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ABSTRACT. This paper suggests a behavioral, preference-based definition of loss aversion for deci-
sion under risk. This definition is based on the initial intuition of Markowitz [30] and Kahneman
and Tversky [19] that most individuals dislike symmetric bets, and that the aversion to such bets
increases with the size of the stake. A natural interpretation of this intuition leads to defining loss
aversion as a particular kind of risk aversion. The notions of weak loss aversion and strong loss
aversion are introduced, by analogy to the notions of weak and strong risk aversion. I then show
how the proposed definitions naturally extend those of Kahneman and Tversky [19], Schmidt and
Zank [48], and Zank [54]. The implications of these definitions under Cumulative Prospect Theory
(PT) and Expected-Utility Theory (EUT) are examined. In particular, I show that in EUT loss
aversion is not equivalent to the utility function having an S shape: loss aversion in EUT holds
for a class of utility functions that includes S-shaped functions, but is strictly larger than the
collection of these functions. This class also includes utility functions that are of the Friedman-
Savage [14] type over both gains and losses, and utility functions such as the one postulated by
Markowitz [30]. Finally, I discuss possible ways in which one can define an index of loss aversion for
preferences that satisfy certain conditions. These conditions are satisfied by preferences having a
PT-representation or an EUT-representation. Under PT, the proposed index is shown to coincide
with Koébberling and Wakker’s [22] index of loss aversion only when the probability weights for
gains and losses are equal. In Appendix B, I consider some extensions of the study done in this
paper, one of which is an extension to situations of decision under uncertainty with probabilistically
sophisticated preferences, in the sense of Machina and Schmeidler [27].
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“A salient characteristic of attitudes to changes in welfare is
that losses loom larger than gains. The aggravation that one
experiences in losing a sum of money appears to be greater
than the pleasure associated with gaining the same amount [...]
Indeed, most people find symmetric [50:50] bets [...] distinc-
tively unattractive. Moreover, the aversiveness of symmetric
fair bets generally increases with the size of the stake.”
(Kahneman and Tversky [19])

1. INTRODUCTION

One of the pillars of what today is called behavioral economics is the notion of loss aversion,
that is, the idea that individuals do not react symmetrically to losses and gains, as measured
from a given reference point. In fact, the disutility experienced as a result of a given loss is
felt more onerously by most people than the utility that would result form a gain of the same
magnitude. There has been numerous empirical justifications of this asymmetry in evaluating
economic prospects, starting from the pioneering work of Kahneman and Tversky [19, 51].

The usefulness of loss aversion, as a behavioral phenomenon, is by now well-understood. Many
of the “anomalies” of Expected-Utility Theory (EUT) — such as the equity premium puzzle [6, 33],
the endowment effect [21], and the status quo bias [47] — have been explained by loss aversion®.
Nevertheless, loss aversion has always been considered as an intrinsic property of Cumulative
Prospect Theory (PT) [19, 51], and was hitherto almost never systematically examined outside
of PT, that is, in other models of decision making that might account for reference-dependent
behavior. Indeed, much of the popularity of PT stems precisely from its providing a theoretical
framework for the behavioral notion of loss aversion, and the way this was done was in terms of
the curvature of the utility function (value function) in PT.

Be that as it may, a proper quantification of this behavioral notion remains problematic today.
Indeed, to this day, and over 30 years after the ground-breaking work of Kahneman and Tversky,
there is no uniquely agreed-upon quantification of loss aversion. The only consensus seemed to be
that loss aversion manifests itself solely in the curvature of the value function u in PT, but the
exact way in which this happens was debated and still is debatable. In fact, all of the definitions
of loss aversion used in the literature? fall in one of the categories of Table 1.

TABLE 1. Definitions of Loss Aversion in the Literature

Reference Definition given

Kahneman and Tversky [19, 51] u(x) < —u(—z), V>0

Wakker and Tversky [53] u(x)—u(y) <u(-y)—u(-z), Ve>y=0
Bowman, Minehart, and Rabin [9] u(y)<u(z), Vz2<0<y

Neilson [38] u(y)/u<u(z)/z, Va<0<y

LCamerer [10] surveys these and other findings.

2See, e.g. Barberis and Huang [4], Barberis et al. [5], Benartzi and Thaler [6], Bowman et al. [9], Kahneman and
Tversky [19], Kobberling and Wakker [22], Koszegi and Rabin [23, 24, 25], Neilson [38], Thaler [50], Tversky and
Kahneman [51], or Wakker and Tversky [53].
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The way in which Kahneman and Tversky initially defined loss aversion is in terms of preferences:
most individuals prefer the status quo to any symmetric gamble, or — equivalently — “losses loom
larger than gains”. Two questions then arise naturally here:

(1) Since Kahneman and Tversky’s definition of loss aversion — which is arguably the most
intuitive definition of loss aversion — is preference-based, why is it that loss aversion has
nearly always been considered within PT? It seems justifiable to examine loss aversion
outside of PT, in a purely preference-based fashion, i.e. behaviorally.

(2) Assuming that the analysis of loss aversion is restricted to PT, why is loss aversion seen
as only a property of the DM’s wtilitarian risk attitude, as measured by the curvature
of his S-shaped value (utility) function? It is tempting to equate loss aversion with the
curvature of the utility function; but this is only a heritage of EUT, where risk attitudes
are entirely captured by the curvature of the vNM utility function, and can be measured
by the Arrow-Pratt [3, 43] indices of risk aversion. In PT, however, one of the constituents
of choice behavior is the intrinsic probability weighting process, and it seems unreasonable
that this aspect of choice behavior be left out of the picture when studying the notion of
loss aversion. If loss aversion is a property of choice behavior, it should also account for the
DM’s probabilistic risk attitude, as a characteristic of the probability weights, and of the
difference between how the DM weights probabilities of gains and probabilities of losses.

If one is not willing to give up on the idea that loss aversion is only a property of the utility
function’s curvature, one should note that it would still be possible to examine loss aversion outside
of PT. Indeed, the notion of reference-dependence, or gain-loss dependent choice behavior, is by no
means an exclusive property of PT?. It has been noted and argued for since the work of Markowitz
[30] who wrote:

“Generally people avoid symmetric bets. This suggests that the [utility] curve falls
faster to the left of the origin than it rises to the right of the origin. (Le., U(X) >
U(-X)|,X >0).”

Even though the term loss aversion was not explicitly used by Markowitz [30], the idea behind
the predominant view that loss aversion is a property of the utility that manifests itself in the fact
that the utility of a given gain is lower than the absolute value of the utility of a loss of the same
magnitude was noted by Markowitz [30], about 60 years ago; so was the idea that people dislike
symmetric bets, which was the definition of loss aversion given by Kahneman and Tversky [19].
Also, the idea of a utility function which is concave on a part of its domain and convex on another
part is also not a property of PT per se, and it has been advocated by Friedman and Savage [14]
in 1948 (although not in the S shape used in PT).

If, on the other hand, one accepts the idea that loss aversion should be viewed as not only a result
of the utility function’s curvature, but also as a consequence of the difference in which probabilities
of gains and probabilities of losses are distorted, then it would still be possible to examine loss
aversion outside of PT. As a matter of fact, the idea that individuals are predisposed to distort
probabilities differently depending on the amount and/or the sign of outcomes (i.e. whether an
outcome is a gain or a loss) can be traced back at least to the work of Mosteller and Nogee [34],
Preston and Baratta [44], and Griffith [15]; and, as Zank [54] notes, if such an asymmetry in the
weighting of probabilities was not a byproduct of loss aversion, then it would have been a mere
coincidence and totally fortuitous. Consequently, any definition of loss aversion formulated strictly

3TFor recent work on reference-dependent behavior outside of PT, I refer to Apesteguia and Ballester [2], Masatlioglu
and Ok [31, 32], Ok et al. [39], or Ortoleva [40], for instance.
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in terms of the utility function automatically disregards the effect of the probability weighting on
the general risk attitude, and hence on the observed phenomenon of loss aversion itself.

Loss Aversion via Preferences, and this Paper’s Contributions. The original definition
of loss aversion given by Kahneman and Tversky [19] is aversion to symmetric 50:50 bets. Al-
though this can naturally be seen as a preference-based definition, few theoretical investigations
of loss aversion in PT were carried out in terms of preferences. Moreover, few have dealt with the
probability weighting process as an inherent constituent of loss aversion, and the ones that were
carried out were done in a context where the objects of choice are lotteries, that is, discrete prob-
ability distributions (see, e.g. Schmidt and Zank [48] and Zank [54]). Accordingly, the definitions
proposed are very specific to that particular case.

Recently, Blavatskyy [8] explored the notion of loss aversion outside of PT, and in a general
framework where outcomes are not necessarily monetary, but with a finite state space and where
the elements of choice are lotteries. Blavatskyy’s [8] definition of loss aversion is behavioral, based
on the properties of a preference over a set of lotteries. However, his definition is essentially
comparative, and an “absolute” notion of loss aversion is defined as “more loss averse than a loss
neutral” preference. The major complication, as the author remarks, is that it is not immediately
clear how to define loss neutrality in that context.

It is the object of this paper to examine loss aversion in a purely preference-based fashion, as in
Schmidt and Zank [48] and Zank [54], but in a model-free environment, i.e. in terms of preferences
that do not necessarily have a PT-representation, and for objects of choice that are more general
than lotteries. Some of the results of this paper can be seen as an extension of previous analyses
of loss aversion carried out in terms of preferences.

The gist of this paper is a particular stance on what loss aversion is, and is arguably a very
natural interpretation of the Markovitz-Kahneman-Tversky view of loss aversion, albeit in a purely
behavioral, model-free manner. I take a diametrically opposite view of loss aversion to that of
Kobberling and Wakker [22] who wrote:

“To a considerable extent, risk aversion as it is commonly observed is caused by
loss aversion.”

I argue that loss aversion is, in fact, a special case of risk aversion, when the latter is defined in
terms of preferences, i.e. as aversion to mean-preserving increases in risk (strong risk aversion) and
preferring the expected value of a prospect to the prospect itself (weak risk aversion). Roughly
speaking, this paper defines loss aversion as nothing more than risk aversion, when restricted to a
special collection of objects of choice: those that are symmetric in a sense that will be made precise
below. The definition proposed here will be shown to be an extension of those of Kahneman and
Tversky [19, 51], Schmidt and Zank [48], and Zank [54].

Specifically, for a preference over a collection of given acts (considered as random variables on
some objectively given probability space), I define two kinds of loss aversion: weak loss aversion
and strong loss aversion. The former is defined as preferring the expected value of any symmetric
act to the act itself, where the symmetry of an act is defined in terms of its distribution function
for the given objective probability measure (Def. 2.2 below). Hence, weak loss aversion is simply
defined as weak risk aversion on the collection of all symmetric acts, and it is an extension of the
intuitive definition of loss aversion given by Kahneman and Tversky as preferring the status quo 0
to symmetric 50:50 bets, since these bets have zero expectation. The latter kind of loss aversion is
defined roughly as strong risk aversion (that is aversion to mean-preserving increases in risk) when
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restricted to the collection of all symmetric acts. Since any two symmetric acts will have equal
means (zero), a preference displays strong loss aversion if — roughly — it preserves second-order
stochastic dominance on the collection of symmetric acts. This proposed definition of strong loss
aversion will be shown to extend the idea of Kahneman and Tversky that, when one is dealing
with bets (binary lotteries), the aversion to symmetric bets increases with the size of the stake.

Moreover, I examine the implications of this proposed approach in PT and show how loss
aversion is a consequence of both tastes, as measured by the utility function (value function), and
beliefs, as measured by the probability weighting functions. Furthermore, I show that when the
probability weights are equal, a sufficient (although not necessary) condition for loss aversion to
hold is that the marginal utility of a given monetary loss is strictly greater than that of a monetary
gain of the same amount, which is more or less the definition of loss aversion given by Koszegi and
Rabin [23, 24, 25] and Wakker and Tversky [53], for instance.

As I byproduct of my analysis, the definition of loss aversion given in this paper is applicable
to situations where the objects of choice are not necessarily lotteries, but can be more general
(continuous) distributions. In practice, this is more relevant since in most applications of PT
to finance and insurance, for instance, one deals with an underlying (financial or actuarial) risk
which has a continuous distribution on the real line or on an interval thereof (see, e.g. Barberis
and Huang [4], Bernard and Ghossoub [7], Carlier and Dana [11], He and Zhou [17], or Jin and
Zhou [18]). In such circumstances, a proper definition of loss aversion does not exist as yet, to the
best of my knowledge.

I also examine loss aversion in EUT, and I show that in that case loss aversion is not equivalent
to the utility function having an S shape. I show that loss aversion in EUT holds for a class of
utility functions that includes S-shaped functions, but which is strictly larger than the collection
of these functions, for it also includes utility functions that are concave-convex of the Friedman-
Savage [14] type over both gains and losses, and utility functions such as the one postulated by
Markowitz [30], for instance.

Finally, under some gain-loss separability and continuity assumptions on the functional repre-
senting the DM’s preferences, I propose an index of loss aversion. These assumptions are verified,
inter alia, by functionals representing PT-preferences or EU-preferences. I then show that under
PT, Kobberling and Wakker’s [22] index of loss aversion coincides with my proposed index only
when the probability weighting functions are identical. In other words, Kobberling and Wakker
[22]’s index of loss aversion (and any other index of loss aversion defined solely in terms of the value
function) overlooks the effect of the difference between the probability weights on loss aversion.

Outline. Section 2 introduces some notation and preliminary definitions. In section 3, I distin-
guish two notions of loss aversion: weak loss aversion and strong loss aversion, by analogy to the
notions of weak risk aversion and strong risk aversion, and I propose a preference-based definition
of each of these notions. I define weak loss aversion as aversion to symmetric acts, and, just
as strong risk aversion is usually defined as aversion to mean-preserving increases in risk (e.g.
Rothschild and Stiglitz [46]), I define strong loss aversion as aversion to a special kind of mean-
preserving increase in risk — or, equivalently, as strong risk aversion when restricted to a particular
class of symmetric acts. Section 4 examines the implications of these definitions in PT, and gives
necessary and sufficient conditions for each to hold. Section 5 considers the specific case of EUT.
In particular, I show that in EUT loss aversion is not equivalent to the utility function having an
S shape. In section 6, I propose an index of weak loss aversion as well as an index of strong loss
aversion for preferences that are gain-loss separable and adequately continuous, as defined later on.
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Finally, section 7 concludes. Appendix A contains most of the proofs and some related analysis.
Appendix B suggests two possible extensions of the work done in this paper: (i) the first is an
extension to non-monetary outcomes, where the set of consequences is an arbitrary linearly ordered
space; and (ii) the second is an extension to situations of decision under uncertainty, where the
DM'’s preference is probabilistically sophisticated in the sense of Machina and Schmeidler [27].

2. PRELIMINARIES

2.1. Setup and Some Definitions. Situations of decision under risk can be formulated as sit-
uations where (S,%, P) is an objectively given probability space, and a DM has preference >
over elements of B (X), the space of all bounded, real-valued, and ¥-measurable functions on S.
Henceforth, the objective probability measure P on (S, ) will be fixed and taken as given.

Let BT (X) denote the cone of nonnegative elements of B (%), and let B; (X) denote the linear
space of all simple, real-valued, and ¥-measurable functions on S. That is, B, (X) is the collection
of finite linear combinations of indicator (characteristic) functions of sets in X. Let B (X) denote
the cone of nonnegative elements of B (X), and, for each C' € X, let 1¢ denote the indicator
function of C.

For each n € N, let B, (X) denote the subset of B, (X) consisting of those simple functions
taking on n distinct values. Using the probability measure P, each collection By, (X) will be
identified with the collection £, of all lotteries on R assigning positive probability to only n
distinct values. Elements of £, take the following form:

(2.1) (a17p1§---§anapn)
for some {a1,09,...,a,} C R, with oy # o for i # j, and some {p1,p2,...,pn} < [0, 1] such that
Z?:lpz’ = 1.

The set S is interpreted as the set of all states of the world, and elements of B (3) are interpreted
as the acts over which a decision maker (DM) has a (strict) preference >. Weak preference > and
indifference ~ are defined from strict preference > in the usual manner. Finally, I will also assume
that f ~ g for any f,g € B (X) that are identically distributed under P.

If one denotes by 0 the constant act g € B (X) yielding 0 in each state of the world, and if one
interprets 0 as the status quo, then one can think of elements of B (X) as deviations from the status
quo. The DM can then be seen as having a preference > over deviations from the satus quo.

Finally, each a € R will be identified with the constant act h € B (X) yielding a in each state
of the world. Any notation of the form a > g (resp. g > a), with a € R and g € B (X), will mean
h > g (resp. g > h), where h € B (X) is the constant act yielding a in each state of the world. The
same applies to weak preference > and to indifference ~.

An element f of B(X) is said to have no mass points if for any z € R, Po f~! ({z}) = 0. In
particular, f is said to have no mass point at zero when Po f~'({0}) = P({se€ S: f(s) = 0}) = 0.

Definition 2.1. For any f € B (X) let:

(1) Gy (t):==P({seS: f(s) =t}); and,
(2) F(t):=P({seS: f(s) <t}).
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Note that if f € B(X) has no mass points, then Gf (t) = P({se€ S: f(s) > t}) and Fy (t) =
P({seS: f(s)<t}). In particular, if f has no mass points, then Gy is simply the decumulative
distribution function (or survival function) of f for the probability measure P.

2.2. Comparative Risk. The literature on comparative risk (“increasing risk”) from which some
of the definitions appearing in Definition 2.2 are drawn is vast. I refer to Hadar and Russell [16],
Miiller [36], or Rothschild and Stiglitz [46], for instance.

Definition 2.2. An act h € B (X) is called symmetric around the status quo, or simply symmetric,
if for all ¢ > 0, one has:

(2:2) Gy (t) = Fy (=)
For any f,g € B (X) it is said that:

(1) g dominates f in the sense of first-order stochastic dominance, and one writes g > rea S
when F, (t) < Fy (t), for all t € R. If, moreover, the inequality is strict for some ¢y € R,
then g is said to dominate f in the sense of strict first-order stochastic dominance, and one
writes g >, f;

(2) g dominates f in the sense of second-order stochastic dominance, and one writes g >__, f,
when §* F, (t) dt <§* Fy(t) dt, for all z € R. If, moreover, the inequality is strict for
some g € R, then g is said to dominate f in the sense of strict second-order stochastic
dominance, and one writes g > _, f;

(3) g is a Mean-Preserving Increase in Risk of f if f and g have the same mean, and f >__, g.
If, moreover, f > _, g then g will be called a Strict Mean-Preserving Increase in Risk of f;

(4) g is a Mean-Preserving Spread of f if f and g have the same mean, and there are some
t1,t9 € R with t1 < t9, such that:

(a) Fy — Fy is nondecreasing on (—o0,t;);
(b) Fy — Fy is nonincreasing on (1, t2); and,
(c) Fy — Fy is nondecreasing on (2, +00).

(5) g is obtained from f by a Single Crossing if there exists some ty € R such that:

(2.3) Fy(t) = Fy (t) for all t < to, and F (t) < Fy (t) for all t > tg

(6) g has a thicker right tail than f if G, (t)
(7) g has a thicker left tail than f if Fj (—t)
(8) g and f are adapted if G4(0) = G (0).

Gy (t), for all t > 0;
F

=
> Fy (—t), for all ¢t > 0;

Clearly, if an act g dominates an act f in the sense of first-order stochastic dominance, then, in
particular, g has a thicker right tail than f. The converse, however, needs not be true. Moreover,
any two symmetric acts which have no mass point at zero are adapted. However, as soon as one has
a mass point at zero this might not hold. In particular, any two symmetric acts which have no mass
points are adapted. Also, any two symmetric acts have equal means, namely zero. Finally, (2.3) is
usually referred to as the “Single Crossing Condition”, and if g is a Mean-Preserving Spread of f
then g is obtained from f by a Single Crossing, but the converse is not true (see Miiller [35, 36]).
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In what follows, BS (X) will denote the collection of all elements of B () that are symmetric:

(2.4) BS (%) := {feB(Z):Gf (t) = Fy (—1), vt>o}

2.3. Weak and Strong Risk Aversion. The following definitions are the standard way in which
risk aversion is defined in terms of preferences, rather than utility functions. A preference displays
weak risk aversion if the expected value of a lottery is preferred to the lottery itself. More generally,
weak risk aversion is defined as follows.

Definition 2.3. The preference > over B (X)) is said to be weakly risk averse (resp. weakly risk
neutral) if for any f € B (X) the following holds:

(2.5) jf dP > f (resp. Jf P ~ f>

A preference is said to display strong risk aversion if for two acts f and ¢ that have the same
mean, and f dominates g in the sense of second-order stochastic dominance, f is preferred to g.
In other words,

Definition 2.4. The preference > over B (X) is said to be strongly risk averse (resp. strongly
risk neutral) if for any f,g € B (X) such that g is a Mean-Preserving Increase in Risk of f, the
following holds:

(2.6) f>g (resp. f~g)

3. TOWARDS A DEFINITION OF L0OSS AVERSION

In this section I give a preference-based definition of loss aversion in terms of the DM’s preference
> over elements of B (). My definition is an extension of the original behavioral definition stated
in Kahneman and Tversky [19] (p. 279), who wrote:

“A salient characteristic of attitudes to changes in welfare is that losses loom larger
than gains. The aggravation that one experiences in losing a sum of money appears
to be greater than the pleasure associated with gaining the same amount [...] In-
deed, most people find symmetric [50:50] bets [...] distinctively unattractive. More-
over, the aversiveness of symmetric fair bets generally increases with the size of the
stake.”

It seems then that there are two characteristics of loss aversion: (i) aversion to symmetric 50:50
bets; and (ii) the aversion to such bets increases with the size of the stake. I will refer to the first
constituent of loss aversion as weak loss aversion, and I will refer to the second constituent of loss
aversion as strong loss aversion.
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3.1. Weak loss aversion. The definition of weak loss aversion as aversion to symmetric 50:50
bets given by Kahneman and Tversky [19] was formulated in terms of bets, i.e. elements of Ls.
Zank [54] generalized this definition to elements of £3. Here, I further generalize this preference-
based definition of weak loss aversion to general acts, i.e. elements of B (X). First, however, I recall
the aforementioned definitions. Although the authors did not explicitly call this phenomenon weak
loss aversion, I will use this terminology in the definitions attributed to them.

Definition 3.1 (Kahneman and Tversky [19]). A DM with a preference > over bets in £y is called
weakly loss averse if, for all x > 0, one has:

(3.1) (0,1) > (x,0.5; —x,0.5)

where (0,1) denotes the constant simple act yielding the payoff 0 with certainty, that is, the act
0.

This definition is often referred to as aversion to symmetric 50:50 bets, and says that a loss
averse individual will always prefer the status quo (with certainty) to any bet paying some x > 0
with probability 0.5 and —z with the same probability. As Zank [54] notes, the requirement that
the symmetric acts be 50:50 bets is not essential to the definition of (absolute) loss aversion; only
symmetry is. He then proposes the following definition:

Definition 3.2 (Zank [54]). A DM with a preference > over lotteries in L3 is called weakly loss
averse if, for all x > 0 and all p € (0,0.5], one has:

where (0, 1) denotes the constant simple act yielding the payoff 0 with certainty.

This definition of weak loss aversion simply drops the requirement that acts be 50:50 bets, but
keeps the essential symmetry requirement: a loss averse individual will always prefer the status
quo (with certainty) to any lottery paying some x > 0 with probability 0 < p < 0.5, —x with the
same probability, and 0 with probability 1 — 2p.

In order to generalize the previous definitions to preferences over elements of B (X), observe
first that the essential requirement is symmetry, and recall that BS (X) (eq. (2.4)) denotes the
collection of all symmetric elements of B (X).

Definition 3.3. The DM’s preference > is called weakly loss averse if for all f € BS (X)\{0} one
has:

(3.3) 0> f
The preference > will be called weakly loss neutral if for any act f € BS(X) one has 0 ~ f.

Definition 3.3 is a natural extension of Definition 3.1 and Definition 3.2. Indeed, f € Lo is
symmetric if and only if it has the form (z,0.5;—z,0.5), for some x > 0. Similarly, f € L3
is symmetric if and only if it has the form (z,p;0,1 — 2p,0; —z,p), for some x > 0 and some
p € (0,0.5]. Recall that 0 denotes the constant act yielding zero in all states of nature, i.e. with
certainty.

Clearly, if > is weakly risk averse (Definition 2.3), then > is weakly loss averse, since symmetric
acts have zero expectation. Hence, weak loss aversion is just a special case of weak risk aversion.
The two concepts coincide on the collection of all symmetric nonzero acts.
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3.2. Strong loss aversion. I referred to the second aspect of the behavioral definition of loss
aversion given by Kahneman and Tversky [19] (p. 279), namely that the aversion to symmetric
fair bets increases with the stake, as strong loss aversion. Schmidt and Zank [48] generalized
the definition given by Kahneman and Tversky [19] from bets to elements of L£3. Here, I further
generalize this preference-based definition to general acts, i.e. elements of B (X), after recalingl the
aforementioned definitions. Here again, although Kahneman and Tversky [19] and Schmidt and
Zank [48] did not explicitly name this phenomenon strong loss aversion, I will use this terminology
in the definitions attributed to them.

Definition 3.4 (Kahneman and Tversky [19]). A DM with a preference > over bets in £, is called
strongly loss averse if, for all x > y > 0, one has

(3.4) (y,0.5; —y,0.5) > (x,0.5; —z,0.5)

In Definition 3.4 above, if y were allowed to be equal to 0 then one would recover weak loss
aversion as a sepecial case of strong loss aversion, since the lottery (0,0.5;0,0.5) is simply the
status quo 0 = (0,1).

Noting that symmetry of the bets is the essential feature of the above definition rather than
their binary nature, Schmidt and Zank [48] generalized this definition to lotteries in L3, as stated
in the definition below.

Definition 3.5 (Schmidt and Zank [48]). A DM with a preference > over lotteries in L3 is called
strongly loss averse if, for all x > y > 0 and all p € (0,0.5], one has:

(3.5) (y,1;0,1 = 2p; —y,p) > (v,p;0,1 — 2p; —x, p)

Letting X := (x,p;0,1 —2p;—x,p) and Y := (y,p;0,1 — 2p; —y,p), where z > y > 0 as in
Definition 3.5, then both X and Y are symmetric, and X is a strict mean-preserving increase in
risk of Y. The essential features of these two lotteries are the following;:

(i) For all » € D one has >, [P{X <t} — P{Y < t}] > 0;

teD, t<r

(ii) For r = —x one has Y] [P{X <t} —P{Y < t}] =p > 0; and,

teD, t<r

(iii) 3 [P{X <t} - P{Y < t}] —0
teD
It can also be easily verified that any two symmetric lotteries X and Y in L3 that satisfy condi-
tions (4) and (5) above are of the form X = (x,p;0,1 — 2p; —x,p) and by Y = (y,p; 0,1 — 2p; —y, p),
with x > y > 0. The same applies to symmetric elements of Lo, i.e. symmetric bets of the form



TOWARDS A PURELY BEHAVIORAL DEFINITION OF LOSS AVERSION 11

(,0.5; —x,0.5), with the exception that, in this case, condition (4) above is superfluous. In-
deed, fix any symmetric X,Y € £5. Then X and Y are of the form X = (z,0.5;—x,0.5) and
Y = (y,0.5; —y,0.5) (and so condition (4) is automatically verified). Then, 0 < y < x if and only
if condition (5) above holds (with D = {—z, —y,y,z} in this case).

Definition 3.6. For any f,g € B(X), it is said that g is a Symmetric Mean-Preserving Spread in
Symmetric Act of f when:

(1) both f and g are symmetric; and,
(2) g is a Mean-Preserving Spread of f.

If, in addition, f and g are adapted, it is then said that g is an Adapted and Symmetric Mean-
Preserving Spread in Symmetric Act of f.

Since any two symmetric acts have equal means, g € B (X) is a Symmetric Mean-Preserving
Spread in Symmetric Act of f € B(X) if and only if both f and g are symmetric and there are
some t1,ty € R with 1 < t9, such that:

(1) Fy — Fy is nondecreasing on (—0,t1);
(2) Fy, — Fy is nonincreasing on (t1,t2); and,
(3) Fy — Fy is nondecreasing on (to, +00).

Definition 3.7. For any f,g € B(X), g is called a Symmetric (resp. Strict Symmetric) Mean-
Preserving Increase in Symmetric Risk of f when:

(1) both f and g are symmetric; and,
(2) g is a Mean-Preserving (resp. Strict Mean-Preserving) Increase in Risk of f.

If, in addition, f and g are adapted, it is then said that g is an Adapted and Symmetric (or
Strict Symmetric) Mean-Preserving Increase in Symmetric Risk of f.

Since any two symmetric acts have equal means, g € B (X) is a Symmetric (resp. Strict Sym-
metric) Mean-Preserving Increase in Symmetric Risk of f € B (X) if and only if both f and g are
symmetric and f >, g (resp. f >_, 9)-

The lotteries X := (z,p;0,1 —2p; —x,p) and Y := (y,p;0,1 — 2p; —y,p) in Definition 3.5 are
adapted, symmetric, and such that X is a Strict Mean-Preserving Increase in Risk of Y’; that is,
X is an Adapted and Strict Symmetric Mean-Preserving Increase in Symmetric Risk of Y. This
motivate the following definition of strong loss aversion:

Definition 3.8. The DM’s preference > is called strongly loss averse if for all f,g € B (X)\{0}
such that ¢ is an Adapted and Strict Symmetric Mean-Preserving Increase in Symmetric Risk of
f, one has:

(3.6) f>g
Equivalently, > is strongly loss averse if for all f,g € BS (X)\{0} that are adapted and such
that f >_, g, one has f > g.

Clearly, if > is strongly risk averse (Definition 2.4), then > is strongly loss averse. Hence,
strong loss aversion is just a special case of strong risk aversion. Moreover, a preference displays



12 MARIO GHOSSOUB

strong loss aversion if it preserves (strict) second-order stochastic dominance on the collection of
all symmetric and adapted acts.

4. Loss AVERSION IN CUMULATIVE PROSPECT THEORY

4.1. Cumulative Prospect Theory (PT). A PT-DM is defined as a DM whose choice behavior
is described by PT [19, 51]. PT has four major components that distinguish it from EUT, as a
paradigm for decision making under risk. First, the carriers of value are deviations of wealth from a
reference level (the status quo), rather than values of wealth. Second, the PT-DM reacts differently
towards gains and losses, and his risk attitude is represented by an S-shaped value function that is
concave on positive outcomes and convex on negative outcomes, exhibiting diminishing sensitivity
on both domains. Third, individuals do not value random outcomes using probabilities but base
their decisions on distorted probabilities. Fourth, the PT-DM exhibits loss aversion, i.e. losses
“matter” more to him than gains.

Definition 4.1. The value function v is defined as follows:

wo-{ T

where ut : RY — R and v~ : RT — Rtare both concave, strictly increasing, continuously
differentiable, bounded, and take the value zero at zero. Then the value function u is typically
S-shaped.

The third component of the PT-DM'’s preference representation is the probability weighting.
Probabilities (given by the reference probability measure P) are distorted differently if they cor-
respond to probabilities of losses (negative deviations from the status quo) or gains (positive
deviations from the status quo). They are respectively denoted by T and T~ and defined as
follows:

Definition 4.2. The probability distortions (or probability weighting functions) are the mappings
TF:[0,1] — [0,1] and T~ : [0,1] — [0, 1] such that:

(1) TT(0) =T~ (0) =0 and T+ (1) = T~ (1) = 1;

(2) T* and T~ are strictly increasing and differentiable.

Under PT, the DM’s preference > over elements of B (X) has a representation in terms of a
functional V7 defined below.

Definition 4.3. For a given f € B(X), define the functional
vPT . B(X) - R

4.

42 FVPT(f)

by

(4.3) VL () =V () =V (f)

where for each f € B(X), f* = maxz (f,0) is the nonnegative part of f, f~ = (—f)" is the
nonpositive part of f. Moreover,

+00 +0
vt (f+)=j0 T (G (o) (£) d and V™ (f—)zj0 T (G sy () dt,
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and " and ™ are given in Definition 4.1, and T+ and T~ are given in Definition 4.2.

4.2. Weak and Strong loss aversion for PT preferences.

Proposition 4.4. Let > be a DM’s preference over acts, i.e. elements of B (X). Suppose that >
has a representation in terms of a PT functional VT . Then the DM is weakly loss averse if and

only if
;7T (Gy () dut (b)

TET (G (1) dum (t)

(4.4) 0< Q. (f):= <1, VfeBS(2)\{0}

Moreover, the DM is strongly loss averse if and only if for any f,g € B (X)\{0} such that g is
an Adapted and Strict Symmetric Mean-Preserving Increase in Symmetric Risk of f, the following
holds:

(1) §; T (Gy(t) du™ (t) < T~ (Gg(t)) du™ (t) whenever
+oo TH(Gy (1) du® (t) = §57 T (Gy (1) du” (t);
2) §;~ TJr (Gg () du*(t) <§;” TJr (Gy (t)) du™ (t) whenever
T~ (Gy (1) du™ (t) = §g " T~ (Gy (1) du™ (t); and,

+oO [P+ (o (t))_T+(G (t))]dut (1)
Q i A !
(3) 2 (9, f) T[T (G (0)-T— (G (1))]

Proposition 4.4, the proof of which is given in Appendix A, shows that both weak and strong
loss aversion are a consequence of both tastes (as measured by vt and v ™) and beliefs (as measured
by the probability weighting functions 7" and 7). In particular,

(i) If ut and u~ are identical, having the exact same curvature and shape, then weak loss
aversion might persist due to the effect of the probability weights T+ and T ;

(ii) If the probability weights T and T~ are identical, then weak loss aversion might persist
due to the effect of the functions u* and u™;

(iii) Finally, if 77 =T~ and u™ = u™, then Q. (f) = 1, for any f € BS (X)\{0}, and so > is
a weakly loss neutral preference.

Furthermore, if > is a preference over B () having a representation in terms of a PT functional
such that T = T, then a sufficient (although not necessary) condition for weak loss aversion to
hold (i.e. for (4.4) to be verified) is that the marginal utility of a given monetary loss is strictly
greater than that of a monetary gain of the same amount, that is, for any ¢ > 0,

(4.5) (u) () > () ()

This is more or less the definition of loss aversion given by Koszegi and Rabin [23, 24, 25] and
Wakker and Tversky [53], for instance®. Section 5.2 gives examples of utility functions that satisfy
(4.5). Such utility functions include, inter alia, those postulated by Markowitz [30].

4Note that a definition of loss aversion of the form v’ (z) < v’ (—z), ¥ & > 0, can be obtained from the definition
of Wakker and Tversky [53], appearing in Table 1, by taking limits.
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5. Loss AVERSION IN EXPECTED-UTILITY THEORY (EUT) wiTH A STATUS QUO

Suppose that a DM has a preference > over elements of B (X)), with the zero vector 0 interpreted
as the status quo, admitting a representation in terms of an EU-functional. That is, I assume that
there exist some increasing, bounded and differentiable utility function v : R — R such that
u(0) = 0 (so that u o0 = 0, u is nonnegative over R* and nonpositive over R™), and for any two
acts f,g € B(X) one has:

(5.1) f>9 = V()>Vg)

where V (h) := {uoh dP, for all h € B(X), so that V (0) = 0.

Proposition 5.1. For each h € B(X), V (h) can be written as:

(5.2) V (h) = rw P<{h > t}) du () + LM P<{h < —t}) du (—t)

0

Proposition 5.1, the proof of which is given in Appendix A, simply rewrites V (h) as a PT-
functional. This section will show that, even in this setting, loss aversion is not equivalent to the
utility function u having an S shape.

5.1. Weak and Strong loss aversion in EUT. The proof of the following proposition is omitted
since it is immediate.

Proposition 5.2. In this setting, a necessary and sufficient condition for weak loss aversion is
given by

. L+OOP<{f >t}) o (t) dt
5.3

_ FOOP({f > t}) u' (—t) dt <0, VfeBS(%)\{0}
0

A necessary and sufficient condition for strong loss aversion is given by:

» L+OO (P(tg=11) —P(tr=0)] v a
5.4

_L+OO [P({g?ﬂ) _p<{f>t})] u (=t) dt < 0

forall g, f € BS (X)\{0} such that g is an Adapted and Strict Symmetric Mean-Preserving Increase
i Symmetric Risk of f.

5.2. Weak and Strong loss aversion without S-Shaped Utilities. Equations (5.3) and (5.4)
imply that a sufficient (although not necessary) condition for both weak and strong loss aversion
to hold when preferences have an EU representation is that the utility function v : R — R satisfies
the condition

(5.5) u (=t)>u' (t), Vt=0
This is verified by all utility functions of the form

1)(3;) if x = 0
(5.6) u(z) = { —\v(—1x) ifx<0
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for some A\ > 1 and some nondecreasing function v : Rt — R* with v(0) = 0. This class of utility
functions includes the usual S-shaped value function of PT but is strictly larger than the collection
of these functions, for it contains all functions of the form (5.6) for even a convex function v, for
instance (Example 5.3), or a function v of the Friedman-Savage type [14] (Example 5.4), or even
a utility function u such as the one postulated by Markowitz [30] (Example 5.5). In sum, both
weak and strong loss aversion might hold even for utility functions which are not S-shaped.

Example 5.3 (Reversed S-shaped utility). Consider the utility function u; defined by

(5.7) ur (z) = { g(fl)(—x) gi ig

where A > 1 and v; : R™ — R™ is conver and such that v (0) = 0. Then u; has a reversed S
shape as illustrated in Figure 1 below, and satisfies equation 5.5. Hence weak loss aversion holds
in PT and both weak and strong loss aversion hold in EUT with the utility function wu;.

u ()

FIGURE 1. An example of a utility function u of the form given by (5.6) and having
a reversed S-shape. Here, I have taken A = 1.25.

Example 5.4 (Friedman-Savage utility). As an attempt to explain the propensity of economic
agents to engage in gambling and insurance purchasing simultaneously, all the while avoiding
departures from the expected-utility paradigm, Friedman and Savage [14] hypothesized that the
utility function ought to have the shape given in Figure 2.

Consider the utility function us defined by
) v () ifx>0
(5.8) uz () = { —Avg (—z)  ifz<0

where A > 1 and vy : RT — R7 is of the Friedman-Savage type, normalized so that v(0) = 0 as
in Figure 2. Then wus, illustrated in Figure 3 below, satisfies equation 5.5 and hence implies that
weak loss aversion holds in PT and both weak and strong loss aversion hold in EUT.
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X

FIGURE 2. An example of a utility function v of the Friedman-Savage type.

u ()

FIGURE 3. An example of a utility function u of the form given by (5.6), where
the function v is of the Friedman-Savage type and with A = 1.25.

Example 5.5 (Markowitz utility). Markowitz [30, pp. 152-153] gave an example illustrating how a
Friedman-Savage utility function might contradict the commonly observed facts that (i) individuals
of moderate wealth will usually not accept actuarially fair gambles involving a possibility of a
relatively large loss; and, (ii) individuals of either small or rather large wealth do typically engage
in gambling activities (purchase of lottery tickets or participation in stock markets).

He then proposed a utility function that not only avoids such complications but also recognizes
the fact that people typically value losses and gains differently. This is a utility function over
both positive and negative levels of wealth, having three inflection points: the first one on the
negative domain, the second one at the origin (or status quo), and the third one on the positive
domain. The function is first concave, then convex, then concave, and finally convex, and is such
that |u (—x)| > u(x), for all z > 0.
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The utility function given in Figure 4 is of the Markowitz type, with the additional assumption
that there is some A > 1 such that |u (—x)| = Au(z), for all z > 0. That is, for each = # y > 0,
we have |u(—z)|/u () = |u(—y)|/u(y) = A > 1. This is then a utility of the form given by (5.6).

FIGURE 4. An example of a utility function u of the form given by (5.6) and of the
type postulated by Markowitz [30]. Here, I have taken A = 1.25.

6. TOWARDS AN INDEX OF L0OSS AVERSION

In the previous section I defined the notions of weak loss aversion and strong loss aversion
for a DM with preference > over B (X). Now, suppose that the DM’s preference > admits a
representation in terms of a functional ¥ : B (X) — R. That is, for all f, g€ B (%),

(6.1) f>g <= V(f)>V(g)

In this section I propose an index of both weak and strong loss aversion for >, under some
conditions on the functional ¥. Recall that B (X) is a Banach space when equipped with the
supnorm |.|syp defined by | f|lsup := sup{|f (s)| : s € S} < +o0, for each f € B(X) (e.g. [13,
Iv.2.12]).

6.1. An Index of Weak loss aversion. Since the functional ¥ represents the DM’s preference
> it follows that a necessary and sufficient condition for > to be weakly loss averse is that

(6.2) U(f)<W¥(0), VfeBS(X)\{0}

Definition 6.1. The functional ¥ (and, by extension, the binary relation >) is said to be gain-loss
separable if there are mappings ¥* : B (X) > R" and ¥~ : Bt (X) — R™ such that:
(1) for each f e B(X), U (f) = ¥ (fT) — ¥~ (f7), where f* and f~ are respectively the
positive and negative parts of f;

(2) ¥t (0) =¥~ (0) =0, and for each h e BT (£)\{0}, ¥ (k) > 0 and ¥~ (h) > 0.



18 MARIO GHOSSOUB

For instance, preferences having a representation in terms of a PT-functional and those having
an EU-representation are gain-loss separable (Proposition A.5).

Proposition 6.2. If > is gain-loss separable then a necessary and sufficient condition for > to be
weakly loss averse is that
Ur(fn)

(6.3) 0< T (f)

<1, Yfe BS(X)\{0}

In light of Proposition 6.2 (the proof of which is immediate and will be skipped), an index of
weak loss aversion can be defined to be inversely proportional to the shortest distance between 0
and the ratio U (f) /@~ (f7), for f € BS(X)\{0}. For such an index to be meaningful, some
continuity properties of the functional ¥ must be imposed.

Definition 6.3. If > is gain-loss separable, I will say that > is first-kind adequate when the map
® defined below is supnorm-continuous, where:

®: BS(X)\{0} - RT\{0}
fro®(f) =" (1) )0 ()

For instance, preferences having a representation in terms of a PT-functional and those having
an EU-representation are first-kind adequate (Proposition A.6).

(6.4)

Definition 6.4. Let K denote the collection of all supnorm-compact subsets of BS (X)\{0}. If >
is first-kind adequate and weakly loss averse, then for any K € K, I define the Index of Weak loss
aversion of > over K, denoted by ALAX | as follows:

(6.5) ALAK = 1/inf {<I>(f) fe K}

Note that if > is first-kind adequate and weakly loss averse, then for any f € BS (X)\{0},
® (f) € (0,1), and so ALAK € (0,1), for each K € K.

This definition of an index of weak loss aversion for weakly loss averse preferences induces a
natural definition of comparative weak loss aversion as follows:

Definition 6.5. Let >1, >5 be two first-kind adequate and weakly loss averse preferences, and fix
K € K. I say that > is more weakly loss averse than >, over K if ALAX L > ALAfZ. Similarly, 1
say that > is at least as weakly loss -averse as >3 over K if ALAX > ALAK .

If, for each K € K, ALAX > ALAK (resp. ALAX > ALAK)), I say that > is more weakly
loss averse than >9 (resp. at least as weakly loss averse as >3).

6.2. An Index of Strong loss aversion. Defining an index of strong loss aversion is more
complicated. I suggest an approach here, although it does not seem fully satisfactory to me.

Since the functional ¥ represents the DM’s preference >, it follows that a necessary and sufficient
condition for > to be strongly loss averse is that for any f,g € BS (X)\{0} such that g is an
Adapted and Strict Symmetric Mean-Preserving Increase in Symmetric Risk of f (that is, for any
f.g € BS(X)\{0} such that f and g are adapted and f > _, g), one has:

(6.6) v (f)>¥(g)
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Proposition 6.6. If > is gain-loss separable then a necessary and sufficient condition for > to
be strongly loss averse is that for any f,g € BS (X)\{0} such that g is an Adapted and Strict
Symmetric Mean-Preserving Increase in Symmetric Risk of f, one has:

(1) O (fT) > Wt (¢g"), whenever W~ (f7) =V~ (¢7);
(2) O~ (f7) < ¥~ (g7), whenever U (f1) =0+ (g"); and,

(3) 0 < [qﬁ (gF) — U+ (fﬂ]/[xy— (g7) — W~ (f—)] <1, otherwise.
Proof. Immediate. O

Define H as the collection of all ordered pairs (g, f) of acts in BS (X)\{0} x BS (X)\{0} that
satisfy the following properties:

(1) g is an Adapted and Strict Symmetric Mean-Preserving Increase in Symmetric Risk of f;
(2) UF(f*)# ¥F (g7); and
(B) ¥ () #¥ (97)

Let ‘H denote the collection of all subsets of H that can be written as a Cartesian product of
supnorm-compact subsets of BS (X)\{0}. That is,

(6.7) M= {Kl x Ko H: K, Ky e ic}

Definition 6.7. If > is gain-loss separable, I will say that > is second-kind adequate when for
each K x K3 € H, the map Yk, , defined below is supnorm-continuous in each variable, where:

TK17K2 : K1 X Kg — R\{O}

o @)=Y= [0t ) = ()] /o ) - v ()]

For instance, preferences having a representation in terms of a PT-functional and those having
an EU-representation are second-kind adequate (Proposition A.7).

Definition 6.8. If > is strongly loss averse and second-kind adequate, then for each K7 x Ky € H,
I define the Index of Strong loss aversion of > over K1 x Ky, denoted by RLA‘leKQ, as follows:

(6.9) RLAK 2 = 1/[inf inf T(g,f)]

geK1 feKo

This definition of an index of strong loss aversion for strongly loss averse preferences induces a
natural definition of comparative strong loss aversion as follows:

Definition 6.9. Let >1,>2 be two second-kind adequate and strongly loss averse preferences,
and fix K1 x Ky € H. I say that >; is more strongly loss averse than >s over K; x Ky if
RLAQXK2 > RLAQXK? Similarly, I say that > is at least as strongly loss averse as >4 over
Ky x Ky if RLAEY2 > R AK1 K>,
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If, for each K x Ky € H, RLAK* 5> > RL AKX (vesp. RLAKYE2 > RLAKI*E2) T say that
>1 is more strongly loss averse than >, (resp. at least as strongly loss averse as >3).

6.3. An Index of Weak loss aversion for PT Preferences. Let X denote the collection of
all supnorm-compact subsets of BS (3)\{0}, as above. Then by the first-kind adequateness of >,
and as an immediate adaptation of Definition 6.4, one can define an index of weak loss aversion
for PT preferences over each K € K as follows:

Definition 6.10. If > is a PT preference which is weakly loss averse, then for each K € IC, the
Index of Weak loss aversion of > over K, denoted by ALAX | will be defined as follows:

(6.10) ALAE = 1/inf Q. (f): fe K}

where the function Q. (.) is as defined in equation (4.4).
Example 6.11. Kébberling and Wakker [22]’s index of loss aversion is defined as
(6.11) LAp, =229

In the usual parameterization of PT, the value function u is a piecewise-power value function of
the form:

+ if >
(6.12) u(z) = { u*(2) =0

—u (—z) ifx<0

where u* (z) = 2%, for some «a € (0,1), and v~ (z) = Az?, for some 3 € (0,1) and some A > 1.
Moreover, it is usually assumed that @ = 3, and A is often referred to as the “coefficient of loss
aversion”. One can easily verify that, in this case, LAy, = A > 1.

Moreover, if > is a weakly loss averse preference (in the sense of this paper) over B (X) that
admits a representation in terms of a PT functional with the previous parameterization (piecewise-
power value function with equal coefficients), then for any symmetric nonzero act f, one has:

0. (f) = 3w7ﬁ(G7(”)d“+“>__<1> (&T”T+<Gf@» ¢a>cu>

(@) die (1) M\ TP @ 0) o) d
(1 ST (G (1) o () dt
_<L®w><J”T—«a@»¢@>w>emJ)

where ¢ (t) = t*1 = t#~1. Consequently, for each K € I, one has:

(6.13)

1 LA,

6.14 ALAK = = w >1
(6.14) ~ infrex Qs (f) inf o CTH(Gr(1) (t) dt
JER TFT=(Gr (1) o(t) de

It is clear from equation (6.14) that when the probability weighting functions T and T~ are
identical, then for each K € K, one has ALAX = LA;,,. In other words, Kébberling and Wakker
[22]’s index of loss aversion (and any other index of loss aversion defined solely in terms of the value
function) overlooks the effect of the difference between the probability weights on loss aversion.
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6.4. An Index of Strong loss aversion for PT Preferences. Let 7 be defined as in (6.7).
Then by the second-kind adequateness of >, and as an immediate adaptation of Definition 6.8, one
can define an index of strong loss aversion for PT preferences over each K; x Ky € H as follows:

Definition 6.12. If > is a PT preferences which is strongly loss averse, then for each K1 x K5 € H,
I define the Indez of Strong loss aversion of > over Ky x Ko, denoted by RLAK1*EK2  ag follows:

(6.15) RLAK 2 .= 1/[inf inf Q. (g,f)}

geEK1 feKa
where the function Q. (.,.) is defined as in Proposition 4.4.
Example 6.13. If > is a strongly loss averse preference over B (X) that admits a representation

in terms of a PT functional with a piecewise-power value function with equal coefficients, then for
any pair (g, f) € K, one has:

(6.16) Q. (0. f):< L >(J”[T*(Gga))—Twcf@))]¢(t> dt>

LA ) \ §77 [T (Gy (1) =T~ (Gy (£)] ¢(t) dt

where ¢ (t) = t*1 = t#~1. Consequently, for each K; x K5 € H, one has:

RLAKlXKZ = LAklU < 1
i inf inf T[T (Ge(0) =T+ (G ()] o(t) dt
geln TRSERy \ TR (Gy ()T (G7 ()] () dt

(6.17)

Equation (6.17) shows that when the probability weighting functions T+ and T~ are identical,
then for each K1 x Ky € H, RLA[;”(K2 = LA, . In other words, just as I mentioned above,
Kébberling and Wakker [22]’s index of loss aversion (and any other index of loss aversion defined
solely in terms of the value function) overlooks the effect of the difference between the probability
weights on loss aversion.

7. CONCLUSION AND SOME OPEN QUESTIONS

Based on the initial intuitive definition of loss aversion advocated by Kahneman and Tversky
[19] (and noted earlier by Markowitz [30]), I gave a purely preference-based definition of weak loss
aversion (aversion to symmetric acts) and strong loss aversion (aversion to adapted and strict
symmetric mean-preserving increases in symmetric acts). Weak loss aversion is a particular kind
of weak risk aversion, and strong loss aversion is particular kind of strong risk aversion.

I then examined the implications of these definitions under Cumulative Prospect Theory (PT),
and gave a necessary and sufficient condition for each of weak loss aversion and strong loss aversion
to hold. My analysis of loss aversion under PT also generalizes that of Schmidt and Zank [48] and
Zank [54], and shows the importance of the probability weighting functions in the determination of
loss aversion, both absolute and relative. I also examined both weak and strong loss aversion under
Expected-Utility Theory (EUT), and showed that under EUT a sufficient (although not necessary)
condition on the utility for both weak and strong aversion to hold is that the marginal utility of a
given monetary loss is strictly greater than that of a monetary gain of the same amount, which is
the definition of loss aversion usually used in the literature. I showed that, although an S-shaped
utility function which is steeper for losses than for gains implies that both weak and strong loss
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aversion hold under EUT, the class of utility functions for which this is true is strictly larger than
the collection of those S-shaped utilities.

Finally, under some gain-loss separability and continuity assumptions on the functional repre-
senting the DM’s preferences, I proposed an index for both weak and strong loss aversion. These
assumptions are verified, inter alia, by functionals representing PT-preferences or EUT-preferences.
I then show that under PT, Kobberling and Wakker’s [22] index of loss aversion coincides with
my proposed index only when the probability weighting functions are identical. In other words,
Kobberling and Wakker [22]’s index of loss aversion (and any other index of loss aversion defined
solely in terms of the value function) overlooks the effect of the difference between the probability
weights on loss aversion.

The study carried out in Section 6 naturally suggests some questions that are left for future
research. For instance, (i) can an index of loss aversion be defined so as to measure the effects of
both weak and strong loss aversion simultaneously? (ii) Is it possible to define an index of loss
aversion over the collection of all elements of choice, rather than over a specific compact subset
thereof? (iii) How can one define an index of loss aversion for gain-loss separable preferences
without imposing the additional first- and second-kind adequateness conditions?

APPENDIX A. PROOFS AND RELATED ANALYSIS

A.1. Capacities and the Choquet Integral.
Definition A.1. A capacity on (S,Y) is a set function v : X — [0, 1] such that

(1) v(2) = 0;
(2) v(S) =1; and,
(3) v is monotone: for any A,Be X, A< B=v(A4) <v(B).

An example of a capacity on a measurable space (S5,3) is a set function v := T o P, where P is
a probability measure on (S,X) and T : [0,1] — [0, 1] is increasing with 7°(0) = 0 and T'(1) = 1.

Definition A.2. For a given capacity v and a given ¢ € B¥ (X), the Choquet integral §1 dv of
with respect to v is defined by

(A1) §¢ dv := jJrOO v({seS:y(s)=t}) dt

0

Remark A.3. For any capacity v on (S,X) and for any ¢ € BT (X), the following holds (see, e.g.
Marinacci and Montrucchio [29, Proposition 4.8]):
+o

(A2) W dv jJrOOV({seS:zb(s))t}) dt—f v({seS:w(s)>t)) dt

0 0

A.2. More on the PT-functional. The PT-functional V7 given in equation (4.3) can be
rewritten in several forms, as the following proposition shows. First, however, note that for each
f € B(X) one can rewrite V7T (f) as a difference of two Choquet integrals. Namely,

VI = V() -V ().
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where:
(1) f* =max (f,0) and f~ = (=f)";
(2) VI (f*)=8§uo fHdT* o P;
(B) V- (f7)=8§uof~ dIl~ oP.

Proposition A.4. For a given f € B(X), for ut and u~ as in Definition 4.1, and for T" and
T~ as in Definition 4.2, the following quantities are all equal:

+00 0
(A.3) | e ar s [ ae -
and
(A.4) VET (f) :=j T (Gyr s+ (1)) dt—f T~ (Gy-(p- (1)) dt
0 0
and
+00 +o0
(A.5) | e e @[ 1@ ae o
and

+00

(A6) [T (e (@ @) a= [ o (5 (- ) ) a

Proof. See Bernard and Ghossoub [7] (pp. 300-301) for the fact the first three representations are
equivalent. Wakker [52] also gives some similar characterizations.

Equation (A.6) follows immediately either form equation (A.5) by a simple change of variable,
or from equation (A.4). In fact, since ut and u™ are strictly increasing, so are (u) ™" and (u=)"".
Moreover, (ut)™"(0) = (u=) " (0) = 0. Therefore, for each f € B (%),

Foow (Gor (54 (1)) dt = L+OOT+ (Gr (@) ")) a

0
_ fom T (G (1)) du* (1)

and,

FOO T (Gu sy (1) dt = FOO T- (Ff (— ()™ (t))) dt

0

- [T E ey e

0

Proposition A.5. Define the mappings ¥+ : BT () - Rt and ¥~ : BT (X) - RT by:

Ut (fF) = Lﬂo T" <Gf+ ((u*)*1 (t))) dt
and,

v () = FOO (6 () ) d

0
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for each f € B(X). Then, ¥ (0) = Ut (0) = U~ (0) = 0. Moreover, for each h € BT (X)\{0},
Ut (h) >0 and ¥~ (h) > 0.

Proof. From equation (A.6) one can write, for each f € B (%),
VIR =9 (£7) =2 (£7)

Now, for any a > 0, writing a for the element of B™ (X)) yielding the constant a for each s € S,
one has:

+o0 +00
e [ el ) = [ 01
0 0
ut(a)
= j 1dt =u"(a)
0

Similarly, U~ (a) := S(J)roo T~ (P[u™ (a) = t]) dt =u~ (a). But since u™ (0) = u~ (0) = 0, it follows
that ¥ (0) = U* (0) = ¥~ (0) = 0.

Finally, for each h € BT (X)\{0}, ¥* (h) > 0 and ¥~ (h) > 0. This is an immediate consequence
of the fact that the Lebesgue and Riemann integrals of a Riemann-integrable function coincide
[1, Theorem 11.32] and the fact that any bounded and continuous a.e. (for Lebesgue measure)
function is Riemann-integrable [1, Theorem 11.30]. Indeed, since distribution functions have at
most a countable number of discontinuities, since the Lebesgue measure of any countable set is
zero, and since both Tt and T~ are bounded and continuous (being differentiable), it follows that
Ut and U~ coincide with the corresponding Lebesgue integrals. The rest follows from standard
properties of Lebesgue integrals [1, Theorem 11.16]. O

Proposition A.6. Both PT-preferences and EU-preferences are first-kind adequate.

Proof. 1t suffices to show that this is true for PT-preferences since EU-preferences are a special
case thereof (Proposition 5.1). Now, as a functional on B (X)), the Choquet integral (with respect
to some given capacity) is supnorm-continuous being Lipschitz continuous [29, Proposition 4.11].
Moreover, for any f € BS(X), Fr(—t) = Gy (t) for each t > 0. The rest then follows trivially
since, when defined, the ratio of two continuous real-valued functions is continuous [1, Corollary
2.29]. 0

Proposition A.7. Both PT-preferences and EU-preferences are second-kind adequate.

Proof. Similar to the proof of Proposition A.6. O

A.3. Proof of Proposition 4.4. Immediate consequence of (A.5) and of the fact that for any
f e BS(X), Fy(—t) = Gy (t) for each t > 0. O

A.4. Proof of Proposition 5.1. Fix an arbitrary h € B (%), and let 1 := u o h. Denote by n™
(resp. ) the positive (resp. negactive) part of . Then by definition of the Lebesgue integral,

(A7) V(h):Luothan* dP—Ln_ dp
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Moreover,

(A.8) L nt dP = L+OO P({n+ > t}) dt
and

(A.9) L 0~ dP = LMP({n— > t}) dt

Now, denote by ht (resp. h™) the positive (resp. negative) part of h and define the increasing
and differentiable functions u*,u~ : Rt — R* by:

ut(x) ifx >0

(A.10) u(z) = { —u(—z)  ifr<0

Then u (0) = u* (0) = = (0) = 0, and u(x) = 0 if and only if x > 0. Consequently, one can
easily verify that®:
(1) n* =wu* oh™; and,
(2) n” =u"oh".

Therefore,

(A.11) V(h) = roo P({u+ oht > t}) dt — f

0 0

+00

P({u* oh™ > t}> dt

V' (h) given by equation (A.11) is a PT functional over (S, X, P), when both probability weight-
ings are simply the identity function on [0,1], and when u* and u~ are defined from u as was
done above. Consequently, by Proposition A.4, one has:

+00

V (h) = FOOP({M oht > t}) dt—f

0 0

(A.12) = FOO P({h > t}) du™ (t) + fo

0 —o0

P({u— oh™ > t}> dt

P({h < t}) du~ (—t)

400

= L+OOP<{h > t}) du™ (t) —fo P<{h < —t}) du (t)
Furthermore, du™ (t) = du (t) and du™ (t) = —du (—t). Therefore,

w P<{h > t}) du (t) + f

0

400

(A.13) V(h P({h < ~t}) du(-1)

SN—
Il

0
O

577 is positive if and only = n. But n* equals the composition of u™ with some function g;. Moreover, n = uo h
and u () is positive if and only z is positive. Therefore, 7 is positive if and only if h is positive. Thus, g1 = h™.
Similarly, 7 is negative if and only if n = —n~. But ™ equals the composition of ©~ with some function g». Moreover,
n =wuoh and u (z) is negative if and only x is negative. Hence, 7 = w o h is negative if and only h is negative, which
happens when h = —h~. Therefore, —n~ = —u™ (g2) = —u~ (—(—hf)) =—u" (}f)7 so that go = h™.
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APPENDIX B. SOME EXTENSIONS
B.1. Extension to Non-Monetary Outcomes.

B.1.1. Setup. The previous analysis can be extended to preference over acts with non-monetary
outcomes. Suppose, for instance, that S is an arbitrary nonempty set interpreted as the set of
states of the world, and X is a o-algebra of subsets of 5, called events. As previously, we suppose
that there exists an objectively given probability measure P on (5,3). Let X be a vector space of
consequences (or prizes) over the field R, and assume that X is linearly ordered by a total vector
order >x. In particular, this assumes that the vector order is compatible with the linear structure.
That is, for all z,y,z € X, and for all « € R, x >x y if and only if a.x + z >x a.y + z. Endow X
with the order topology®, and let 0x denote the zero vector in X. Denote by C;g the positive cone
of X induced by >x, and let Cy := X\C%. Elements of C'{ are interpreted as the nonnegative
vectors and elements of C'y; are interpreted as the nonpositive vectors.

Let xg be an arbitrary but fixed vector in X. One can then embed R into X by identifying the
real number o with the vector a.xg € X. By a slight abuse of notation, I will write o € X in lieu
of a.xg € X, where o € R. Hence, I identify R with the subset {c.z¢ : @ € R} of X. Since >x is
compatible with the linear structure of X, it then follows that for any «, 5 € R, a > § if and only
if o >x . In particular, for all » € R*, one has r >x Ox. I will also say that a vector z in X
is >x-bounded if there are some z*, z, € X such that z* >x z >x z.. In particular, y € C’;g is
> x-bounded if there is some y* € X such that y* >x v.

Let Bx denote the Borel g-algebra on X, that is, the g-algebra generated by the order topology of
X. Let B(X,Bx) denote the collection of all 3/Bx-measurable mappings of S into X. Elements
of B(X,Bx) are interpreted as the acts over which a DM has preference >. I will say that
[ € B(X,Bx) is nonnegative if f(S) € C%, and I will denote by BT (X, Bx) the collection of
all nonnegative elements of B (X,Bx). Denoting by B~ (X, Bx) the set B (X, Bx)\B* (3, Bx),
and denoting by Oy the constant act yielding the zero vector Ox in each state of the world, one
can interpret Ox as the status quo and elements of BT (X, By) (resp. B~ (X, Bx)) as gains (resp.
losses). Therefore, acts in B (X, Bx) can be seen as deviations from the status quo.

B.1.2. Defining Weak loss aversion. In this situation, each act f € B (3, Bx) will induce a Borel
probability measure P o f~! on (X, Bx). One can then define symmetry of an act f as follows:

Definition B.1. An act f € B(X,Bx) is called symmetric around the status quo, or simply
symmetric, if for all a € C¥\{0x}, one has:

(B.1) Gy (a) = P({s €S f(s)=x a}> - P({s €S:—ax>xf (s)}) = Fy (—a)

Denote by BS (32, Bx) the collection of all symmetric acts, that is,
(B.2) BS (2, Byx) = {f e B(S,Bx): Gy (a) = Fy (—a), Vae 0;\{0)(}}

Then one can then define weak loss aversion as aversion to symmetric acts:

60n any totally ordered vector space, the order topology is the natural generalization of the usual topology on R.
A subbase for this topology consists of those sets of the form {x € X : z >x a} or {z € X : a >x z}, for some
a € X [20, p. 58]. The order topology is the finest locally convex topology T for which every order-bounded set is
T-bounded (see also [37] or [41]).
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Definition B.2. The DM’s preference > over acts in B (X, Bx) is called weakly loss averse if for
all f e BS (2, Bx)\{0x} one has:

(B.3) Ox > f

The preference > will be called weakly loss neutral if for any act f € BS (X, Bx) one has Ox ~ f.

B.1.3. Defining Strong loss aversion. One can immediately generalize the notion of first-order
stochastic dominance as follows:

Definition B.3. For any f,g € B (3, Bx), I will say that g dominates f in the sense of first-order
stochastic dominance, and I write g >, , f, when

(B.4) P({seS:g(s) >x a}) >P<{seS:f(s) >x a}), Vae X

By extension, for any f,g € B (X, Bx), I will say that P o g~! dominates Po f~! in the sense of

first-order stochastic dominance, and I write P o g~ Zra PO f~!, when g Zaa |

However, in order to define strong loss aversion one needs to generalize the definition of an
adapted and symmetric mean-preserving increase in symmetric risk to the case where outcomes
are non-monetary. This poses some deep and serious mathematical complications. For instance,
to define the notion of equal means one requires a proper definition of integration of X-valued
functions on S, bearing in mind that X is not a Banach space, but merely an ordered linear space,
and so the Bochner integral [12], the Pettis integral [49], and other related integrals are not possible
candidates. Alternatively, one can use some notion of an integral of a function with values in an
ordered space with some appropriately defined linear structure, such as the ones in Kundu and
Lahiri [26], Phillips [42], or Roth [45], for instance. This will not be pursued here and will be left
for future research.

B.2. Loss Aversion under Probabilistic Sophistication. In this paper I studied the notion
of loss aversion for decision under risk, or equivalently, when there is a given objective probability
measure on the state space. A natural question to ask here is whether one can extend this study
to a situation of decision under uncertainty, i.e. where no objective probability measure is given
a priori, but where beliefs are instead entirely determined form preferences over the elements of
choice (the acts). As a first step towards such a general approach to loss aversion, I examine
in this subsection a methodology for defining loss aversion when preferences are probabilistically
sophisticated [27, 28], as defined below.

B.2.1. Setup and Definitions. The setting here is similar to that of Section 2, with the exception
that there is no objective probability measure on the state space. Namely, S is a collection of
states, 3 is a o-algebra of events on S, and a DM has preference > over elements of B (X), the
linear space of all bounded, real-valued, and X-measurable functions on S.

Definition B.4. If y is any probability measure on (S, X)), then for any f,g € B (X), then g is said
to dominate f in the sense of u-first-order stochastic dominance, and one writes g >J£‘S , f» when

u({seS:g(s)ét}) <u<{seS:f(s)<t}),f0rallte]R.
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If, moreover, ,u({s €S :g(s) < x}) < ,u({s €S: f(s) < x}), for some z € R, it will be
said that g dominates f in the sense of strict u-first-order stochastic dominance, and this will be
written as g >J‘fsd f-

By extension, for any f,g € B (X) and for any probability measure p on (S,Y), it will be said
that p o g~' dominates o f~! in the sense of first-order stochastic dominance (resp. strict first-
order stochastic dominance), and written po g~ Zrea MO f~1 (resp. pog™? >pea O f=1), when

g =, [ (resp. g >t f).

Definition B.5. If If i is any probability measure on (S, X)), a functional ¥ : B (X) — R is said
to be monotone with respect to p-first-order stochastic dominance (resp. monotone with respect to
strict p-first-order stochastic dominance), or preserves pu-first-order stochastic dominance (resp.
preserves strict p-first-order stochastic dominance), if for any f,g € B (%)

(B.5) g =, f (vesp. g >t ) = () =0 (f) (vesp. W(g) >V (f))

Similarly, it is said that U is anti-monotone with respect to u-first-order stochastic dominance

(resp. anti-monotone with respect to strict u-first-order stochastic dominance), if for any f,g €
B (%)

(B.6) g2, f (vesp. g, f) = () <W(f) (resp. ¥(g) < W(f))

Definition B.6. A DM with preference > over elements of B (X) is said to be probabilistically
sophisticated if there exists a (subjective) probability measure p on (S, %) and a map ¥, : B (X) —
R, such that:

(1) for all f,ge B(X):
(B.7) f>g9 <= V. (f)>¥u(9)

(2) ¥, : B(X) — R is monotone with respect to strict p-first-order stochastic dominance.

In this case, > is said to be probabilistically sophisticated with respect to p.

As an immediate consequence of this definition, and of the fact that the functional ¥, hence
obtained preserves strict p-first-order stochastic dominance, one has the following lemma:

Lemma B.7. Suppose that the DM has preference > over elements of B (X). Define the equiv-
alence relation ~, representing indifference, from the strict preference > in the usual manner. If
the DM is probabilistically sophisticated with respect to a probability measure u on (S,X), then for
all f,g € B ()

(B.8) uojkl((—oo,t]) :,uog71<(—oo,t]>, VieR = f~g

Now, define a comparative likelihood relation over X, from the preference > over B (X), as
follows:

Definition B.8. Let A, B € X. The event A will be said to be more likely than B, written as
A >! B, if for > y in R,

x ifse A x ifseB
(B.9) {y ifsgéA] >{y ifsgéB]
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The following result is a consequence of Definition B.6:

Proposition B.9. Suppose that the DM has preference > over elements of B(X), and let >' be
defined from > as in Definition B.8. If the DM is probabilistically sophisticated with respect to a
probability measure p on (S,X), then for all A,Be X,

(B.10) A>'B «— pu(A) > pu(B)

B.2.2. Defining Weak loss aversion. Proposition B.9 suggests a definition of weak loss aversion
in terms of the comparative likelihood relation >! on ¥ defined above. First, however, we define
symmetry in terms of >'.

Definition B.10. Let f € B(X) be a given act, and for each ¢ > 0 define the events Af;, By € X

by

(B.11) Apyi=fH([t,+0) = {seS: f(s) >t}
and

(B.12) Bpyi=f1((—0,—t]) ={se S: f(s) < —t}

We then say that the act f is symmetric if for any t > 0,
(B.13) Age ~' By,

l

where the relation ~! is defined from the comparative likelihood relation >! over ¥ in the usual

manner.

A natural way to define weak loss aversion in this setting is then the following:

Definition B.11. The DM’s preference > over acts in B (X) is called weakly loss averse if for any
act f € B (X) which is symmetric in the sense of Definition B.10, one has

(B.14) 0> f

where 0 denotes the constant act g € B (X) yielding 0 in each state of the world. The preference
> will be called weakly loss neutral if for any act f € B (X) which is symmetric in the sense of
Definition B.10, one has 0 ~ f.

B.2.3. Defining Strong loss aversion. Definition 3.8 characterizes strong loss aversion as aversion
to a specific kind of mean-preserving increase in risk. However, the definition of a mean-preserving
increase in risk is in terms of objective distribution functions of the acts involved, that is, when
there is a given objective probability measure on the state space. While it seems relatively straight-
forward to define the notions of single crossings, mean-preserving spreads, adaptedness, and sym-
metry in terms of preferences (i.e. purely behaviorally), it is not clear to me at this point how to
define the notion of second-order stochastic dominance without a reference objective probability
measure. Of course, one way to deal with this complication is to assume that the preference over
acts is probabilistically sophisticated with respect to a (subjective) probability measure p and then
define second-order stochastic dominance as p-second-order stochastic dominance, but this will not
be a preference-based definition per se.
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