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Abstract

The generalized lambda distribution (GLD) is a versatile distribution that
can accommodate a wide range of shapes, including fat-tailed and asymmet-
ric distributions. It is defined by its quantile function. We introduce a more
intuitive parameterization of the GLD that expresses the location and scale
parameters directly as the median and inter-quartile range of the distribu-
tion. The remaining two shape parameters characterize the asymmetry and
steepness of the distribution respectively. This is in contrasts to the previous
parameterizations where the asymmetry and steepness are described by the
combination of the two tail indices. The estimation of the GLD parameters
is notoriously difficult. With our parameterization, the fitting of the GLD to
empirical data can be reduced to a two-parameter estimation problem where
the location and scale parameters are estimated by their robust sample es-
timators. This approach also works when the moments of the GLD do not
exist. Moreover, the new parameterization can be used to compare data sets
in a convenient asymmetry and steepness shape plot. In this paper, we de-
rive the new formulation, as well as the conditions of the various distribution
shape regions and moment conditions. We illustrate the use of the asymme-
try and steepness shape plot by comparing equities from the NASDAQ-100
stock index.
Keywords: Quantile distributions, generalized lambda distribution, shape
plot representation

∗Corresponding author. Email address: chalabi@phys.ethz.ch. Postal address: Institut
für Theoretische Physik, HIT G 31.5, Wolfgang-Pauli-Str. 27, 8093 Zürich, Switzerland.
Tel.: +41 44 633 70 53.

This version: March 2012

mailto:chalabi@phys.ethz.ch


1. Introduction

The generalized lambda distribution (GLD) originated in Tukey’s lambda
distribution [10, 34, 35]. Tukey’s lambda is a symmetric distribution that is
defined by its quantile function. It was introduced to efficiently generate
random variates that approximate other distributions [34, 36]. Soon after
the introduction of Tukey’s lambda distribution, Hogben [11], Shapiro et al.
[27], Shapiro and Wilk [28], and Filliben [5] used the non-symmetric case
in sampling studies. Over the years, it became a versatile distribution with
location, scale, and shape parameters that can accommodate a large range of
distribution shapes. It was used to analyze data and was no longer restricted
to approximating other distributions. Figure 1 illustrates the four different
shapes of the GLD: unimodal, U-shape, Monotone and S-shape. In applica-
tions, the GLD has been used in various fields, such as in option pricing as a
fast generator of financial prices [3] or in fitting income data [32]. It has also
been used in meteorology [23], in studying the fatigue lifetime prediction of
materials [2], in simulations of queue systems [4], in corrosion studies [21],
and in independent component analysis [17]. Finally, it has been used in
statistical process control [25, 22, 6].

The parameterization of the lambda distribution family has a long history.
The parameterizations used nowadays are those of Ramberg and Schmeiser
[26] and Freimer et al. [8]. Ramberg and Schmeiser [26] expressed the Tukey
lambda distribution with four parameters (RS) as,

Q
RS
(u) = λ1 +

1

λ2

[
uλ3 − (1− u)λ4

]
, (1)

where Q = F−1 is the quantile function for probabilities u, λ1 is the location
parameter, λ2 is the scale parameter, and λ3 and λ4 are the shape parameters.
However, in order to have a valid distribution function where the probability
density function f is positive for all x and integrates to one over the range
of possible values,

f(x) ≥ 0 and
∫ Q(1)

Q(0)

f(x) dx = 1, (2)

the RS parameterization has complex constraints on the parameters and
support regions as summarized in Table 1 and in Fig. 2. Later, Freimer et al.
[8] introduced a new parameterization (FKML) to circumvent the constraints
on the parameter values. It is defined as,

Q
FKML

(u) = λ1 +
1

λ2

[
uλ3 − 1

λ3
− (1− u)λ4 − 1

λ4

]
. (3)

2



Unimodal U−shape

Monotone S−shape

GLD Range of Shapes

Figure 1: The GLD has four basic shapes: unimodal, U-shape, monotone, and S-shape.

As in the previous parameterization, λ1 and λ2 are the location and scale
parameters, and λ3 and λ4 are the tail index parameters. The advantage over
the previous parameterization is that the only constraint on the parameters
is that λ2 must be positive. Figure 3 displays the support regions of the GLD
in the FKML parameterization.

The estimation of the GLD parameters for empirical data is notoriously
difficult because of the change of the distributional shapes as the parameters
are varied in the different regions of the shape parameters. In particular, the
support of the distribution can change with the value of the parameters from
being a whole real line to an interval, which is infinite in only one direction
or finite. In the last decade, several papers have been published to discuss
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Region λ2 λ3 λ4 Q(0) Q(1)

1 < 0

≤ −1 ≥ 1

−∞ λ1 + (1/λ2)


−1 < λ3 < 0 and λ4 > 1

(1− λ3)1−λ3 (λ4 − 1)
λ4−1

(λ4 − λ3)λ4−λ3
=
−λ3
λ4

2 < 0

≥ 1 ≤ −1

λ1 − (1/λ2) ∞

λ3 > 1 ∧ −1 < λ4 < 0

(1− λ4)1−λ4 (λ3 − 1)
λ3−1

(λ3 − λ4)λ3−λ4
=
−λ4
λ3

3 > 0
> 0 > 0 λ1 − (1/λ2) λ1 + (1/λ2)
= 0 > 0 λ1 λ1 + (1/λ2)
> 0 = 0 λ1 − (1/λ2) λ1

4 < 0
< 0 < 0 −∞ ∞
= 0 < 0 λ1 ∞
< 0 = 0 −∞ λ1

Table 1: Support regions of the GLD and conditions on the parameters given by the RS
parameterization to define a valid distribution function (Karian and Dudewicz [13]). The
support regions are displayed in Fig. 2. Note there are no conditions on λ1.

different parameter estimation approaches. On the one side are the direct
estimation methods, such as least-squares estimation with order statistics
[24] and with percentiles [15, 13, 7, 18, 14]; the method of moments [23, 9],
of L-moments [9, 16], and of trimmed L-moments [1]; and the method of
goodness-of-fit with histograms [30] and with maximum likelihood estimation
[31]. On the other side, stochastic methods have been introduced with various
estimators such as goodness-of-fit [20] or the starship method [19]. Moreover,
Shore [29] studied the L2 norm estimator that minimizes the density function
distance and the use of nonlinear regression applied to a sample of exact
quantile values.

As noted by Gilchrist [9], one of the criticisms of the GLD is that its
skewness is expressed in terms of both tail indices λ3,4 (Eq. 1 and 3). In one
approach addressing this concern, a five-parameter GLD was introduced by
Joiner and Rosenblatt [12], which, expressed in the FKML parameterization,
can be defined as,

Q
FGLD

(u) = λ1 +
1

2λ2

[
(1− λ5)

uλ3 − 1

λ3
− (1 + λ5)

(1− u)λ4 − 1

λ4

]
. (4)

It has a location parameter λ1, a scale parameter λ2, and an asymmetry
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Figure 2: Support regions of the GLD in the RS parameterization that produce valid
statistical distributions as described in Table 1.

parameter, λ5, which weights each side of the distribution and the two tail
indices, λ3 and λ4. The conditions on the parameters are λ2 > 0 and −1 <
λ5 < 1. However, the addition of a new parameter can make the estimation
of the parameters from a data set even more difficult.

In this paper, we show how the four-GLD parameterization (Eq. 3) can
be transformed in terms of an asymmetry and steepness parameter without
adding a new variable. Moreover, we formulate the location and scale pa-
rameters in terms of quantile statistics. The median is used as the location
parameter, and the inter-quartile range is used as the scale parameter. The
advantage of this parameterization is twofold. First, it brings a clearer inter-
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Figure 3: Support regions of the GLD in the FKML parameterization.

pretation of the parameters whereby the asymmetry of the distribution can
be distinguished from the steepness of the distribution. This is in contrast
to the current parameterizations where the asymmetry is described by the
combination of the tail indices. This allows for simpler conditions for the
support regions and for the existence of moments for the GLD. Second, the
estimation of the parameters for empirical data set can be reduced to a two-
parameter estimation problem because the location and scale parameters can
be directly estimated by their robust sample estimators. Note that sample
quantiles can always be estimated, even when moments of the distribution
do not exist. The remaining two shape parameters can be estimated with
the usual estimation methods, such as the maximum likelihood estimator.
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The remainder of this paper is organized as follows. In §2, we introduce
the new asymmetry-steepness parameterization of the GLD. In §3, we derive
the support of the distribution in terms of its parameters and illustrate the
different support regions in a shape plot. Then, in §4, we give conditions for
the existence of its moments, as well as its representation in the shape plot.
Based on the support and moment existence conditions, we study in §5 the
different shape regions of the distribution and give values of the parameters
that make the GLD a good approximation for well-known distributions. We
use the new parameterization in §6 to compare the equities of the NASDAQ-
100 stock index in the shape plot representation. Conclusions are offered in
the last section.

2. Asymmetry-steepness parameterization

In the following section, we express the new parameterization in the
FKML form. We consider the GLD quantile function,

Q(u) = λ1 +
1

λ2
S(u|λ3, λ4), (5)

where

S(u|λ3, λ4) =



ln(u)− ln(1− u) (λ3 = 0, λ4 = 0) ,

ln(u)− 1

λ4

[
(1− u)λ4 − 1

]
(λ3 = 0, λ4 6= 0) ,

1

λ3

(
uλ3 − 1

)
− ln(1− u) (λ3 6= 0, λ4 = 0) ,

1

λ3

(
uλ3 − 1

)
− 1

λ4

[
(1− u)λ4 − 1

]
(otherwise) .

(6)

when 0 < u < 1. Q is the quantile function for probabilities u; λ1, λ2 are the
location and scale parameters; and λ3, λ4 are the shape parameters jointly
related to the strengths of the lower and upper tails. In the limiting cases,
when u = 0 we have

S(0|λ3, λ4) =

−
1

λ3
(λ3 > 0) ,

−∞ (otherwise) ,

and when u = 1

S(1|λ3, λ4) =


1

λ4
(λ4 > 0) ,

∞ (otherwise) .

7



We can now use the median, µ̃, and the inter-quartile range, σ̃, to rep-
resent the location and scale parameters. Note that we use the tilde to not
confuse them with the mean, µ, and the standard deviation, σ. Then, µ̃ and
σ̃ are defined by

µ̃ = Q(1/2),

σ̃ = Q(3/4)−Q(1/4).

The parameters λ1 and λ2 in (6) can therefore be expressed in terms of the
median and inter-quartile range as

λ1 = µ̃− 1

λ2
S(

1

2
|λ3, λ4),

λ2 =
1

σ̃

[
S(

3

4
|λ3, λ4)− S(

1

4
|λ3, λ4)

]
.

As mentioned in the introduction, one of the criticisms of the GLD is that
the asymmetry and steepness of the distribution depend on both tail indices
λ3 and λ4. The main idea of this paper is to use distinct shape parameters
for the asymmetry and steepness. This is in contrast to the current parame-
terizations where both tail indices determine the asymmetry and steepness of
the distribution. First, it is clear from the definition of the GLD (Eq. 5) that
when the tail indices are equal, the distribution is symmetric. Increasing one
tail index then produces an asymmetric distribution and a large difference be-
tween the tail indices produces a more asymmetric distribution. Second, the
steepness of the distribution is related to the size of both tail indices. Indeed,
increasing both tail indices would result in a distribution with thinner tails.
We can therefore formulate an asymmetry parameter, χ, proportional to the
difference between the tail indices and a steepness parameter ξ proportional
to the sum of both indices. The remaining step is to map the unbounded
interval of (λ3−λ4) and (λ3+λ4) to a finite one. To achieve this, we use the
transformation

y =
x√

1 + x2
↔ x =

y√
1− y2

where y ∈ (−1, 1) and x ∈ (−∞,∞).

By taking the proper scaling for the finite intervals, the asymmetry parame-
ter, χ, and the steepness parameter, ξ, can be expressed as
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χ =
λ3 − λ4√

1 + (λ3 − λ4)2
, (7)

ξ =
1

2
− λ3 + λ4

2
√

1 + (λ3 + λ4)
2
. (8)

The domain of variation of the shape parameters is given by χ ∈ (−1, 1)
and ξ ∈ (0, 1). When χ is equal to 0, the distribution is symmetric. When
χ is positive (negative), the distribution is positively (negatively) skewed.
Moreover, the GLD becomes steeper when ξ increases. From the parameter-
ization of χ in (7) and ξ in (8), we obtain a system of two equations for the
tail indices λ3 and λ4,

λ3 − λ4 =
χ√

1− χ2
,

λ3 + λ4 =
1
2
− ξ√

ξ(1− ξ)
.

This gives, for λ4 and λ3,

λ3 = α + β,

λ4 = α− β,

where

α =
1

2

1
2
− ξ√

ξ(1− ξ)
, (9)

β =
1

2

χ√
1− χ2

. (10)

We can now formulate the S function in (6) in terms of the shape parameters
χ and ξ. We obtain
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Ŝ(u|χ, ξ) =



ln(u)− ln(1− u)
(
χ = 0, ξ =

1

2

)
,

ln(u)− 1

2α

[
(1− u)2α − 1

] (
χ 6= 0, ξ =

1

2
(1 + χ)

)
,

1

2β
(u2β − 1)− ln(1− u)

(
χ 6= 0, ξ =

1

2
(1− χ)

)
,

1

α + β

(
uα+β − 1

)
− 1

α− β

[
(1− u)α−β − 1

]
(otherwise) ,

(11)
where α and β are defined in (9) and (10), and 0 < u < 1. When u = 0, we
have

Ŝ(0|χ, ξ) =

−
1

α + β

(
ξ <

1

2
(1 + χ)

)
,

−∞ (otherwise) ,

and when u = 1,

Ŝ(1|χ, ξ) =


1

α− β

(
ξ <

1

2
(1− χ)

)
,

∞ (otherwise) .

Given the definitions of µ̃, σ̃, χ, ξ, and Ŝ, the quantile function of the GLD
becomes

Q
CSW

(u|µ̃, σ̃, χ, ξ) = µ̃+ σ̃
Ŝ(u|χ, ξ)− Ŝ(1

2
|χ, ξ)

Ŝ(3
4
|χ, ξ)− Ŝ(1

4
|χ, ξ)

. (12)

We will hereinafter use the subscript CSW to denote the new parameteriza-
tion. Since the cumulative distribution function, F , of the GLD is continuous,
we have by definition F (Q(u)) = u for all u. The probability density function
f(x) = F ′(x) and the quantile density function q(u) = Q′(u) are then related
by

f [Q(u)] q(u) = 1. (13)

f [Q(u)] is often referred in the literature as the density quantile function,
fQ(u). The probability density function of the GLD can then be calculated
from the quantile density function. In particular, the quantile density func-
tion can be derived from the definition of the quantile function in (12), which
gives
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q
CSW

(u|σ̃, χ, ξ) = σ̃

Ŝ(3
4
|χ, ξ)− Ŝ(1

4
|χ, ξ)

d

du
Ŝ(u|χ, ξ) , (14)

where

d

du
Ŝ(u|χ, ξ) =



1

u
+

1

1− u
(χ = 0, ξ = 1/2) ,

1

u
+ (1− u)2α−1

(
χ 6= 0, ξ =

1

2
(1 + χ)

)
,

u2β−1 +
1

1− u

(
χ 6= 0, ξ =

1

2
(1− χ)

)
,

uα+β−1 + (1− u)α−β−1 (otherwise) .

It is interesting to note that the limiting sets of shape parameters {χ→
−1, ξ → 0} and {χ→ 1, ξ → 0} produce a valid distribution. We obtain the
quantile and quantile density functions when χ→ −1 and ξ → 0,

lim
χ→−1
ξ→0

Q
CSW

(u) = µ̃+ σ̃
ln(u) + ln(2)

ln(3)
,

lim
χ→−1
ξ→0

q
CSW

(u) =
σ̃

ln(3)

1

u
,

and when χ→ 1 and ξ → 0,

lim
χ→1
ξ→0

Q
CSW

(u) = µ̃− σ̃ ln(1− u) + ln(2)

ln(3)
, (15)

lim
χ→1
ξ→0

q
CSW

(u) =
σ̃

ln(3)

1

1− u
.

However, the other sets of limiting shape parameters do not yield a valid
distribution. Details of the calculations for all limiting cases are available
in Appendix A.

3. Support

The GLD can accommodate a wide range of distribution shapes and sup-
port. In this section, we calculate the conditions on the shape parameters for
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the different support regions. The support of the GLD can be derived from
the extreme values of Ŝ in (11)—i.e., when u = 0, 1. We obtain

Ŝ(0|χ, ξ) =

−
2
√
ξ(1− ξ)(1− χ2)

(1
2
− ξ)

√
1− χ2 + χ

√
ξ(1− ξ)

(
ξ <

1

2
(1 + χ)

)
,

−∞ (otherwise) ,

and

Ŝ(1|χ, ξ) =


2
√
ξ(1− ξ)(1− χ2)

(1
2
− ξ)

√
1− χ2 − χ

√
ξ(1− ξ)

(
ξ <

1

2
(1− χ)

)
,

∞ (otherwise) .

The GLD thus has infinite support when
1

2
(1+|χ|) ≤ ξ, lower infinite support

when χ < 0 and
1

2
(1 + χ) ≤ ξ <

1

2
(1− χ), and upper infinite support when

0 < χ and
1

2
(1−χ) ≤ ξ <

1

2
(1+χ). The distribution has finite support in the

remaining region. The support regions can be nicely drawn using triangle
regions in a shape plot with the asymmetry parameter χ versus steepness
parameter ξ as shown in Fig. 4. This contrasts with the complex region sup-
ports in the RS parameterization displayed in Fig. 2. Of course, the region
supports share the same intuitiveness as the FKML region supports (Fig. 3)
since the shape-asymmetry parameterization is based on the FKML parame-
terization. However, the advantage of the CSW is that its shape parameters
have a finite domain of variation and can therefore be represented in a unique
plot.

4. Moments

In this section we derive conditions for the existence of moments depend-
ing on the shape parameters χ and ξ. The conditions for existence of moments
can be determined by expanding the definition of moments to a binomial se-
ries and using the existence conditions of the Beta function as Ramberg and
Schmeiser [26] and Freimer et al. [8] do. In the λ’s representation of FKML
(Eq. 3), the condition of existence of the kth moment is min(λ3, λ4) = −1/k.
For the parameters α and β defined in (9) and (10), this gives the condition
of existence

min(α + β, α− β) > −1/k.
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Figure 4: The four support regions of the GLD displayed in the shape plot with asymmetry
parameter χ versus the steepness parameter ξ.

After some basic algebraic manipulation, we obtain the condition of existence
of the kth moment in terms of the shape parameters χ and ξ,

ξ <
1

2
−H

(
|χ| −

√
4

4 + k2

)√
1− 2k|β|+ k2β2

4− 8k|β|+ k2 + 4k2β2
,

where H is the step function

H(x) =

{
1 (x ≥ 0),

−1 (otherwise),
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Figure 5: Shape conditions for the existence of moments k. Any set of parameters χ and
ξ that is under the kth line defines a distribution with finite kth moment.

and β as defined in (10). Note that in the limiting case when χ→ ±1, the kth
moment exists when ξ → 0. Figure 5 shows the condition line of existence for
the first four moments in the shape diagram. Any set of shape parameters χ
and ξ that is under the kth condition line defines a distribution with a finite
kth moment.

5. Distribution shape

The GLD has four distribution shapes: unimodal, U-shape, monotone,
and S-shape. In this section, we derive the conditions for each distribution
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shape based on the derivatives of Ŝ in (11). Indeed, Ŝ is proportional to
the quantile function, and its derivatives thus provide information on the
distribution shapes. First, Ŝ is an increasing function since it is proportional
to the quantile function. Second, the density quantile function is defined as
the multiplicative inverse of the quantile density function as noted in (13).
The first derivative of Ŝ is thus always larger than or equal to zero. The
second and third derivatives of Ŝ are

d2

du2
Ŝ(u|χ, ξ) =



1

(1− u)2
− 1

u2
(χ = 0, ξ = 1/2) ,

− 1

u2
− (2α− 1) (1− u)2α−2

(
ξ <

1

2
(1 + χ)

)
,

(2β − 1)u2β−2 +
1

(1− u)2

(
ξ <

1

2
(1− χ)

)
,

AuA−1 −B (1− u)B−1 (otherwise) ,

and

d3

du3
Ŝ(u|χ, ξ) =



2

u3
+

2

(1− u)3
(χ = 0, ξ = 1/2) ,

2

u3
+ (2α− 2)(2α− 1) (1− u)2α−3

(
ξ <

1

2
(1 + χ)

)
,

(2β − 2)(2β − 1)u2β−3 +
2

(1− u)3

(
ξ <

1

2
(1− χ)

)
,

A(A− 1)uA−2 +B(B − 1) (1− u)B−2 (otherwise) ,

where A = α+β−1, B = α−β−1, and α and β are defined in (9)–(10). We
can now deduce the parameter conditions for the four shape regions of the
GLD. Figure 6 summarizes the shape regions as described in the remaining
part of this section.

5.1. One turning point
The density has one turning point when it is either convex or concave,

and its derivative has one zero. Therefore, the density function has one mode
when the second derivative of Ŝ has one zero, and its third derivative is either
positive or negative. Note that the second derivative of Ŝ has at most one
zero because Ŝ is an increasing function.
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Figure 6: Parameter regions of the GLD shapes in the (χ, ξ) space.

5.1.1. Unimodal
We first consider the case where the third derivative of Ŝ is positive—that

is, when the distribution is unimodal. Note throughout this paper that a
unimodal distribution refers to a distribution with a single local maximum.
We thus have the conditions on the third derivative and on the end points of
the second derivative of S,
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d3

du3
Ŝ(u|χ, ξ) > 0,

d2

du2
Ŝ(0|χ, ξ) < 0,

d2

du2
Ŝ(1|χ, ξ) > 0.

These conditions are fulfilled when α+β > 2 and α−β > 2 or when α+β < 1
and α − β < 1. The calculation is tedious but straightforward. In terms of
the shape parameters χ and ξ, the conditions are

0 < ξ <
1

34

(
17− 4

√
17
)
,

−2
√

4− 4α + α2

17− 16α + 4α2
< χ < 2

√
4− 4α + α2

17− 16α + 4α2
,

or

1

10

(
5− 2

√
5
)
< ξ < 1,

−2
√

1− 2α + α2

5− 8α + 4α2
< χ < 2

√
1− 2α + α2

5− 8α + 4α2
.

5.1.2. U-shape
Likewise, the probability density function is U-shaped when the third

derivative of Ŝ is negative and the end points of the second derivative are of
different signs. This is the case when 1 < α + β < 2 and 1 < α − β < 2,
giving the conditions,

1
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√
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)
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(
5− 2

√
5
)
,
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,

or

1
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(
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√
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1
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(
10− 3

√
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)
,

−2
√

4− 4α + α2
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√
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.
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χ = −0.768, ξ = 0.004
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χ = −0.514, ξ = 0.337
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χ = −0.301, ξ = 0.034
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χ = 0, ξ = 0.018
χ = 0.218, ξ = 0.018

GLD One Turning Point Density Function Examples

Figure 7: One turning point probability density function of the GLD with different sets
of shape parameters.

Note that the parameter conditions of the U-shaped density yield a distribu-
tion with finite support, whereas the unimodal shape can have either finite
or infinite support. Figure 7 illustrates both the unimodal and U-shaped
distribution shapes of the GLD.

5.2. Monotone
The probability density function is monotone when its derivative has no

zeros—that is, when the second derivative of Ŝ does not have any zeros. In

18



other words, it means that Ŝ has no inflection point. This is the case when

α + β > 1 and α− β < 1,

or
α + β < 1 and α− β > 1.

In terms of the shape parameters, the shape conditions are

0 < χ ≤ 2√
5
,

1

2
−

√
1 + 2β + β2

5 + 8β + 4β2
< ξ <

1

2
−

√
1− 2β + β2

5− 8β + 4β2
,

or

2√
5
< χ < 1,

1

2
−

√
1 + 2β + β2

5 + 8β + 4β2
< ξ <

1

2
+

√
1− 2β + β2

5− 8β + 4β2
,

or

−1 < χ ≤ − 2√
5
,

1

2
−

√
1− 2β + β2

5− 8β + 4β2
< ξ <

1

2
+

√
1 + 2β + β2

5 + 8β + 4β2
,

or

− 2√
5
< χ < 0,

1

2
−

√
1− 2β + β2

5− 8β + 4β2
< ξ <

1

2
−

√
1 + 2β + β2

5 + 8β + 4β2
.

Figure 8 illustrates the monotone shape of the GLD with a different set of
shape parameters.
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χ = 0.947, ξ = 0.428

χ = −0.947, ξ = 0.082 χ = −0.537, ξ = 0.058
χ = −0.358, ξ = 0.053
χ = −0.179, ξ = 0.052

GLD Monotone Density Function Examples

Figure 8: Monotone probability density function of the GLD with different sets of shape
parameters.

5.3. S-shape
Given the previous shape regions, the last region is defined by

α + β > 2 and 1 < α− β < 2,

1 < α+ β < 2 and α− β > 2.

We observe that the second derivative of Ŝ for u ∈ {0, 1} has the same sign.
This indicates that the slope direction at the end points of the probabil-
ity density function tend toward the same direction. Moreover, the second
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derivative of Ŝ is bounded by a negative and positive number, implying that
it has at least two zeros. The probability density function, therefore, has at
least two modes. Moreover, the second derivative can be decomposed in two
parts, which are both monotonically increasing or decreasing, implying that
both functions can be equal, at most, twice. The second derivative, therefore,
has exactly two zeros in this region and has an S-shape density when
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2
,
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17 + 16β + 4β2
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2
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2
−

√
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5 + 8β + 4β2
,

and
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2
,

1

2
−

√
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17− 16β + 4β2
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2
−
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− 1√
2
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2
−

√
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2
−

√
4 + 4β + β2

17 + 16β + 4β2
.

Figure 9 illustrates the S-shape probability density of the GLD.

5.4. Special Cases
As seen in the previous section, the GLD can accommodate a wide range

of distribution shapes. In this section, we estimate the parameters of Q
CSW
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χ = 0.283, ξ = 0.015
χ = 0.424, ξ = 0.015
χ = 0.566, ξ = 0.015

χ = 0.824, ξ = 0.013
χ = 0.883, ξ = 0.011
χ = 0.941, ξ = 0.007

χ = −0.883, ξ = 0.011
χ = −0.824, ξ = 0.013
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χ = −0.283, ξ = 0.015
χ = −0.141, ξ = 0.015

GLD S−shaped Density Function Examples

Figure 9: S-shape probability density function of the GLD with different sets of shape
parameters.

that replicate common distributions. We start from a vector of equidistant

probabilities of length N = 500 with probabilities pi =
i

N + 1
with i =

1, . . . , N . We calculate their respective quantiles, xi, and densities, di =
f(xi), for the different distributions. We then fit the shape parameters, χ̂
and ξ̂, which minimize the maximum absolute quantile error (MQE),

sup
∀i

∣∣∣QCSW
(pi|µ̃, σ̃, χ̂, ξ̂)− xi

∣∣∣ .
We use the median and inter-quartile range of the target distributions for the
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Distribution Parameters χ̂ ξ̂ sup|Q| sup|F | sup|f |

Normal µ = 0, σ = 1 0.0000 0.3661 0.012 0.001 0.001
Student’s t ν = 1 0.0000 0.9434 1.587 0.005 0.012

ν = 5 0.0000 0.5778 0.069 0.003 0.004
ν = 10 0.0000 0.4678 0.033 0.002 0.003

Laplace µ = 0, b = 1 0.0000 0.6476 0.257 0.015 0.093
Stable α = 1.9, β = 0 0.0000 0.5107 0.399 0.010 0.010

α = 1.9, β = 0.5 0.0730 0.5307 0.584 0.014 0.013
Gamma k = 4, θ = 1 0.4120 0.3000 0.120 0.008 0.012
χ2 k = 3 0.6671 0.1991 0.295 0.015 0.076

k = 5 0.5193 0.2644 0.269 0.011 0.017
k = 10 0.3641 0.3150 0.233 0.007 0.004

Weibull k = 3, λ = 1 0.0908 0.3035 0.007 0.003 0.016
Log Normal µ = 0, σ = 0.25 (log scale) 0.2844 0.3583 0.011 0.007 0.052
Gumbel α = 0.5, β = 2 -0.3813 0.3624 0.222 0.010 0.010
Inv. Gaussian µ = 1, λ = 3 0.5687 0.2957 0.096 0.022 0.175

µ = 0.5, λ = 6 0.3267 0.3425 0.008 0.008 0.125
NIG µ = 0, δ = 1, α = 2, β = 1 0.2610 0.4975 0.124 0.014 0.029
Hyperbolic µ = 0, δ = 1, α = 2, β = 1 0.2993 0.4398 0.198 0.021 0.030

Table 2: Shape parameters of the GLD to approximate common distributions.

location and scale parameters, µ̃ and σ̃. Note that we explicitly use N = 500
in order to compare our estimates to the previous studies of Gilchrist [9],
King and MacGillivray [18] and Tarsitano [33].

Table 2 lists the fitted shape parameters for common distributions with
the minimum quantile absolute error function in the column denoted by,
sup |Q̂|. We also report the maximum probability error, sup |F̂ |, as well as
the maximum density error, sup |f̂ |. We defined the maximum probability
error (MPE) as

sup
∀i

∣∣∣FCSW (xi|µ̃, σ̃, χ̂, ξ̂)− pi
∣∣∣ ,

and the maximum density error (MDE) as

sup
∀i

∣∣∣fCSW (xi|µ̃, σ̃, χ̂, ξ̂)− di
∣∣∣ .

An important distinction of our method to previous studies is that we
used the known values for the location and scale parameters since they are
the median and inter-quartile range of the target distributions. This is in
contrast with previous work where the location and scale parameters were
included in the fitting of the parameters. However, by including the location
and scale parameters, the fitted parameters might yield a GLD that does not
well approximate the target distribution around its center. This behavior
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arises from the change in the estimates of the location and scale, which
can alleviate poor fit in the tails of the distribution. However, this is at the
expense of having a worse fit around the location. Figure 10 reflects this issue
with the Student t distribution with 2 degrees of freedom. The left hand side
plot displays the fitted GLD using the exact values for µ̃ and σ̃. The right
hand side plot is the fitted GLD obtained when including the location and
scale parameters in the estimation. One clearly sees that the center of the
distribution is not well described when the location and scale parameters are
included in the optimization. However, using the known values for µ̃ and σ̃
yields a higher MQE, 0.307, compared to the other approach, 0.097.

It is interesting to note that the MPE could have been used rather than
the MQP to fit the shape parameters. It would have resulted in estimates
with smaller MPE. However, we have noticed in practice that the fitted GLD
with the MPE estimator does not well approximate the tails of the distri-
bution. This is especially the case with fat-tailed distributions. Figure 11
illustrates this behavior. The left hand side plot displays the fitted log-CDF
obtained by minimizing the MQE for the Student t distribution with 2 de-
grees of freedom. The right hand side plot is the fitted log-CDF obtained
with the MPE estimator. Note we used the true median and inter-quartile
range in both cases. One clearly sees that the parameters set obtained with
the MQE has a better visual fit.

Another important aspect in our approach was to ensure that the fitted
parameters yield a GLD with support that include all xi. This is especially
the case for the gamma, χ2 and Wald distributions. Indeed, one can find a
parameter set for which the MQE estimator is smaller, although the fitted
distribution does not includes all points.

These considerations motivated our choice to use the known values for
the location and scale parameters, to ensure that all points are included in
the support of the fitted distribution and to use the MQE estimator to fit
the shape parameters. To recall, the fitted shape parameters for common
distribution are listed in Table 2.

Besides accommodating a wide range of distributions, the GLD includes
the uniform, logistic and exponential distribution. From Eq. (11), (12) and (15)
we obtain the parameters of the GLD that replicate the uniform, logistic and
exponential distributions as summarized in Table 3. Note that the expo-
nential distribution corresponds to the limiting case {χ → 1, ξ → 0} as
mentioned at the end of §2.
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Figure 10: Approximation of the Student t probability density function (dotted lines) with
2 degrees of freedom by either fitting or using the true values for the location and scale
parameters, µ̃ and σ̃. In the left hand side plot, the fitted GLD where the true values for
the median and inter-quartile range were used. In the right hand side plot, the location
and scale parameters were included in the estimation. Note the maximum quantile error
(MQE) for the left hand side figure, 0.307, is larger than the one for the right hand side
figure, 0.097, although it has a better visual fit.

µ̃ σ̃ χ ξ

Uniform (a, b)
1

2
(a+ b)

1

2
(b− a) 0

1

2
− 1√

5
1

2
(a+ b)

1

2
(b− a) 0

1

2
− 2√

17

Logistic (µ, β) µ β ln(9) 0
1

2

Exponential (λ)
1

λ
ln(2)

1

λ
ln(3) 1 0

Table 3: Special cases of the GLD in the CSW parameterization.
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Figure 11: Comparison of the fitted GLD (dotted lines) to the Student t probability density
function with 2 degrees of freedom by either using the MQE or the MPE estimator. The
left hand side plot was obtained by minimizing the MQE and the right hand side plot with
the MPE. The MPE for the left hand side plot, 0.005, is larger than the one for the right
hand side figure, 0.001, although it has a better visual fit.

6. Shape Plot Representation

A nice property of having a closed domain of variation for the shape
parameters χ and ξ is that we can represent them in a shape plot. In Fig. 12
we illustrate the different shapes, depending on the asymmetry and steepness
parameters, with location µ̃ = 0 and scale σ̃ = 1. The shape plot affords a
simple interpretation. The x-axis measures the asymmetry, and the y-axis
expresses the heaviness of the tails. The shape plot is thus ideal to compare
the fitted shape parameters of a data set. In this section, we illustrate the
use of the shape plot with the fitted shape parameters of the equities from
the NASDAQ-100 index.

The NASDAQ-100 Index includes 100 of the largest US domestic and
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Figure 12: This figure illustrates the different probability density shapes for various steep-
ness and asymmetry parameters. The location and scale of the distribution are, respec-
tively, µ̃ = 0 and σ̃ = 1.

international non-financial companies listed on the NASDAQ Stock Mar-
ket. The index reflects the share prices of companies across major industry
groups, including computer hardware and software, telecommunications, re-
tail/wholesale trade, and biotechnology. We expect that the listed equities
have a wide range of distribution shapes. The GLD is therefore a good can-
didate for modeling their distribution. We downloaded the financial index
series for the NASDAQ-100 from Yahoo’s finance web portal and selected
the time series with records from 2000–01–03 to 2011–12–31 as reported in
Table 4. We used the log-returns of the adjusted closing prices.
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AKAM CHRW DLTR FISV KLAC MSFT ORCL RIMM SYMC XLNX
AMAT CMCSA EBAY FLEX LIFE MU ORLY ROST TEVA XRAY
CA COST ERTS FLIR LLTC MXIM PAYX SBUX URBN YHOO
CELG CSCO ESRX HSIC LRCX MYL PCAR SIAL VOD
CEPH CTSH EXPD INFY MAT NTAP PCLN SNDK VRSN
CERN CTXS FAST INTC MCHP NVDA QCOM SPLS VRTX
CHKP DELL FFIV INTU MICC NWSA QGEN SRCL WFMI

Table 4: NASDAQ Symbols. The 66 components of the NASDAQ-100 index that have
records from 2001–01–03 to 2011–12–31. Data downloaded from finance.yahoo.com.

We first estimated the location and scale parameters with their sample es-
timators. We then used the maximum likelihood estimator to fit the shape
parameters χ and ξ. Figure 13 shows the fitted shape parameters. It is inter-
esting to note that the fitted parameters are close to the symmetric vertical
line at χ = 0. However, the fitted shape parameters are well above the shape
parameters that best describe the standard normal distribution, represented
by a triangle in the shape plot. The fitted GLD for the components of the
NASDAQ has “fatter” tails that the normal distribution. This is one of the
typical so-called stylized facts of financial returns.

7. Conclusions

In this paper, we have introduced a new parameterization of the GLD
that provides an intuitive interpretation of its parameters. The median and
inter-quartile range are the location and scale of the distribution, respectively.
The shape parameters describe the asymmetry and the steepness of the dis-
tribution. This approach contrasts to previous parameterizations where the
skewness of GLD is expressed in terms of both tail indices λ3,4 (Eq. 1 and 3).
Another advantage of this parameterization is that the location and scale pa-
rameterization can be estimated from their sample estimators. This reduces
the complexity of the estimator used to fit the remaining shape parameters.
Moreover, this parameterization enables the use of shape plots that can be
used to represent the fitted parameters. However, this new parameterization
comes with the cost of more intricate expressions for the condition of the ex-
istence of moments and the condition of the shape parameters for the differ-
ent distribution shapes. Nevertheless, calculating these expressions remains
straightforward. The R package gldist implements the new parameterization
and is available from CRAN.
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Appendix A. Limiting cases

In this appendix, we derive the quantile and quantile density functions
given in (12) and (14) when the shape parameters tend to their limiting
values. We go through all combinations of limiting sets: (i) χ → −1 and
ξ → 0, (ii) χ→ 1 and ξ → 0, (iii) χ→ 1 and ξ → 1, (iv) χ→ −1 and ξ → 1,
(v) χ→ −1, (vi) χ→ 1, (vii) ξ → 1, (viii) ξ → 0.

Appendix A.1. χ→ −1 and ξ → 0

When χ→ −1 and ξ → 0 we are in the particular case where ξ =
1

2
(1+χ)

and Ŝ(u) = ln(u)− 1

a
[(1− u)a − 1] with a =

1
2
− ξ√

ξ(1− ξ)
. We therefore have

the limit

lim
χ→−1
ξ→0

Ŝ(u) = ln(u)− lim
a→∞

1

a
[(1− u)a − 1]

= ln(u).

Using Eq. (12) we obtain the quantile function

lim
χ→−1
ξ→0

Q
CSW

(u) = µ̃+ σ̃
ln(u) + ln(2)

ln(3)
,

and the quantile density function, q = Q′, becomes

lim
χ→−1
ξ→0

q
CSW

(u) =
σ̃

ln(3)

1

u
.

Moreover, it is straightforward to show that the obtained quantile function
describes a valid probability distribution function.

Appendix A.2. χ→ 1 and ξ → 0

When χ → 1 and ξ → 0, we have Ŝ(u) =
1

b
(ub − 1) − ln(1 − u) with

b =
χ√

1− χ2
. We then obtain the limit

lim
χ→1
ξ→0

Ŝ(u) = lim
b→∞

1

b
(ub − 1)− ln(1− u)

= − ln(1− u).
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The quantile function becomes

lim
χ→1
ξ→0

Q
CSW

(u) = µ̃− σ̃ ln(1− u) + ln(2)

ln(3)
,

and the quantile density function is

lim
χ→1
ξ→0

q
CSW

(u) =
σ̃

ln(3)

1

1− u
.

Again, it is straightforward to show that the obtained quantile function de-
scribes a valid probability distribution function.

Appendix A.3. χ→ 1 and ξ → 1

When χ → 1 and ξ → 1 we have Ŝ(u) = ln(u) − 1

a
[(1− u)a − 1] where

a =
1
2
− ξ√

ξ(1− ξ)
. We obtain the limit

lim
χ→1
ξ→0

Q
CSW

(u) = µ̃+ σ̃ lim
a→−∞

ln(u)− 1
a
[(1− u)a − 1] + ln(2) + 1

a

[(
1
2

)a − 1
]

ln(3)− 1
a

[(
1
4

)a − 1
]
+ 1

a

[(
3
4

)a − 1
]

= µ̃+ σ̃ lim
a→−∞

(
1
2

)a − (1− u)a(
3
4

)a − (1
4

)a
= µ̃+ σ̃ lim

a→−∞

2a − (4− 4u)a

3a − 1

= µ̃+ σ̃ lim
a→−∞

(4− 4u)a

=


µ̃ (0 < u < 3/4) ,

µ̃+ σ̃ (u = 3/4) ,

∞ (3/4 < u < 1) .

The resulting function diverges for 3/4 < u < 1, and does therefore not
produce a valid probability distribution function.

Appendix A.4. χ→ −1 and ξ → 1

When χ → −1 and ξ → 1 we have Ŝ(u) =
1

b
(ub − 1) − ln(1 − u) with

b =
χ√

1− χ2
. We obtain the limit
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lim
χ→1
ξ→0

Q
CSW

(u) = µ̃+ σ̃ lim
b→−∞

1
b

(
ub − 1

)
− ln(1− u)− 1

b

[(
1
2

)b − 1
]

1
b

[(
3
4

)b − 1
]
− 1

b

[(
1
4

)b − 1
]

= µ̃+ σ̃ lim
b→−∞

ub −
(
1
2

)b(
3
4

)b − (1
4

)b
= µ̃− σ̃ lim

b→−∞
(4u)b

=


−∞ (0 < u < 1/4) ,

µ̃− σ̃ (u = 1/4) ,

µ̃ (1/4 < u < 1) .

The resulting function diverges for 0 < u < 1/4, and does therefore not
produce a valid distribution function.

Appendix A.5. χ→ −1
For the remaining limiting cases, the quantile function is defined as

Q̃
CSW

(u) = µ̃+ σ̃

uα+β−1
α+β

− (1−u)α−β−1
α−β − ( 1

2)
α+β
−1

α+β
+

( 1
2)
α−β
−1

α−β

( 3
4)
α+β
−1

α+β
− ( 1

4)
α−β
−1

α−β − ( 1
4)
α+β
−1

α+β
+

( 3
4)
α−β
−1

α−β

, (A.1)

where α and β are defined in (9)–(10). When χ → −1 and 0 < ξ < 1, we
have to consider the limit of Q̃

CSW
for β → −∞. From Eq. (A.1) we obtain

lim
χ→−1

Q
CSW

(u) = lim
β→−∞

Q̃
CSW

(u)

= µ̃+ σ̃ lim
β→−∞

uβ −
(
1
2

)β(
3
4

)β − (1
4

)β
= µ̃− σ̃ lim

β→−∞
(4u)β .

We thus obtain when χ→ −1,

lim
χ→−1

Q
CSW

(u) =



−∞
(
0 < u <

1

4

)
,

µ− σ
(
u =

1

4

)
,

µ

(
1

4
< u < 1

)
.
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The resulting function diverges for 0 < u < 1/4, and does therefore not
produce a valid probability distribution function.

Appendix A.6. χ→ 1

When χ→ 1 and 0 < ξ < 1, we have β →∞. From Eq. (A.1), we obtain

lim
χ→1

Q
CSW

(u) = lim
β→∞

Q̃
CSW

(u)

= µ̃+ σ̃ lim
β→∞

− (1− u)−β +
(
1
2

)−β(
3
4

)−β − (1
4

)−β
= µ̃+ σ̃ lim

β→∞

1

(4− 4u)β
.

We then obtain,

lim
χ→1

Q
CSW

(u) =


µ̃ (0 < u < 3/4) ,

µ̃+ σ̃ (u = 3/4) ,

∞ (3/4 < u < 1) .

The resulting function diverges for 3/4 < u < 1, and does therefore not
produce a valid probability distribution function.

Appendix A.7. ξ → 1

When ξ → 1 and −1 < χ < 1 we have α → −∞. From Eq. (A.1) we
obtain

lim
ξ→1

Q
CSW

(u) = lim
α→−∞

Q̃
CSW

(u)

= µ̃+ σ̃ lim
α→−∞

uα+β − (1− u)α−β − 2−α−β + 2β−α(
3
4

)α+β − 4β−α − 4−α−β +
(
3
4

)α−β
= µ̃+ σ̃ lim

α→−∞

4α+βuα+β − 2α+β + 2α+3β

3α+β − 16β − 1 + 16b3a−b

− σ̃ lim
α→−∞

(4− 4u)α−β − 2α−3β + 2α−β

16−β3α+β − 1− 16β + 3α−β

= µ̃− σ̃

1 + 16β

[
lim

α→−∞
(4u)α+β − 16β lim

α→−∞
(4− 4u)α−β

]
.

We thus obtain
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lim
ξ→1

Q
CSW

(u) =



−∞ (0 < u < 1/4) ,

µ̃− σ̃
(
1 + 16β

)−1
(u = 1/4) ,

µ̃ (1/4 < u < 3/4) ,

µ̃+ 16β σ̃
(
1 + 16β

)−1
(u = 3/4) ,

∞ (3/4 < u < 1) .

The resulting function diverges for 1 < u < 1/4 and 3/4 < u < 1, and does
therefore not produce a valid probability distribution function.

Appendix A.8. ξ → 0

When ξ → 0 and −1 < χ < 1 we have α→∞. Equation (A.1) becomes

lim
ξ→0

Q
CSW

(u) = lim
α→∞

Q̃
CSW

(u)

= µ̃+ σ̃ lim
α→∞

uα+β − (1− u)α−β − 2−α−β + 2β−α(
3
4

)α+β − 4β−α − 4−α−β +
(
3
4

)α−β
= µ̃+ σ̃ lim

α→∞

(
4
3

)α+β
uα+β

1− 16β3−α−β − 3−α−β + 9−β16β

− σ̃ lim
α→∞

(
4
3

)α−β
(1− u)α−β

9β16−β − 3β−α − 16−β3β−α + 1

= µ̃+
σ̃

9β + 16β

[
9β lim

α→∞

(
4u

3

)α+β
− 16β lim

α→∞

(
4

3
− 4u

3

)α−β]
.

lim
ξ→0

Q
CSW

(u) =



−∞ (0 < u < 1/4) ,

µ̃− 16β σ̃
(
9β + 16β

)−1
(u = 1/4) ,

µ̃ (1/4 < u < 3/4) ,

µ̃+ 9β σ̃
(
9β + 16β

)−1
(u = 3/4) ,

∞ (3/4 < u < 1) .

The resulting function diverges for 1 < u < 1/4 and 3/4 < u < 1, and does
therefore not produce a valid probability distribution function.
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