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The paper presents a comparative study of conventional beta adjustment techniques and 

suggests an improved Bayesian model for beta forecasting. The seminal papers of Blume 

(1971) and Levy (1971) suggested that for both single security and portfolio there was a 

tendency for relatively high and low beta coefficients to over predict and under predict, 

respectively, the corresponding betas for the subsequent time period. We utilize this proven 

fact to give a Bayesian adjustment technique under a bilinear loss function where the problem 

of overestimation and underestimation of future betas is rectified to an extent so as to give us 

improved beta forecasts. The accuracy and efficiency of our methodology with respect to 

existing procedures is shown by computing the mean square forecast error. 	
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Systematic risk, as measured by beta, is one of the most fundamental and essential aspect of 

investment analysis.  The method of estimation for the risk measure as predictors of future 

betas has been under study for the past three decades.  The numerous research articles on the 

subject focus on the refinement of the measure in order to have an optimum prediction. 

Harrington (1983) highlights the usage of betas to show relative importance of good beta 

forecasts. 

 

The purpose of the paper is to test empirically the classical and Bayesian beta adjustment 

techniques for individual securities and portfolios. Different estimation and prediction period 

lengths are used in the study to evaluate the impact of beta adjustment techniques and 

portfolio size on the beta forecast error and its components. Here the ‘estimation period’ is 

the time period used to compute ex post betas for the estimation of ex ante betas and the 

‘prediction period’ is the time period used to compute realized or predicted betas for 

comparison with the estimated betas. 

 

Pioneer works of Blume (1971) and Levy (1971) suggest a regular pattern in the betas termed 

as the regression tendency towards the grand mean of all betas that is one. Further they 

observed that for both single security and portfolio betas the relatively high and low beta 

coefficients tend to over predict and under predict, respectively, the corresponding betas for 

the subsequent time periods.  

 

Vasicek (1973) proposed a Bayesian technique which gave a different dimension to beta 

estimation. This approach utilizes prior information in the form of prior distribution together 

with sample information to provide with an optimal predictive posterior estimate, with 

respect to minimization due to misestimation, under quadratic loss function (Squared error 

loss function : SELF). 

 

Klemkosky and Martin (1975) investigated various beta adjustment procedures and suggested 

a combination of Bayesian predictor and a reasonable portfolio size to make an effective risk 

measure to predict future betas. Eubank and Zumwalt (1979) carried out the investigation for 
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beta risk classes (quintiles) and varied the length of the sample periods for beta estimation 

and prediction and hence based inferences on the same. 

Bera and Kannan (1986) tested the data and observed possible deviation from normality and 

concluded that adjustment techniques proposed by Blume and Vasicek may not always be 

appropriate. 

 

In Bayesian estimation choice of loss function is vital since the objective is to choose an 

estimator which minimizes the expected loss. In order to develop our model we make use of 

the fact that relatively high and low beta coefficients tends to get over predicted and under 

predicted, respectively, for corresponding betas in future time periods. We propose a 

Bayesian model under bilinear loss function which takes into account the over and under 

estimation problem. Such a function while remaining convex increase more slowly than 

SELF and do not overpenalize large but unlikely errors, conventionally used SELF is known 

to penalize larger deviations too heavily.   Further in comparison to Vasicek’s technique we 

use a proper conjugate form, since in latter the process of reparametrization leads to improper 

definition of prior parameters which may not give appropriate results in case of small sample. 

 

The alternate beta adjustment techniques are discussed in second section sample and testing 

methodology is explained in the third section,  and empirical results are provided in the fourth 

section. 
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In literature the fundamental base model to estimate systematic risk has been the single index 

model: 
                                                        + it i i mt itR Rα β ε= +� � �  (1)  
 
where itR� is the return on security or portfolio i in period t, mtR� is the corresponding market 

return in period t,  and i iα β  are the regression parameters : ( ) ( )cov , / vari i m mR R Rβ = � � �  is the 

slope coefficient, and itε� is the random error term with ( ) 2 20 and ( )it itE Eε ε σ= =� � . 

 

From previous studies, in an attempt to improve the accuracy of the forecasting ability of 

betas the following alternative beta adjustment techniques were developed and we describe 

them as follows. 

The various adjustment procedures can be expressed as:  

                                                  , 1 1 2 ,  + i t t t i tw wβ β+ =
� �

 (2)  

where, for alternate methods of evaluating 1 2 and t tw w we obtain the varying techniques for 

beta prediction. 

 

1.�  Unadjusted or historical betas are obtained by substituting 1 20 and 1t tw w= =  in 

equation (2). 

 

2.�  Blume’s (1971) procedure utilizes simple linear regression in attempting to adjust 

beta forecasts as follows: 

, , 1   +  i t o o i ta bβ β −=
� �

 
where the OLS estimates of  and  o oa b are used in forecasting the beta for third time 

period. Hence we have 1 2  and  t o t ow a w b= =
��

in (3). 

Alternately above can be expressed in another form as 
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                                               ( ), 1 , 1   +  i t t o i t tbβ β β β+ −= −
�� �

 (3)  

Blume observed that regression coefficients change over time and hence should be 

careful in using historical rates of regression. He showed that using non-overlapping 

periods the regression-adjusted betas resulted in smaller beta forecast than unadjusted 

beta values. 

 

3.� Merrill Lynch, Pierce, Fenner and Smith, Inc. (MLPFS) technique is based on the 

theory that on an average the beta estimates tend to drift towards one. For 

1    1t tβ β −= =  in (3) we 

have the MPLPFS predictive estimate as 

                                               ( ), 1 ,  1 +  1i t o i tbβ β+ = −
�� �

 

The estimates by Blume and MLPFS techniques can be expected to be close 

whenever the average value of the beta is close to unity. Klemokosky and Martin 

(1975) found the forecast errors to be nearly identical for the two techniques. 

 

4.�  Vasicek’s (1973) technique is the Bayesian estimation procedure where the sizeable 

prior information of beta coefficients are used in adjusting beta forecasts. We 

substitute in (3) 
2

1 2 2 2
   and 1  ;  

i

t ti t ti ti

i

s
w d w d d

s s

β

β β

β= = − =
−

 
where β  and 2

sβ  are the prior cross-sectional location and scale parameters, 

respectively, estimated using the previous periods; 2
isβ is the estimated variance of ,i tβ .  

The coefficients 1 2 and t tw w  are different for each security or portfolio. The optimal 

estimate is obtained under quadratic loss function which gives the posterior expected 

mean as the optimal estimate with respect to loss minimization. 
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In addition to above discussed beta adjustment techniques we propose the following Bayesian 

model. 

 

We redefine the market model in (1) and derive our results under two cases when variance 
2σ (=1/τ) is known and unknown. 

                                                  +  ; 1,2,...,t t ty x t Tα β ε= + =�� �  (4) 

where y� be the return on asset or portfolio and x�  be return on the market. Further assuming 

normal distribution of the error disturbances in model that is ( )~ 0,t Nε τ� . 
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We define the likelihood function under (4) as follows 

2 2

1

( | , , , )  exp ( )
2 2

T
T

t t

t

L y x y x
τ τ

α β τ α β
π =

  = − − −  
   

∑� �

 
The prior density is taken to be bivariate normal density and is defined as  

( , ) ( , , ) ; o oBIVN rπ α β α β τ= precision matrix 1 12

21 2

r r
r

r r

 
=  
 

. 



4 

 

The posterior density is given by 

( | , , , ) ( , )
( , | )  

( | , , , ) ( , )
, ,

L y x

L y x d d
y x

α β τ π α β
π α β

α β τ π α β α β
τ

Θ

=

∫∫
� �

� �

� �

 
 

which evaluates to be  

( )
1/ 2 '

* *

* *

| ' | 1
( , | , , ) exp '

2 2

r x x
y x r x x

α α α ατ
π α β τ τ

β βπ β β

          +     = − − + −                          

� �

 

 which is 
1( , , )o oBIVN α β τ ;  precision matrix ( ) 1 12

2

12 2

1 '
t

t t

T r x r

x r x r
r x xτ τ τ

+ +

+ +

 
= + =   

 

∑
∑ ∑

 

where 

     

( )( ) ( )( )

( )( ) ( )( )

2

2 1 12 12 12 2*

1 12 2 12 1 12*

| ' |

| ' |

t t o o t t t o o

t t o o t t o o

x r y r r x r x y r r

r x x

T r x y r r x r y r r

r x x

α β α β
α

α β α β
β

+ + + − + + +
=

+

+ + + − + + +
=

+

∑ ∑ ∑ ∑

∑ ∑ ∑
 

Since our purpose is to evaluate β  we consider α as the nuisance parameter and integrate it 

out to have the marginal density function as 

( )
1/ 2

2
*

1 1

| ' | | ' |
( | , , ) ( , | , , ) exp

2 ( ) 2( )

r x x r x x
y x y x d

T r T r

τ τ
π β τ π α β τ α β β

π
Θ

   + +
= = − −   + +   
∫� � � �

 
which is normal density with mean *β and precision ( ) ( )1' | ' |r x x T rτ τ= + +  

 

The Bayes point estimate under squared error loss function (SELF) 2( , ) ( )  L β β β β= −
� �

is the 

posterior mean. Hence we have the beta estimate to be 
*

, 1i tβ β+ =
�

 

 

The Bilinear loss function is defined as 

1

2

( )  
( , )  

( ) 

k if
L

k if

β β β β
β β

β β β β

 − ≥
= 

− ≤

� �
�

� �

 
where 1 2 and k k  are positive constants chosen so as to reflect the relative importance of 

underestimation and overestimation, respectively. 

 

The Bayes point estimate under bilinear loss is the quantile function evaluated as  

 

( )
* 1 *

1
, 1 1 1 2* 1 *

(u)/ '        , 0 0.5
( )  ; /

(1- u)/ '    , 0.5 1
i t

if d u
F d u k k k

if d u

β τ β
β

β τ β

−
−

+ −

 + Φ ≥ < ≤
= = = +

−Φ ≤ < ≤

�
 

If 1 2 = k k we have absolute error function which gives median as the optimal estimate. 
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�	��+	�����
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The likelihood function under (4) is 

2 2

1

( | , , , )  exp ( )
2 2

T
T

t t

t

L y x y x
τ τ

α β τ α β
π =

  = − − −  
   

∑� �
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The prior density is taken to be bivariate normal density for ( , )o oα β and non-informative 

prior for τ which is given as  

1
( , , ) ( , , ).  ;o oBIVN rπ α β τ α β τ

τ
≅  precision matrix 1 12

21 2

r r
r

r r

 
=  
 

. 

The posterior density becomes  

( )
1/ 2 '

* *

* *

1
2

2

2

1
exp '

2

| ' |
( , , | , ) .

2

T
T

S

T
r x x

r x x
y x S e τ α α α α

τ
β ββ β

τ τ
π α β τ

π

−

− − − + −
       +        =                           

� �

 

which is 1, ( , , ) ;
2

o o

T
Gamma S BIVN α β τ 

 
 

 precision matrix ( )1 'r x xτ τ= +  

where  ( ) ( )( )
*

2 * *
0 *

1
  '

2

o

t o

o

S y r r x x
α α

α β α β
β β

   
 = − − +          
∑  * *,  and α β as defined above. 

 

In order to evaluate β  we consider α  and τ both as the nuisance parameter and integrate 

them out to have the marginal density as 

 

( )
( 1)

1/ 21
2 2

*1 1

( | , ) ( , , | , )

| ' | 2( ) | ' | 2( )1
                 , 1

2 2

T

y x y x d d

T r x x T r S T r x x T r ST
B

T T

π β π α β τ α τ

β β

Θ

+
−−

=

+ + + +    = + −          

∫∫� � � �

 

which is three-parameter t density with T d.f., mean *β and precision 
1

| ' |
'

2( )

T r x x

T r S
τ

+
=

+
. 

The Bayes estimate under SELF is *
, 1i tβ β+ =

�
 

 

The Bayes point estimate under Bilinear loss function is evaluated as  
1

1 2

* 1 *
'

1
, 1 1

1 2

* 1 *
'

1
, 1    , 0.5 1, ' 2(1 )

' 2 2

( )

1
, 1    , 0 0.5,  ' 2

' 2 2

l

i t

l

T T
I if d u l u

F d

T T
I if d u l u

β β
τ

β

β β
τ

−
−

−
+

−
−


       + − ≥ < ≤ = −    
        

= = 
        − − ≤ < ≤ =           

�

 

where ( ) ( ) 1 1
1 1 2

0

1
/ , , (1 )  ; , 0

( , )

l
p q

lu k k k I p q x x dx p q
B p q

− −= + = − >∫  is the incomplete beta function. 

 

In both the above cases the optimum values of 1 2,k k lies in the interval [0.01, 0.05]. 
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The study has been carried out based on daily return data of 60 companies from BSE 500 that 

were part of the index from 1 January 2000 to 31 December 2010 with the BSE index as the 

market proxy. These companies are well traded and belong to diverse industry groups. The 

daily returns have been adjusted for stock splits, bonus and right issues. The required data on 

stocks and indices was collected from Centre for Monitoring Indian Economy (CMIE) 

database: PROWESS and Bombay Stock Exchange (BSE) website. For the risk-free rate, 91-



6 

 

day Treasury bill rates has been taken as proxy and complied from the Reserve Bank of India 

(RBI) website. 

 

Estimation period lengths of 2 and 3 years are utilized in accordance with prediction period 

lengths of 1, 2 and 3 years for the beta calculations to analyze the impact of different period 

lengths on the beta forecast errors. The unadjusted and Bayesian techniques require two 

consecutive time periods, whereas for the Blume and MLPFS methods three consecutive time 

periods are required. Table 1 provides a set of comparisons made on the basis of three time 

periods t - 1, t and t + 1. 
	

��!��	(	

 

 

 

In order to make empirical comparisons of the risk measure for portfolios, the betas were 

computed using market model given in (1) for period t and ranked in ascending order of 

magnitude. The ranked securities were selected sequentially for portfolios containing n = 3, 6 

and 10 securities.  

 

The forecasting accuracy of various adjustment techniques were compared using the 

statistically tractable Mean Square Error (MSE) measure.  

                                                  ( )2

, 1 ,1

1
MSE

n

i t i tin
β β+=

= −∑
� �

 

where , 1 , and i t i tβ β+

� �
are the prediction and estimation period betas respectively for security or 

portfolio i, and n is the number of security or portfolio betas. 

 

Mincer and Zarnowitz (1969) partitioned MSE into three components as follows: 

                                  ( ) ( ) ( )
1 1

2 2 2 2 2
1 1 ,MSE  1  + 1

t t t tt t b S R Sβ β β ββ β
+ ++= − + − −  (5) 

where 1  and t tβ β+  are means of the realizations and predictions, respectively; 1b is the slope 

coefficient of the regression of , 1 , on i t i tβ β+

� �
; 

1

2 2 and  
t t

S Sβ β+
are the sample variances of 

, 1 , and i t i tβ β+

� �
,respectively, and 

1

2
,t t

Rβ β+
is the coefficient of determination for , 1 , on i t i tβ β+

� �
. 

 
The first component is the bias which measures the portion of MSE due to overestimation 

and underestimation of the mean between subsequent periods. The second term defines the 

inefficiency component and indicates the tendency of forecast error to be positive for low 

predicted values and negative for high predicted values. The last component is the random 

error. The inferences are drawn from detailed analysis of these three components. 

 

	

	

������	*��#��	./���
0	 �
��������	������
	 ����������	������	

t - 1 t t + 1 t - 1 t t + 1 

      
2 2 1 1/2000-12/2001 1/2002-12/2003 1/2004-12/2004 

2 2 2 1/2000-12/2001 1/2002-12/2003 1/2004-12/2005 

2 2 3 1/2000-12/2001 1/2002-12/2003 1/2004-12/2006 

 

3 3 1 1/2002-12/2004 1/2005-12/2007 1/2008-12/2008 

3 3 2 1/2002-12/2004 1/2005-12/2007 1/2008-12/2009 

3 3 3 1/2002-12/2004 1/2005-12/2007 1/2008-12/2010 
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In order to carry out the study we make use of two different sets of estimation and prediction 

periods one set in normal economic condition and another set in economic meltdown. The  

MSEs for various techniques are given in following Table 2 and 3. 
	

��!��	-	

 
*BM1: Bayesian Model under SELF, BM2: Bayesian Model under Bilinear loss function. 

 

������	(		 ���������&�	���������
	

Estimation Prediction Unadj. Blume MLPFS Vasicek BM1* BM2* 

(3-44-	5	(-3-44)	  τ known τ  unknown 

Individual Securities 

  (3-4415(-3-446	  

  Mean Square Error 0.08231 0.04594 0.04895 0.07598 0.08038 0.07845 0.07479 

  MSE Components:  

   Bias 0.01264 0.00135 0.00436 0.01614 0.01264 0.01096 0.00540 

   Inefficiency 0.02753 0.00244 0.00244 0.01810 0.02571 0.02542 0.02742 

   Random Error 0.04215 0.04215 0.04215 0.04175 0.04204 0.04207 0.04197 

 (3-4415(-3-447	  

 Mean Square Error 0.09617 0.06751 0.07130 0.09249 0.09462 0.09260 0.08750 

 MSE Components:        

   Bias 0.01577 0.00250 0.00628 0.01966 0.01578 0.01389 0.00751 

   Inefficiency 0.01544 0.00006 0.00006 0.00854 0.01406 0.01386 0.01532 

   Random Error 0.06496 0.06496 0.06496 0.06428 0.06478 0.06484 0.06467 

 (3-4415(-3-441	  

 Mean Square Error 0.12706 0.09577 0.10134 0.12463 0.12546 0.12299 0.11588 

 MSE Components:  

   Bias 0.02437 0.00648 0.01205 0.02915 0.02438 0.02202 0.01374 

   Inefficiency 0.01339 0.00000 0.00000 0.00700 0.01207 0.01189 0.01324 

   Random Error 0.08929 0.08929 0.08929 0.08848 0.08902 0.08908 0.08891 

         

  3-Security Portfolios 

 (3-4415(-3-446	        

 Mean Square Error 0.05334 0.06208 0.07933 0.05031 0.05160 0.04860 0.04779 

 MSE Components:        

   Bias 0.01264 0.00067 0.01792 0.01416 0.01264 0.01010 0.00775 

   Inefficiency 0.02752 0.04822 0.04822 0.02324 0.02579 0.02525 0.02696 

   Random Error 0.01319 0.01319 0.01319 0.01291 0.01317 0.01324 0.01308 

 (3-4415(-3-447	        

 Mean Square Error 0.05029 0.05088 0.07235 0.04833 0.04900 0.04582 0.04430 

 MSE Components:        

   Bias 0.01577 0.00016 0.02163 0.01748 0.01578 0.01293 0.01024 

   Inefficiency 0.01539 0.03160 0.03160 0.01218 0.01411 0.01370 0.01501 

   Random Error 0.01912 0.01912 0.01912 0.01867 0.01910 0.01919 0.01905 

 (3-4415(-3-441	        

 Mean Square Error 0.06583 0.05720 0.08842 0.06418 0.06460 0.06070 0.05846 

 MSE Components:        

   Bias 0.02437 0.00032 0.03154 0.02648 0.02438 0.02080 0.01736 

   Inefficiency 0.01361 0.02903 0.02903 0.01051 0.01241 0.01202 0.01329 

   Random Error 0.02785 0.02785 0.02785 0.02719 0.02781 0.02788 0.02782 
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Estimation Prediction Unadj. Blume MLPFS Vasicek BM1 BM2 

(3-44-	5	(-3-44)	      τ known τ  unknown 

6-Security Portfolios 

 (3-4415(-3-446	        

 Mean Square Error 0.04965 0.07125 0.09075 0.04785 0.04783 0.04381 0.04492 

 MSE Components:  

   Bias 0.01264 0.00123 0.02073 0.01350 0.01264 0.00935 0.00886 

   Inefficiency 0.02947 0.06248 0.06248 0.02693 0.02768 0.02688 0.02860 

   Random Error 0.00754 0.00754 0.00754 0.00742 0.00750 0.00758 0.00745 

 (3-4415(-3-447	        

 Mean Square Error 0.04232 0.05318 0.07740 0.04116 0.04091 0.03674 0.03723 

 MSE Components:        

   Bias 0.01577 0.00048 0.02470 0.01674 0.01578 0.01207 0.01152 

   Inefficiency 0.01637 0.04252 0.04252 0.01445 0.01502 0.01445 0.01569 

   Random Error 0.01018 0.01018 0.01018 0.00998 0.01011 0.01022 0.01002 

 (3-4415(-3-441	        

 Mean Square Error 0.05517 0.05587 0.09102 0.05420 0.05379 0.04872 0.04895 

 MSE Components:        

   Bias 0.02437 0.00007 0.03523 0.02556 0.02438 0.01971 0.01901 

   Inefficiency 0.01453 0.03953 0.03953 0.01268 0.01325 0.01272 0.01388 

   Random Error 0.01626 0.01626 0.01626 0.01596 0.01616 0.01629 0.01606 

         

  10-Security Portfolios 

 (3-4415(-3-446	        

 Mean Square Error 0.03964 0.07013 0.09163 0.03867 0.03804 0.03337 0.03547 

 MSE Components:        

   Bias 0.01264 0.00188 0.02338 0.01326 0.01264 0.00884 0.00936 

   Inefficiency 0.02547 0.06672 0.06672 0.02390 0.02388 0.02297 0.02462 

   Random Error 0.00153 0.00153 0.00153 0.00151 0.00152 0.00156 0.00149 

 (3-4415(-3-447	        

 Mean Square Error 0.03361 0.05229 0.07896 0.03305 0.03235 0.02754 0.02911 

 MSE Components:        

   Bias 0.01577 0.00091 0.02758 0.01647 0.01578 0.01149 0.01208 

   Inefficiency 0.01454 0.04808 0.04808 0.01334 0.01332 0.01268 0.01385 

   Random Error 0.00330 0.00330 0.00330 0.00325 0.00326 0.00337 0.00318 

 (3-4415(-3-441	        

 Mean Square Error 0.04516 0.05337 0.09202 0.04478 0.04392 0.03810 0.03961 

 MSE Components:        

   Bias 0.02437 0.00000 0.03865 0.02523 0.02438 0.01897 0.01973 

   Inefficiency 0.01339 0.04596 0.04596 0.01222 0.01220 0.01162 0.01268 

   Random Error 0.00740 0.00740 0.00740 0.00732 0.00733 0.00751 0.00720 
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Estimation Prediction Unadj. Blume MLPFS Vasicek BM1 BM2 

(3-447	5	(-3-448	  τ known τ  unknown 

Individual Securities 

  (3-4495(-3-4(4	  

  Mean Square Error 0.05316 0.06624 0.07699 0.05125 0.05253 0.05105 0.04896 

  MSE Components:  

   Bias 0.00868 0.00631 0.01705 0.00722 0.00825 0.00675 0.00470 

   Inefficiency 0.00002 0.01547 0.01547 0.00047 0.00006 0.00005 0.00008 

   Random Error 0.04447 0.04447 0.04447 0.04356 0.04423 0.04425 0.04418 

 (3-4495(-3-44:	  

 Mean Square Error 0.05441 0.06778 0.07879 0.05252 0.05375 0.05222 0.05007 

 MSE Components:        

   Bias 0.00918 0.00673 0.01774 0.00768 0.00873 0.00718 0.00506 

   Inefficiency 0.00003 0.01585 0.01585 0.00054 0.00008 0.00007 0.00011 

   Random Error 0.04520 0.04520 0.04520 0.04430 0.04494 0.04496 0.04489 

 (3-4495(-3-449	  

 Mean Square Error 0.05134 0.06133 0.07094 0.04929 0.05064 0.04934 0.04756 

 MSE Components:  

   Bias 0.00675 0.00468 0.01429 0.00547 0.00636 0.00506 0.00331 

   Inefficiency 0.00010 0.01216 0.01216 0.00005 0.00004 0.00005 0.00003 

   Random Error 0.04449 0.04449 0.04449 0.04377 0.04424 0.04424 0.04423 

         

  3-Security Portfolios 

 (3-4495(-3-4(4	        

 Mean Square Error 0.02441 0.02255 0.02872 0.02354 0.02402 0.02167 0.02136 

 MSE Components:        

   Bias 0.00868 0.00502 0.01119 0.00811 0.00825 0.00538 0.00594 

   Inefficiency 0.00000 0.00180 0.00180 0.00009 0.00003 0.00001 0.00004 

   Random Error 0.01573 0.01573 0.01573 0.01534 0.01574 0.01628 0.01537 

 (3-4495(-3-44:	        

 Mean Square Error 0.02466 0.02278 0.02913 0.02379 0.02426 0.02182 0.02153 

 MSE Components:        

   Bias 0.00918 0.00540 0.01175 0.00859 0.00873 0.00577 0.00635 

   Inefficiency 0.00001 0.00191 0.00191 0.00012 0.00004 0.00002 0.00006 

   Random Error 0.01547 0.01547 0.01547 0.01508 0.01548 0.01602 0.01511 

 (3-4495(-3-449	        

 Mean Square Error 0.02069 0.01811 0.02351 0.01970 0.02026 0.01828 0.01790 

 MSE Components:        

   Bias 0.00675 0.00358 0.00898 0.00625 0.00636 0.00388 0.00436 

   Inefficiency 0.00016 0.00076 0.00076 0.00003 0.00009 0.00013 0.00007 

   Random Error 0.01378 0.01378 0.01378 0.01342 0.01380 0.01427 0.01347 
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For individual securities under normal market conditions we observe that MSE decreases 

with increase in length of prediction period length but in extreme situation we observe that 

the reverse is true.   

In case of portfolios under normal conditions we see that for equal estimation and prediction 

period the MSE is coming out to be least and under recession the 3 year estimation length and 

1 year prediction period gives the least MSE. 

������	-		 ���������&�	���������
	

Estimation Prediction Unadj. Blume MLPFS Vasicek BM1 BM2 

(3-447	5	(-3-448	  τ known τ  unknown 

6-Security Portfolios 

  (3-4495(-3-4(4	  

  Mean Square Error 0.01373 0.00956 0.01254 0.01327 0.01334 0.01027 0.01029 

  MSE Components:  

   Bias 0.00868 0.00398 0.00696 0.00832 0.00825 0.00460 0.00552 

   Inefficiency 0.00005 0.00058 0.00058 0.00013 0.00010 0.00006 0.00013 

   Random Error 0.00501 0.00501 0.00501 0.00481 0.00500 0.00560 0.00463 

 (3-4495(-3-44:	  

 Mean Square Error 0.01425 0.00985 0.01294 0.01377 0.01386 0.01067 0.01072 

 MSE Components:        

   Bias 0.00918 0.00432 0.00741 0.00881 0.00873 0.00496 0.00592 

   Inefficiency 0.00006 0.00052 0.00052 0.00016 0.00012 0.00008 0.00016 

   Random Error 0.00501 0.00501 0.00501 0.00481 0.00500 0.00562 0.00463 

 (3-4495(-3-449	  

 Mean Square Error 0.01165 0.00904 0.01157 0.01108 0.01124 0.00866 0.00855 

 MSE Components:  

   Bias 0.00675 0.00271 0.00524 0.00643 0.00636 0.00323 0.00400 

   Inefficiency 0.00006 0.00149 0.00149 0.00001 0.00002 0.00004 0.00001 

   Random Error 0.00484 0.00484 0.00484 0.00464 0.00486 0.00539 0.00453 

         

  10-Security Portfolios 

 (3-4495(-3-4(4	        

 Mean Square Error 0.01402 0.01109 0.01312 0.01365 0.01362 0.01006 0.01001 

 MSE Components:        

   Bias 0.00868 0.00363 0.00566 0.00841 0.00825 0.00399 0.00507 

   Inefficiency 0.00007 0.00219 0.00219 0.00014 0.00013 0.00008 0.00019 

   Random Error 0.00527 0.00527 0.00527 0.00509 0.00524 0.00598 0.00475 

 (3-4495(-3-44:	        

 Mean Square Error 0.01418 0.01090 0.01301 0.01382 0.01378 0.01005 0.01008 

 MSE Components:        

   Bias 0.00918 0.00396 0.00606 0.00890 0.00873 0.00433 0.00544 

   Inefficiency 0.00010 0.00204 0.00204 0.00018 0.00017 0.00012 0.00024 

   Random Error 0.00491 0.00491 0.00491 0.00474 0.00488 0.00560 0.00440 

 (3-4495(-3-449	        

 Mean Square Error 0.00911 0.00821 0.00991 0.00875 0.00870 0.00556 0.00563 

 MSE Components:        

   Bias 0.00675 0.00242 0.00412 0.00651 0.00636 0.00272 0.00362 

   Inefficiency 0.00001 0.00343 0.00343 0.00000 0.00000 0.00000 0.00000 

   Random Error 0.00236 0.00236 0.00236 0.00224 0.00234 0.00284 0.00201 
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The portfolio size definitely cause the MSEs to reduce substantially for unadjusted as well as 

all the adjusted beta techniques. For both individual securities and portfolios the adjustment 

procedures appear to be very effective in reducing MSE than unadjusted technique. 

 

Under normal market conditions Blume’s procedure has the inefficiency and random 

components accounted for more than half the total MSE and in comparison to other methods 

this technique gives the least and negligible bias component. Further in Bayesian techniques 

the inefficiency component is negligible and bias is very small wherein the random 

component dominates the total MSE. Hence bias and random component hold a good 

proportion in total MSE. 

 

The inferences differ when under extreme economic setting. The bias and random component  

seems to have the maximum proportion of total MSE for all the adjustment techniques. But in 

Blume and MLPFS techniques inefficiency component also hold in some proportion.  

 

Bayesian techniques are seen to have the least MSE in comparison to conventional 

procedures. In comparison to Vasicek and Bayesian model under SELF the Bayesian model 

under bilinear loss gives us the least MSE which shows that overestimation and 

underestimation when taken into account ensures the efficiency and accuracy of the results. 

 

7 	������
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The findings of the study suggest that betas adjustment techniques are required for reducing 

the forecast error associated with relatively higher or lower betas. Also the techniques are 

useful in reducing the MSE for shorter estimation and prediction periods. Beta as an 

investment risk measure should have an optimal estimation period lengths for a specified 

investment (prediction) period. While comparing, Blume and Bayesian techniques we 

observe that Bayesian techniques outperform classical methods in most of the cases. Further, 

we observe that the Blume’s technique helps to capture the over and under estimation in the 

beta measure, this information can be utilized optimally to apply the Bayesian model under 

bilinear loss function and improve the accuracy of the estimates. 
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