Model 2

Model 1 CLC Regr 7 ExtReg 7 StructReg 6 RBehav 6 RTaste 6 RUtil 7 OGEV 7

Regr 7 3253.3 <<< <<< <<< <<< <<< <<<

ExtReg 7 2718.72 >>> = <<< <<< = <<<

StructReg 6 2812.38 >>> = <<< <<< = <<<

RBehav 6 2566.36 >>> >>> >>> = >> =

RTaste 6 2570.02 >>> >>> >>> = >>> =

RUtil 7 2828.68 >>> = = << <<< <<<

OGEV 7 2520.33 >>> >>> >>> = = >>>

Baseline 1 5814 <<< <<< <<< <<< <<< <<< <<<

Note: “Baseline 1” represents the prediction of uniform randomization, and otherwise, “Model K”

represents the model with K components. CLC=−LL+En(τ̂) is the classification likelihood criterion.

The null hypotheses H0 : CLC(Model 1) = CLC(Model 2) are evaluated in Vuong LR tests accounting

for the entropies En(τ̂), and in non-nested cases also including BIC correction terms (as suggested in

Eq. 5.9 of Vuong, 1989). “≫,≫,>” indicate rejection of H0 in favor of Model 1 with p < .001, .01, .1
(resp.), “≪,≪,<” indicate rejection in favor of Model 2, and “=” indicate no rejection.

tions from Table 3.

Result 6.1 (Descriptive adequacy). By their fit to the whole sample, three tiers of

models can be distinguished. First, the “advanced” structural models (random be-

havior, random taste and ordered GEV) are not significantly different at α = .01,

while all three of them fit highly significantly (p < .01) better than all other models.

Second, the basic structural models (random utility and structural regression) and

the extended regression model are not significantly different, but all of them improve

upon the final model, linear regression.

I call the three best-fitting models “advanced” because all three of them have a
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free parameter to adjust the shape of the error distribution. The random behavior and

random taste models allow for generalized normal errors, which can have leptokurtic

shapes (thin peaks and fat tails) or platykurtic shapes (fat peaks and thin tails), and

ordered GEV allows to adjust kurtosis by varying ρ (as shown in Figure 2). Thus,

with respect to descriptive adequacy, the error specification dominates the error lo-

cation in structural models. The estimated components and utility parameters differ

between models, however, as shown in Table 5 and discussed shortly in detail, and

these differences will affect robustness and predictive accuracy.

Nonetheless, these results illustrate the necessity to capture excess kurtosis in

dictator games, and to relax independence of irrelevant alternatives in these cases

(note that all three “advanced” models violate IIA). With few exceptions (e.g. Cox

et al., 2007), such generalized models are not considered yet. Before discussing these

observations in further detail, let us verify their robustness out of sample (Table 4).

Result 6.2 (Predictive accuracy). Ordered GEV fits significantly better (p < .01) than

all other models—even if we adjust their numbers of components from the in-sample

optimum to the out-of-sample optimum.14 The other two advanced structural models

still fit significantly better than random utility with IIA.

The ordered GEV model of random utility predicts most accurately. In turn,

the components identified by the other two “advanced” models, random behavior

and random taste, are less robust across treatments. In particular, the numbers of

components that remain distinct out-of-sample drop from six to four and five for

random behavior and random taste, respectively. Consequently, their out-of-sample

fit is worse than ordered GEV’s. That is, ordered GEV model does not achieve a

significantly better fit in-sample, but it achieves this goodness-of-fit more robustly.

Result 6.3 (Qualitative robustness). Both random utility models (multinomial logit

and ordered GEV) achieve “precise” and “robust” identification of the number of

components, i.e. the number of components identified in-sample is higher (K = 7)

than those of the other structural models, and all identified components are robust to

cross validation. None of the alternative structural models yields either precision or

robustness in this sense.

14As described above, out-of-sample optimal number of components is the smallest number that is

not significantly improved upon at α= 0.1. Using the in-sample optimal number of components would

further strengthen the result in favor of ordered GEV.
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Table 4: Summary of the out-of-sample analysis of dictator game models

(a) The out-of-sample log-likelihoods LLOut Eq. (14) and optimal number of components

Number of components

Model 1 1 2 3 4 5 6 7

Regr −4291.01 ≪ −3977.01 = −4292.79 < −4250.87 = −4401.51 ≪ −4354.85 ≪ −4221.45

ExtReg −4292.88 ≪ −3995.63 = −4217.06 = −4215.24 ≪ −3779.5 = −4327.79 ≪ −4272.24

StructReg −4363.7 ≪ −3403.32 < −3346.36 ≪ −3140.2 ≪ −3104.82 = −3109.03 = −3103.44

RBehav −4386.88 ≪ −3279.39 < −3231.46 ≪ −2916.91 = −2909.39 = −2919 < −2913.21

RTaste −4474.44 ≪ −3525.55 ≪ −3199.19 < −3154.33 ≪ −2907.17 = −2904.05 = −2902.23

RUtil −4830.86 ≪ −4115.95 ≪ −3537.32 ≪ −3235.43 < −3207.68 < −3192.59 ≪ −3112.67

OGEV −4333.35 ≪ −3157.81 = −3162.53 ≪ −3093.7 < −3047.88 ≪ −2872.41 ≪ −2820.16

Note:≪,≪,< indicate rejection of H0 : LLOut(k Components) = LLOut(k+1 Components) with p <
.001, .01, .1. The log-likelihood LLOut for the out-of-sample optimal number of components (smallest

number of components that is not significantly improved upon at α = 0.1) is set in bold-face type.

(b) Likelihood-ratio tests of LLOut using the out-of-sample optimal number of components

Model 2

Model 1 LL Regr 2 ExtReg 5 StructReg 5 RBehav 4 RTaste 5 RUtil 7 OGEV 7

Regr 2 −3977.01 <<< <<< <<< <<< <<< <<<

ExtReg 5 −3779.5 >>> <<< <<< <<< <<< <<<

StructReg 5 −3104.82 >>> >>> <<< <<< = <<<

RBehav 4 −2916.91 >>> >>> >>> = >>> <<<

RTaste 5 −2907.17 >>> >>> >>> = >>> <<

RUtil 7 −3112.67 >>> >>> = <<< <<< <<<

OGEV 7 −2820.16 >>> >>> >>> >>> >> >>>

Baseline 1 −5814 <<< <<< <<< <<< <<< <<< <<<

Note: “Model K” represents the Model with K components, where K is the smallest number of com-

ponents that is not significantly improved upon at α = 0.1 (see Table 4a). The null hypothesis in the

tests is H0 : LLOut(Model 1) = LLOut(Model 2) and evaluated in Vuong tests for non-nested models;

≫,≫,> indicate rejection at p < .001, .01, .1.

(c) Likelihood-ratio tests on overfitting and robustness of parameter estimates (see Section 5)

LR tests on overfitting for number of components K = . . .

Model 1 1 2 3 4 5 6 7

Regr >>> > >>> >>> >>> >>> >>>

ExtReg >> > >>> >>> >>> >>> >>>

StructReg >>> >> >>> = = = =

RBehav >>> >>> = = = = =

RTaste >>> >>> >> = = > =

RUtil >>> >>> >>> = = = =

OGEV >>> = >>> = > = =

LR tests on robustness for folds . . .

S1 S2 S3 S4

Regr 7 >>> >>> >>> >>>

ExtReg 7 >>> >>> >>> >>>

StructReg 6 = = = =

RBehav 6 >>> > > =

RTaste 6 >> >> = >

RUtil 7 >> = = >>

OGEV 7 > > > >

Overfitting: H0 : LLIn(Model 1) = LLOut(Model 1) evaluated in one-sided, non-nested Vuong tests (with

BIC correction term applied to LLin);≫,≫,> indicate significant overfitting at p < .001, .01, .1.

Robustness: H0 : LL(P( f ),ν( f )) = LL(P,ν) is evaluated for all folds f ∈ {1,2,3,4}, see above.
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The observation that identified motives may become indistinct out of sample

would explain the lacking robustness of behavior across games currently discussed

in the literature (e.g. Blanco et al., 2011) and the lacking robustness across studies

shaping the literature. Apparently, only random utility models with or without IIA

yield qualitative robustness in dictator games such as those analyzed here.

To see why, let us next look at Table 5. It describes the identified subject types

(using the whole sample) for both in-sample and out-of-sample optimal number of

components. In all cases, strictly egoistic and strictly Leontief subjects are identi-

fied (components 1 and 2, respectively). These subjects do not deviate from utility

maximization, and hence their identification does not depend on the assumed error

structure. In the whole sample, both random behavior and random taste identified

four additional components containing “noisy” players, but only two or three of them

(respectively) are robust to cross validation.

As for random behavior, the components number 4–6 in Table 5 are indistinct

out-of-sample, and these components comprise 42% of the subjects. The only sub-

stantial difference between random behavior and ordered GEV is the difference in the

location of the error. Hence, this location affects the robustness. As an illustration,

consider the extreme case that a model is fitted to data for a 3 : 1 transfer ratio, i.e.

τ1 : τ2 in Eq. (1), and is used to predict data for a 1 : 1 or 1 : 3 transfer ratio.15 In

case 3 : 1, the subjective value of a token is substantially higher than in case 1 : 1,

even for altruistic subjects. As a result, the observed standard deviations differ be-

tween treatments (see also Figure 1a). Primarily, the variances of “intermediately

precise” players adapt to changes in the transfer ratios. The random behavior model

requires this subjective value to not affect the standard deviation of choices, however.

Thus, it does not allow robust identification of the intermediately precise components

(numbers 4–6), which become indistinct out-of-sample.

To be more specific, Table 4c shows that the random behavior model does not

predict behavior in fold S1 robustly, i.e. in treatments 6 and 8 where observations have

the highest variances in absolute terms. Random utility modeling, in contrast, posits

that the probability of chosing a given option is inversely related to its opportunity

costs—and the opportunity costs depend on the transfer ratio.16 This reduces the

15The in-sample/out-of-sample ratios used in the analysis are far less extreme, see Table 2a, but the

tendency is similar.
16For a more explicit analysis of such optimization incentives, see Battalio et al. (2001).

22



Table 5: The components estimated by the “advanced models” for the whole sample,

using either the in-sample or the out-of-sample optimal number of components

Components

Model #1 #2 #3 #4

#5 #6 #7

Random behavior

In-sample op-

timal number

−0.757 10.193

0.238 0

0.251 −67.791

0.142 0

0.501 0.49

0.175 35.3
0.347 0.174

0.16 10.9

0.49 −30.759

0.123 27.4
0.097 0.296

0.161 9.1

Out-of-sample

optim. number
−0.89 9.586

0.239 0

0.303 −86.109

0.153 0.2
0.501 0.488

0.191 34.7
0.298 0.407

0.417 14.5

Random taste

In-sample op-

timal number

−0.93 29.431

0.238 0

1.229 −62.287

0.154 4.4
0.999 0.485

0.124 29.3
0.5 0.847

0.176 32.2

0.338 −0.035

0.235 18.8
0.322 0.444

0.073 8.8

Out-of-sample

optim. number
−0.381 4.927

0.238 0

1.018 −55.579

0.154 4.5
0.999 0.485

0.123 29.2
0.5 0.845

0.185 32

0.34 −0.013

0.3 18.4

Ordered GEV

In + Out
−0.769 −0.045

0.25 0

0.291 −79.613

0.142 0

0.5 0.491

0.083 12.7
0.331 −100

0.129 22.2
0.237 −0.374

0.069 10.9
0.361 1.043

0.186 21.6
0.081 0.37

0.141 13.3

Note: For each model and component, a matrix
(

α β
ν σ

)

is given; α,β are the CES parameters, ν is

the component’s weight, and σ is the standard deviation of its member’s choices in treatment 8. The

remaining information for all models and all numbers of components are supplementary material.

significance of violating quantitative robustness in relation to random behavior, and

in the case of ordered GEV to a p-value greater than the threshold .01.

Briefly, note that the relationship between random utility and random behavior is

inverted for the plain models with standard error specification (structural regression

and multinomial logit). As for structural regression, restricting errors to be normal

improves qualitative robustness (five components out-of-sample instead of four) and

avoids significant violations of quantitative robustness for all folds. This corresponds

with the previous discussion, as restricting errors to be normal decreases the degrees

of freedom in fitting purely statistical patterns, which increases robustness, albeit ro-

bustness at a comparably weak goodness-of-fit overall. As for multinomial logit, the

restriction to extreme value perturbations restricts the goodnes-of-fit in all dimen-

sions, including predictive accuracy. This suggests that the generalized extreme value

perturbations in ordered GEV do not simply fit statistical patterns but allow for closer

association of the leptokurtic choice patterns with the underlying utility differences.
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As for random taste models, the reason for the lacking robustness is a little dif-

ferent. By construction, the model relates the choice pattern to utility differences,

albeit to differences in utility parameters rather than utilities itself. Hence, it adapts

to variations of opportunity costs and violates parametric robustness in fold S1 less

significantly than random behavior. Random taste models do not allow to fit “weak

Leontief” subjects, however, i.e. component 4 for ordered GEV in Table 5. Weak

Leontief subjects choose noisily around the minimax choice, with β < −50 in their

utility functions
(

(1−α)π
β
i +απ

β
j )

1/β. If β < −50, however, the weights α are ir-

relevant,17 and hence the noisiness of weak Leontief subjects cannot be explained

by variations of α. In this sense, random taste models are behaviorally incomplete

and their approximation of weak Leontief subjects is not robust out-of-sample. As

Table 5 shows, these weak Leontief subjects are approximated in-sample by compo-

nent number 6, which is indistinct from component 5 (weak Cobb-Douglas) out-of-

sample. This failure to fit weak Leontief choices is quantitatively significant when the

random taste model has to predict behavior in folds S1 and S2 (see Table 4c), where

the Leontief choices are more pronounced than in the other treatments.

The observation that random behavior and random taste models fail to accurately

fit parts of the choice pattern does not imply that these models overfit significantly in

relation what is expected by the BIC correction. The degree of overfitting is the dif-

ference LLIn−LLOut, and I consider it significant if it exceeds the BIC correction term

significantly (Vuong, 1989, Eq. 5.9). Using this criterion, the amount of overfitting is

insignificant for all structural models (Table 4c).

Result 6.4 (Overfitting). Not one of the structural models overfits significantly (p <

.01) if the number of components is chosen adequately (K ≥ 4).

This confirms that the structural models do not overfit in excess of the amount

that is to be expected by adding further parameters. In random behavior and random

taste models, the added components tend to become imprecise and indistinct out-of-

sample, but they are not systematically wrong. This differs in the case of atheoretic

regression, as discussed shortly, and confirms the conjecture voiced in the literature

(Keane, 2010a; Rust, 2010) that structural modeling largely prevents overfitting—

very much in contrast to atheoretic modeling.

The required dimensionality K ≥ 4 is predicated by ICL-BIC in-sample and thus

17Note that
(

(1−α)π
β
i +απ

β
j )

1/β converges to min{πi,π j} regardless of α when β tends to −∞.
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known without cross validation. In addition it is intuitive. It allows for the two com-

ponents with high-precision utility maximizers, egoistic and Leontief, for one com-

ponent with low-precision members (component 3 in the random behavior model has

standard deviation of 35, see Table 5), and for one component with intermediate pre-

cision (type 4 in the random behavior model has standard deviation 15 out of sample).

Nonetheless, the observation that overfitting is insignificant for all structural models

with at least this dimensionality deserves emphasis. It suggests that six observations

per subject suffice to train the structural models, although the parameter space in the

analyzed structural models has a dimensionality that would be considered high by

most standards (up to 35 parameters for 176×8 observations).

Finally, the following result summarizes the main observations on the two athe-

oretic regression models.

Result 6.5 (Atheoretic regression). The linear regression models overfit highly signif-

icantly and improvements of the in-sample fit—achieved by adding either interaction

terms or mixture components—are not robust to treatment-based cross validation.

Apparently, the descriptive accuracy achieved by linear (atheoretic) regression

is misleading in the analyzed dictator games. This again confirms the conjecture

voiced in the literature. The reason is rather obvious: The non-linearity of the best-

response functions in most treatment parameters (in all parameters but endowment

E, that is) cannot be approximated by linear functions and interactions. Since most

subjects tend to maximize utility indeed, as shown by Andreoni and Miller (2002),

their precision is too high to be approximated linearly. While the choice patterns seem

to be captured reasonably well in-sample, although worse than with the advanced

structural models, the predictions are systematically off the mark out-of-sample. In

particular, regression models fail to predict the location of the second mode in the

empirical distributions, i.e. the choices made by the high-precision Leontief subjects.

These systematic mistakes, in turn, imply the significance of overfitting. Having said

that, it seems fair to preview that regression works well in public goods games.
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7 Modeling choice in public goods games

Analyses of public goods games based on random utility models are fairly common

in the experimental literature, but always under the premise that IIA is satisfied.18

Thus, it will be interesting to see how relevant the above observation that IIA need

be relaxed to capture excess kurtosis proves to be in this context. Random behavior

modeling was used by Bardsley and Moffatt (2007), and only they account for sub-

ject heterogeneity by finite mixture modeling. In turn, random taste models or GEV

models are not considered in the existing literature.

The following analysis comprises mixture models with up to four components,

as the out-of-sample fit LLOut drops beyond three components for all but the random

utility models, and ICL-BIC drops beyond four components for the random utility

models (details on this are provided in the supplementary material). The basic (athe-

oretic) regression model regresses contributions on treatment parameters again (group

size, external return, and internal return), while the extended regression model addi-

tionally includes interaction terms. Table 6 summarizes the in-sample fit for all mod-

els and Table 7 describes their out-of-sample fit.19 The main results on the in-sample

fit are summarized first.

Result 7.1 (Descriptive accuracy). There are three tiers of models again. First, re-

gression, random behavior, and ordered GEV fit about similarly well (none of them

fits significantly worse than any other of them at α = .01). Second, multinomial logit

fits significantly worse than ordered GEV, and lastly, random taste does not fit.

Similarly to modeling dictator game choices, the ability to adjust kurtosis in re-

lation to multinomial logit proves important, as implied by the significance of the

difference between multinomial logit and ordered GEV. Contrary to above, the fitted

distributions tend to be platykurtic rather than leptokurtic for about 70% of the sub-

jects, i.e. they exhibit flatter peaks and thinner tails. This corresponds loosely with

ρ = 10 in Figure 2. Ordered GEV models with ρ > 1 do not satisfy the sufficient con-

dition for being random utility models (McFadden, 1978), however. Intuitively, the

18For example, multinomial logit was applied by Anderson et al. (1998) to standard public goods

games, by Offerman et al. (1998), Myatt and Wallace (2008), and Choi et al. (2008) to threshold public

goods games, and by Willinger and Ziegelmeyer (2001) and Yi (2003) to nonlinear games.
19Again, the supplementary material contains all parameter estimates and plots showing that the

empirical distributions are fitted well also qualitatively.
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Table 6: In-sample summary for public goods games

(a) Goodness of fit ICL-BIC =−LL+d/2 · lnO+En(τ̂) (less is better)

Number of components

#Pars One Two Three Four

Regression 5 996 903 881 876

Extended regression 8 1000 911 894 893

Structural regression 3 995 905 891 897

Random behavior 4 996 908 895 900

Random taste 4 1175 1170 1098 1107

Random utility 3 1018 935 941 916

Ordered GEV 4 1005 922 919 893

(b) Likelihood-ratio tests using the in-sample-optimal number of components

Model 2

Model 1 CLC Regr 4 ExtReg 4 StructReg 3 RBehav 3 RTaste 3 RUtil 4 OGEV 4

Regr 4 835.67 = = = >>> > =

ExtReg 4 832.2 = = = >>> = =

StructReg 3 872.23 = = = >>> = =

RBehav 3 871.03 = = = >>> = =

RTaste 3 1073.97 <<< <<< <<< <<< <<< <<<

RUtil 4 876.04 < = = = >>> <<<

OGEV 4 852.74 = = = = >>> >>>

Baseline 1 1043 <<< <<< <<< <<< >>> <<< <<<

H0 : LL(Model 1) = LL(Model 2) with >>>,>>,> indicating p ≤ .001, .01,0.1 in favor of Model 1.

For a detailed description, see Table 3b.

flatness of the peaks implies that deviations from the utility maximizer are compara-

tively likely, i.e. precision is low. The probability of remote choices has to be propor-

tional, though, while the fitted choice probabilities actually drop supra-proportionally

outside the neighborhood of the utility maximizer.

From a more general point of view, platykurtic choice patterns suggest that sub-

jects have an idea of their utility maximizer and randomize fairly uniformly over its

neighborhood. The corresponding two thirds of the subjects (with ρ ≈ 10) are there-

fore closer to random behavior than random utility. The more relevant observation

is, however, that ordered GEV offers the flexibility required to capture such choice

patterns (by allowing for ρ > 1). Thus, although it does not improve upon the explicit

random behavior models with respect to goodness-of-fit here, it provides a general

framework to model social donations. In contrast, the basic random utility model
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(multinomial logit) and the random taste model cannot capture these behavioral pat-

terns. In particular, rationalizing choices by adjusting the altruism coefficient α in

cases where the utility maximizer is not sufficiently salient proves econometrically

ineffective.20

Another difference to dictator games is that the linear approximation used in

regression models seems adequate here. Arguably, the reason is the previous obser-

vation that the utility maximizer is not salient, which implies that noise is comparably

high and that choice patterns can be approximated linearly without much loss. To

quantify the noisiness of choices, let us look at the hypothetical model that predicts

the actually observed relative frequencies in all treatments. It would score a log-

likelihood of −787 and a pseudo-R2 of 0.245. The corresponding pseudo-R2 in the

dictator game data is 0.579. That is, the upper bar for the descriptive accuracy is

rather low to begin with. In relation to this upper benchmark of −787, in turn, the

in-sample likelihood −850 of ordered GEV is good. In order to ultimately assess the

fit of atheoretic regression, let us look at the out-of-sample results next (Table 7).

Result 7.2 (Predictive accuracy). All three modeling approaches (atheoretic regres-

sion, random behavior, and random utility) are in principle predictive. However,

multinomial logit predicts significantly worse than ordered GEV, and the extended

regression model (which includes interaction terms) predicts significantly worse than

the plain regression model. None of these models overfits systematically (at α = .01)

if the number of components is chosen appropriately (i.e. to minimize ICL-BIC).

Thus, in contrast to dictator games, linear approximations suffice in-sample and

do not overfit more than predicted by the BIC correction term. The number of pa-

rameters of the extended model is rather large, however, and thus its BIC correction

is large. Indeed, the model without interaction terms fits significantly better than the

extended model out-of-sample, and in this sense, the extended model does overfit.

Further, in absolute terms, the regression models overfit slightly more than the struc-

tural models, i.e. random behavior and ordered GEV.

Finally, let us look at the robustness of the identified components again.

20To be more precise, strict rationalization of all choices by varying altruism is ineffective, because

the general amount of noise is too high. To see this, compute the α′ = α/(1−α) that explain the mean

observations in the various treatments. The ratio of the highest α′ to the lowest α′ required is 3.08 in

dictator games, and 9.05 in public goods games. Thus, to explain the public goods data, a relatively

large variance of α is required at the individual level, and this in turn overshoots in the treatments

where the external return is very high.
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Table 7: Summary on the out-of-sample analysis of public goods games

(a) The out-of-sample log-likelihoods Eq. (14) and optimal number of components

Number of components

Model 1 1 2 3 4

Regr −996.75 ≪ −950.35 = −941.04 = −944.05

ExtReg −1004.76 < −969.41 = −963.48 = −974.75

StructReg −993.13 < −962.68 < −950.3 = −959.03

RBehav −994.23 ≪ −948.79 = −943.28 = −939.4

RTaste −1291.26 = −1304.69 ≪ −1184.16 = −1184.47

RUtil −1016.17 = −1019.12 < −1014.07 < −983.43

OGEV −1003.39 = −1041.86 ≪ −985.15 < −945.39

Note:≪,≪,< indicate rejection of H0 : LLOut(k Components) = LLOut(k+1 Components) with p <
.001, .01, .1. The log-likelihood LLOut for the out-of-sample optimal number of components (smallest

number of components that is not significantly improved upon at α = 0.1) is set in bold-face type.

(b) Likelihood-ratio tests of LLOut using the out-of-sample-optimal number of components

Model 2

Model 1 LL Regr 2 ExtReg 2 StructReg 3 RBehav 2 RTaste 3 RUtil 4 OGEV 4

Regr 2 −950.35 >>> = = >>> > =

ExtReg 2 −969.41 <<< = < >>> = =

StructReg 3 −950.3 = = = >>> > =

RBehav 2 −948.79 = > = >>> >> =

RTaste 3 −1184.16 <<< <<< <<< <<< <<< <<<

RUtil 4 −983.43 < = < << >>> <<<

OGEV 4 −945.39 = = = = >>> >>>

Baseline 1 −1043 << < < << > = <

H0 : LLOut(M1) = LLOut(M2) with >>>,>>,> indicating p ≤ .001, .01, .1 in favor of M1. For a

detailed description, see Table 4b.

(c) Likelihood-ratio tests on overfitting and robustness

LR tests on overfitting

Model 1 1 2 3 4

Regr = = = =

ExtReg = > = =

StructReg = >> = =

RBehav = = = =

RTaste >>> >>> >> >>>

RUtil = >> > >

OGEV = >> > =

LR tests on robustness for folds

S1 S2 S3 S4

Regr 4 = > > =

ExtReg 4 > >>> > >

StructReg 3 > = = >

RBehav 3 = = = >

RTaste 3 >>> > = =

RUtil 4 = >> = >

OGEV 4 = > = =

H0 : LLIn(Model 1) = LLOut(Model 1), see also Table 4c.
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Result 7.3 (Qualitative robustness). Both random utility models (multinomial logit

and ordered GEV) achieve precise in-sample and robust out-of-sample distinction

of components. In all other cases, the identification is either less precise in-sample

(K < 4) or not robust to cross validation.

Although the ordered GEV model adds neither descriptive nor predictive ac-

curacy in the noisy environment of public goods games, it provides robustness of

identified motives. Again, qualitative robustness applies for both kinds of random

utility models considered here, and in both dictator games and public goods games,

but not for any other model in either of these games. Thus, qualitative robustness of

identified motives is an attribute of random utility approaches, i.e. of relating choice

patterns to utility differences, rather than random behavior models, which match their

statistical properties. As for quantitative robustness (Table 7c), allowing for gener-

alized extreme value perturbations is more adequate than multinomial logit again,

which corroborates the above discussion.

The robustness of ordered GEV seems to come at a price, as the random utility

models catch up with the statistically more flexible random behavior models in terms

of the in-sample fit (ICL-BIC) only as the fourth component is introduced. Intuitively,

this may be inevitable if we seek robustness of identified components, but conversely,

it may also be taken as a suggestion for further research. This is briefly discussed

toward the end of the next section.

8 Conclusion

Recent experimental studies provide quantitative estimates of utility parameters (for

example Cappelen et al., 2007; Cox et al., 2007; Fisman et al., 2007). In contrast to

earlier studies, these studies estimate utility in relation to models of choice, in order

to obtain joint estimates of choice and utility functions, which interact in individual

decision making (Andreoni and Miller, 2002; Goeree et al., 2002). Their estimates

differ, however, as they use different models of choice, and in general, utility esti-

mates differ across studies and even across treatments (Blanco et al., 2011). Such

disarray may possibly be avoided if parameters are estimated in relation to a “homeo-

morphic” model of choice, i.e. a model that exhibits both maximal descriptive fit and

insignificant overfitting. In contrast to choice under risk (Wakker, 2010), however,
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the econometric structure of choice is not well understood in experimental games.

The present study addresses this void by analyzing the structure of choice in two

widely used experimental games, dictator games and public goods games. These are

both games of social donations, and with respect to the precision in utility maximiza-

tion, their combination covers a wide range of choice patterns. Dictator games elicit

rather precise and leptokurtic choice patterns, while public goods games elicit more

uniform and platykurtic choice patterns. In typical applications, it may be not clear

(a priori) where in this range a given game is located, and hence, the identification of

a generally valid model of choice seems desirable. The ordered GEV model of Small

(1987), a random utility model for ordered alternatives, comes fairly close to be such

a model.

The general results are that structural models avoid overfitting (in the “simple”

games analyzed here), that structural models with generalized errors (to adjust kur-

tosis) generally fit well, and that random utility models yield robust identification

of components (social motives). These qualitative observations match with ordered

GEV, which also fits best quantitatively (i.e. uniquely best in some dimensions and

jointly so in other dimensions). As random utility models are used frequently and the

ordering of alternatives is natural, ordered GEV is also an appealing model in this

context, but surprisingly it is yet to be applied in experimental studies.

In contrast, the multinomial logit model of random utility generally fits worse

because it cannot adjust to excess kurtosis in high-precision dictator games or to

platykurtosis in low-precision public goods games, random behavior and random taste

models do not identify components robustly, and (linear) regression models do not fit

in high-precision games. The results suggest that modeling donations and contribu-

tions by ordered GEV will help to alleviate the current issues in utility estimation

for games comparable to dictator and public goods games, and that similarly robust

models may exist in alternative circumstances.

As future research, there seems to be room for improvement in the design of

choice models and for extending the scope of the analysis. As for modeling choice,

ordered GEV has only limited capacity to adjust to platykurtic choice patterns. In

contrast to normally distributed random behavior, the peaks are comparably thin even

for ρ≈ 10 (see Figure 2), which seems to limit its capability to describe low-precision

subjects. Thus, it is conceivable that alternative utility-based models can be developed

that improve upon ordered GEV.
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As for the scope of the analysis, it may be extended by investigating choice pat-

terns (i.e. predictive accuracy, kurtosis, and robustness of identified components) in

alternative circumstances. Such extensions will probably require joint modeling of

the beliefs underlying strategic choice, e.g. by quantal response equilibria (McKelvey

and Palfrey, 1995) such as in the present analysis, level-k modeling (Stahl and Wilson,

1995), or noisy introspection (Goeree and Holt, 2004). For recent comparative analy-

ses, see e.g. Crawford and Iriberri (2007a,b) and Breitmoser (2012). Additionally, one

may extend the analysis by analyzing robustness across experiments (i.e. across sub-

ject pools). The ordered GEV model, which proved robust across treatments, may be

a natural starting point, but additional issues such as the quantification of differences

between subject pools will have to be resolved. Potentially, when strategic choice

is understood in a larger variety of games, cross-comparisons across experimental

analyses will be reliable.
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