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I. Introduction: A synthetic indicator (or composite index), ( )Z n , is an n -element array that represents 

( , )X n m , an m -tuple of other n -element arrays  (called constituent variables) for 1.m >  Z  is synthetic 

in the sense that so often it is a linear combination of ; 1, 2,...,
j

x X j m∈ = and, thus, ,Z Xw= where w is 

an m -element  array of weights.  There are indeed several methods to obtain the weight vector, ,w  

from ,X but, at present, we are concerned with Pena’s method (Pena, 1977;  Somarriba & Pena, 2009) 

based on his concept of distance (DP2) defined as: 

 

( )2

, 1,...,1

1

2 1 ; 1, 2,...,
m

ij

i j j

j j

d
DP R i n

σ
−

=

  
= − =      
∑   …  (1)  

where:  1, 2,...,i n= are cases (e.g. countries);  m is the number of constituent variables, X , such that 

; 1, 2,..., ; 1,2,...,
ij

x X i n j m∈ = = ; ; 1, 2,.., ; 1, 2,...,
ij ij rj

d x x i n j m= − = = ; r is the reference case; 

j
σ

 
is the standard deviation of constituent variable j ; 

2

, 1,...,1j j
R − ; 1j > is the coefficient of 

determination in the regression of 
j

x  over 
1, 2 1

,...,
j j

x x x
− −

. Moreover, 
2

1
0R = (Somarriba & Pena, 2009). 

A synthetic indicator constructed by Pena’s method is claimed to have almost all desirable properties 

(Pena, 1977; Zarazosa, 1996; Somarriba & Pena, 2009; Montero et al., 2010; Garcia et al., 2010; Martína  

&  Fernández, 2011). 
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Montero et al. (2010) noted and Mishra (2012a) demonstrated that an application of Pena’s method of 

construction of synthetic indicators suffers from indeterminacy since the weight ( 2

, 1,...,11
j j j

w R −= − ) 

obtained by the thj  (standardized) constituent variable, ( / )
ij j

d σ , depends on its position in the order or 

the value of j .   The iterative process suggested by Montero et al. (2010) may not converge as long as 

the weights continue to be defined as 2

, 1,...,11
j j j

w R −= − and not ( ) ( 1)( ),t t

j j
w f w

−= where t  and ( 1)t − stand for 

the current and the immediately prior iterations and (.)f is a real continuous and bounded function 

onto itself. Such a condition and thus the convergence is precluded due to the definition of weight as 
2

, 1,...,11
j j j

w R −= −  which corresponds to a particular configuration (order) belonging to the (discrete) set of 

all possible !m (m-factorial) configurations (making !m isolated points) conforming to the order in which 

the constituent variables enter into the formula (eq.1). As a consequence, unless there is some 

extraneous criterion that determines the order in which the variables enter in eq. 1 above, the synthetic 

indicator constructed by Pena’s method is indeterminate. Mishra (2012b) suggested that maximization 

of the minimal (absolute) correlation between the synthetic indicator and the constituent variables 

(min(| ( , ) |)),
j

j

r Z d  where Z  is Pena’s synthetic indicator, may provide such an extraneous criterion. 

 

II. The Objectives of this Paper:  Esteban & Morales (1995) provide a comprehensive list of (as many as 

twenty three) entropy measures. The objectives of this paper are: (i) to use the maximum entropy of Z

as the extraneous criterion to obtain Pena’s synthetic indicator, and (ii) to gauge into the suitability of a 

particular measure of entropy from among  some well-known measures of entropy.  

 

III. Meaning and Different Measures of Entropy: As Beck (2008) has very lucidly explained, the missing 

information on the concrete state of a system is related to the entropy of the system and thus ‘entropy’ 

is used as a synonym for a possible quantity to measure missing information – the missing information 

on the actual occurrence of events, given that we only know the probability distribution of the events. 

To make the point clearer, consider a sample set of K possible events (possible microstates of a system), 

with the probability of the occurrence of event j  being
j

p  and 
1

1.
K

jj
p

=
=∑  Let the information gain due 

to the occurrence of a single event j  be measured by a function ( )
j

h p , which should be close to zero for 

j
p close to 1. Then, for a given function (.)h the average information gained during a long sequence of 

trials is 
1

({ }) ( )
K

j j jj
I p p h p

=
=∑  and the entropy is .S I= − Thus, entropy is defined as our missing 

information on the actual occurrence of events, given that we only know the probability distribution of 

the events. 

 
Khinchin (1957) formulated four axioms that describe the properties a ‘classical’ information measure, 

,I should have. Those are: (i) the information measure, ,I  must solely depend on the probabilities 
i

p of 

the events, or 
1 2

( , ,..., );
k

I I p p p=  (ii) the information measure, ,I  should attain its minimum when 
1

j
p K j−= ∀ or the information content of any probability distribution (other than uniform distribution) 

must exceed the information content of the uniform distribution; (iii) the information measure should 

not change if the sample set of events is enlarged by inclusion of an extra event with 
1

0
k

p + = and, finally, 

(iv) the information measure should be independent of the way or the sequence in which the 

information is collected. The implication of this axiom is that ( )
ij

I p factorises into  ( ) ( ),
i j

I p I p+ where 
ij

p is 

the (joint) conditional  probability of occurrence of event j while the event i has already occurred. This 

is the axiom of additivity of information for independent systems (Beck, 2008). The ‘classical’ system 

obeys all the four axioms and has simple formula of expressing the total entropy of a joint system as a 
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simple function of the entropies of the interacting subsystems (called composability property). 

Variations in defining the different measures of entropy mainly rest on the fulfillment of this axiom of 

independence.  A good measure of entropy should have composability. Additionally, it should have 

concavity and stability (called Lesche stability) with regard to small perturbations.  Concavity means that 

for the sub-systems 
1

U and 
2

U belonging to U  one has 
1 2

( ) ( ) (1 ) ( ) ; 0 1.S U S U S Uλ λ λ≥ + − ≤ ≤ (Naudts, 2011: 

p. 43).  

 

Now, we briefly describe the various measures of entropy. We assume that the probability of any event 

is not zero or, more exactly, 0 .
j

p j> ∀  

 
III.1. The Shannon Entropy: This measure of entropy satisfies all the four Khinchin axioms and is 

measured as 
1

log ( ).
K

j e jj
S k p p

=
= − ∑  In the information theoretic context, the constant, k (which has a 

definite meaning and value for a physical system and is known as the Boltzmann’s constant), may be 

assumed to be unity and, therefore,   one may say that Shannon’s measure of entropy ( S ) directly varies 

with the measure 
1

log ( ).
K

j e jj
S p p

=
= −∑  The Shannon’s measure of entropy has the properties of 

composability, concavity and Lesche-stability.  

 

III.2. The Rényi Entropy: Introduced by Rényi  (1970), this measure of entropy has a single parameter, q

and is measured as 
1 .

1
log ( ( )

1

qK

q e jj
S p

q =
=

−
∑  It satisfies the first three Khinchin axioms, but there is no 

simple formula of expressing the total Rényi entropy of a joint system as a simple function of the Rényi 

entropies of the interacting subsystems. This measure of entropy does not have composability, 

concavity and Lesche-stability (Lesche, 1982).  This measure reduces to Shannon’s measure of entropy 

as q approaches unity.  

 

III.3. The Tsallis Entropy: The Tsallis entropy (Tsallis, 1988) is given by 
1

1
(1 )

1

K q

q jj
S p

q =
= −

−
∑  for any real 

value of q (the entropic index) and in particular, it contains the Shannon entropy in the limiting case as 

q approaches unity. Tsallis’ measure of entropy has composability in a more general sense as shown by 

Abe (2000). It has concavity for 0q > (convexity for 0q < ). Lesche-stability of this measure of entropy was 

shown by Abe (2002), but Lutsko et al. (2009) have argued that if Lesche-stability is properly applied 

within the usual formalism of non-extensive thermodynamics, the Tsallis entropy is just as unstable as 

the Rényi entropy.  

 

III.4. The Abe Entropy: The Abe measure of entropy (Abe, 1997) is a symmetric modification of Tsallis 

measure of entropy, which in symmetric in 1
q q

−↔ and q lies in (0, 1].  It is given by 

1/ 1

1
( ) / ( ).

K q q

j jj
S p p q q−

=
= − − −∑  Abe measures of entropy is the modifications on Tsallis entropy (Beck, 2008). 

 

III.5. The Kaniadakis Entropy:  This measure of entropy was proposed by Kaniadakis (2002) 
1 1

1
( ) / (2 ).

K kappa kappa

j jj
S p p kappa+ −

=
= − −∑ For 0kappa = it gives the Shannon entropy and, therefore, it is a 

measure of deformation of a statistical distribution suitable to the Shannon entropy. 

 

III.6. The Sharma-Mittal Entropy: This measure of entropy (Sharma & Mittal, 1975) has two parameters, 

q and r  and it may be expressed (Aktürk et al. 2008) as ( )
((1 ) /(1 ))

1

1

1

r q
K q

jj
S p

r

− −

=

 
=  −  

∑ . Aktürk et al. argue 
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that the Sharma-Mittal (S-M) measure of entropy must be thought to be a step beyond not both Tsallis 

and Rényi entropies but rather only as a generalization of Rényi entropy from a thermo-statistical point 

of view. It also fails to be concave (Masi, 2005), while concavity entails thermodynamic stability. In spite 

of all these, the Sharma-Mittal measure of entropy incorporates Shannon, Rényi and Tsallis measures of 

entropy as its special cases. As 1,r → it gives Rényi’s measure; as ,r q→ it gives Tsallis measure; as r and 

q both approach unity, it gives the Shannon measure of entropy.   Beck (2008) provides a simpler 

expression of the Sharma-Mittal measure of entropy, 
1 2

K j jr

jj

p p
S p

α α

α

−

=

 −
= −   

 
∑ , which gives Tsallis entropy 

for r α= and 1 2q α= − , Kaniadakis entropy for 0r = and Abe entropy for 1/ 2
( ) / 2q qα = −  and  

1/ 2
( ) / 2.r q q= +   

 

IV. Choice of the Measures of Entropy: For the investigation at hand, we have chosen a few general 

measures of entropy such as Rényi, Tsallis, Abe, Kaniadakis and Sharma-Mittal measures. It may be 

noted that in the present context (entropy of Pena’s synthetic indicators) we cannot presume stability. 

More particularly, since the weights assigned by the Pena method depend on the order in which the 

constituent variables enter into the formula, the weight 
j

w (associated with 
ij

d ) is contingent upon the 

previously chosen weights (i.e. : 1,2,...
j t

w t j
−

= < for 
ij t

d
−

). Thus, independence is precluded. Additionally, 

assuming 
1

1w = is arbitrary.  In view of these, a regular measure of entropy (such as that of Shannon) 

may be utterly presumptive and unsuitable.  

 
V. Choice of the Method of Optimization: To obtain a maxi-min correlation solution of Pena indicator,  

Mishra (2012b) chose the discrete particle swarm method of optimization such that the decision 

variables could take on only those values that conform to a particular permutation (configuration) 

among the possible m-factorial permutations (configurations) of the decision variables. However, in the 

present exercise, we must take one or two additional decision variables, depending on the number of 

parameters in a specific measure of entropy. These additional variables would take on real values. Thus, 

in the particle swarm method that we use, the parameter space is mixed. Among the total no. of 

decision variables, the first m  will take on only integer values (all permutations of 1, 2, … , m) and the 

last ones (one or two) will be real. It may also be noted that in this exercise we optimize relative 

entropy, i.e. 
max

/S S where 
max

S is the maximum possible entropy pertaining to the uniform distribution 

(Rodrigues & Giraldi, 2009) and S  is the entropy measure of the relative frequency distribution 

(approximate probability distribution  obtained from the frequency distribution of the Pena Indicator 

under different permutations of the constituent variables).   

 

VI. The Test Data:  The data from Sarker et al. (2007) on Human Development Index (HDI) and its 

constituents (viz.  life expectancy (LE), education (ED) and per capita gross domestic product at the 

purchasing power parity with the US $  (PCI), used by Mishra (2012a and 2012b)) form the test data to 

obtain Z  (Pena Indicators) that corresponds to particular permutation of constituent variables entering 

into the Pena’s formula in a particular order. In all, twenty-four (4!) permutations are possible. 

 

VI. The Results: First, we may note that different configurations yield different synthetic indicators 

(Mishra, 2012a) that have different empirical frequency distributions (P01 through P24) as depicted in 

Fig.1. Deviation of the observed frequency distributions from uniform distribution (as well as normal 

distribution) is clear. 
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Fig.1: Frequency Distribution of Pena’s Synthetic Indicators 

Obtained from Different Permutations of Constituent Variables 
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Secondly, among all possible twenty-four Pena’s synthetic  indicators (configurations presented in Table-

1), we have obtained a particular indicator that maximizes a specific (relative) entropy (presented in 

Table-2).   We observe that P02  maximizes Shannon,  Rényi and Abe entropies; P08 maximizes Tsallis 



7 

 

entropy; P11 maximizes Kaniadakis entropy and P21 maximizes Sharma-Mittal entropy. All these 

indicators have one thing in common: ED is chosen as the leading variable.   

 

 

Table-1. All Permutations of Constituent Variables of Human Development (LE, ED, PCI and EQ) 
P Order Coded Order  P Order Coded Order 

01 LE    ED    PCI   EQ 1 2 3 4  13 LE    PCI   EQ    ED 1 3 4 2 

02 ED    LE    PCI   EQ 2 1 3 4  14 PCI   LE    EQ    ED 3 1 4 2 

03 PCI   LE    ED    EQ 3 1 2 4  15 EQ    LE    PCI   ED 4 1 3 2 

04 LE    PCI   ED    EQ 1 3 2 4  16 LE    EQ    PCI   ED 1 4 3 2 

05 ED    PCI   LE    EQ 2 3 1 4  17 PCI   EQ    LE    ED 3 4 1 2 

06 PCI   ED    LE    EQ 3 2 1 4  18 EQ    PCI   LE    ED 4 3 1 2 

07 EQ    ED    LE    PCI 4 2 1 3  19 EQ    PCI   ED    LE 4 3 2 1 

08 ED    EQ    LE    PCI 2 4 1 3  20 PCI   EQ    ED    LE 3 4 2 1 

09 LE    EQ    ED    PCI 1 4 2 3  21 ED    EQ    PCI   LE 2 4 3 1 

10 EQ    LE    ED    PCI 4 1 2 3  22 EQ    ED    PCI   LE 4 2 3 1 

11 ED    LE    EQ    PCI 2 1 4 3  23 PCI   ED    EQ    LE 3 2 4 1 

12 LE    ED    EQ    PCI 1 2 4 3  24 ED    PCI   EQ    LE 2 3 4 1 

. 

 

Table-2. Identification of Maximum Relative Entropy Pena Indicators of Human Development 
Sl. 

No. 

P 

code 

Variable Order Order Codes Max Relative  

Entropy 

Departure from 

Additivity 

Entropy Measure 

1 P02 (ED, LE,  PCI, EQ) 2,  1,  3,  4 0.920632560 0.0 Shannon Entropy 

2 P11 (ED, LE, EQ, PCI) 2,  1,  4,  3 0.910363082 0.390224222 Kaniadakis Entropy 

3 P08 (ED, EQ, LE, PCI) 2,  4,  1,  3 0.900989205 0.542937958 Tsallis Entropy 

4 P02 (ED, LE,  PCI, EQ) 2,  1,  3,  4 0.898986426 0.500000678 Abe  Entropy 

5 P21 (ED, EQ, PCI, LE) 2,  4,  3,  1 0.896921151 (0.99909739, 

  0.39081225) 

Sharma-Mittal  Entropy 

6 P02 (ED, LE,  PCI, EQ) 2,  1,  3,  4 ≃ 0.910360413 ( ≃ 0.39010978, 

 ≃  0.00009578) 

Rényi Entropy 

(obtained through S-M) 

.    

Thirdly, it is interesting to observe that none of the entropy-maximizing indicator is a maxi-min 

correlation solution. It was found that the permutation (P10: 4, 1, 2, 3) was a maxi-min correlation 

indicator, which is the most inclusive indicator (Mishra, 2007, 2012b). It may also be observed (Table-3) 

that Shannon, Kaniadakis and Rényi  entropy maximizing indicators are relatively more strongly 

correlated with HDI1, which is an indicator that maximizes the sum of absolute correlation of the 

indicator (HDI1) with the constituent variables, LE, ED, PCI and EQ (Mishra, 2007, 2010a, 2010b).  

Table-3. Correlation of HDI1 & HDI2 with Pena’s Indicators  obtained by Permutation of LE, ED, PCI and EQ 

Indi-  

cators 
P(2) P(8) P(11) P(21) P(1) P(3) P(4) P(5) P(6) P(7) P(9) P(10) 

HDI1 0.9912 0.9857 0.9912 0.9867 0.9898 0.9927 0.9895 0.9915 0.9930 0.9822 0.9891 0.9767 

HDI2 0.9837 0.9719 0.9836 0.9736 0.9785 0.9849 0.9780 0.9846 0.9856 0.9646 0.9772 0.9550 

             

Indi-  

cators 
P(12) P(13) P(14) P(15) P(16) P(17) P(18) P(19) P(20) P(22) P(23) P(24) 

HDI1 0.9897 0.9893 0.9926 0.9763 0.9889 0.9879 0.9832 0.9843 0.9886 0.9835 0.9889 0.9876 

HDI2 0.9783 0.9775 0.9845 0.9543 0.9767 0.9745 0.9652 0.9669 0.9757 0.9666 0.9762 0.9754 
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VII. Concluding Remarks: If we must choose from among the different entropy measures so as to 

maximize it for obtaining an entropy-maximizing synthetic indicator (of Pena), we may not favour the 

Shannon measure. If the Shannon measure would have been suitable, other measures of entropy would 

have been reduced to that (as the Shannon measure is a special case of all other measures of entropy 

considered in this exercise). There are deformities as well as the departure from the standard (fourth) 

Khinchin axiom of independence and conventional additivity (shown in Table-2) that might have 

generated the patterns reflected in the empirical distribution of the indicators.  

 

However, from among the more general measures of entropy, it would be difficult to suggest as to 

which one is the best to choose.   Aktürk et al. (2008) pointed out that Sharma-Mittal measure of 

entropy is more akin to Rényi’s rather than Tsallis’ (which also includes Abe’s and Kaniadakis entropies 

as its special cases). In this study also we have observed this tendency with respect to computation and 

it appears that the optima of Sharma-Mittal entropies lie on more acute ridges making it difficult to 

obtain a numerically stable solution.  Computation of Rényi’s entropy showed instability and we 

obtained it indirectly through the Sharma-Mittal (S-M) formula, setting r in the neighborhood of unity.  

 
As far as this study suggests, identifying the best Pena indicator by maximization of entropy cannot give 

us an indubitable and equivocally acceptable solution. The maxi-min solution (Mishra, 2012b) is more 

determinate, liable to interpretation and clearly suggestive.  
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