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Adaptive interactive profit expectations using small world networks 

and runtime weighted model averaging 
 

William Paul Bell
 

Energy Economics and Management Group, The Univ. of Queensland, Brisbane, Australia 

ABSTRACT 

The aim of this paper is to simulate profit expectations as an emergent property using an agent based model. The paper 

builds upon adaptive expectations, interactive expectations and small world networks, combining them into a single 

adaptive interactive profit expectations model (AIE). Understanding the diffusion of interactive expectations is aided by 

using a network to simulate the flow of information between firms. The AIE model is tested against a profit expectations 

survey. The paper introduces “runtime weighted model averaging” and the “pressure to change profit expectations 

index” (p
x
). Runtime weighted model averaging combines the Bayesian Information Criteria and Kolmogorov’s 

Complexity to enhance the prediction performance of models with varying complexity but a fixed number of parameters. 

The p
x
 is a subjective measure representing decision making in the face of uncertainty. The paper benchmarks the AIE 

model against the rational expectations hypothesis, finding the firms may have adequate memory although the interactive 

component of AIE model needs improvement. Additionally the paper investigates the efficacy of a tuneable network and 

equilibrium averaging. The tuneable network produces widely spaced multiple equilibria and runtime weighted model 

averaging improves prediction but there are issues with calibration.  

Keywords: Small World Networks, Agent Based Model, Adaptive, Interactive, Profits, Expectations, Model Averaging, 

Survey, Australia, Business Cycle. 

 

1. INTRODUCTION 

Profit expectations are important because they influence future investment and credit decisions as such they contribute to 

the business cycle and economic growth.  

This paper builds upon Hicks’s adaptive expectations
1
, Flieth and Foster’s interactive expectations

2
, Watts and Strogatz’s 

small world networks
3
 and the findings of the ‘Beer Distribution Game’ to simulate the process of profit expectations 

formation using an agent based model. Adaptive expectations form when a firm changes its future expectations based 

upon the difference between actualisations and expectations for the current or previous periods. Interactive expectations 

form when a firm’s expectations are affected by the expectations of other firms for the current or previous periods. 

Understanding the diffusion of interactive expectations is aided by using a network to simulate the flow of information 

between firms. The paper combines all three components into the adaptive interactive profit expectations (AIE) model. 

This is an empirically based study using profit expectations and actualisation indices from the Dun and Bradstreet (D&B 

) National Business Expectations Survey
4
. These indices are based upon the change in profit expectations and 

actualisation rather than the level of expected or actual profit. This approach is consistent with Kahneman
5
’s empirically 

supported observation “the primacy of change over state” but at odds with utility curve theory. 

The AIE model is benchmarked against Muth’s rational expectations hypothesis
6,7

. 

Tesfation (2008) lists four objectives of agent–based computation economics: empirical understanding; normative 

understanding; qualitative insight and theory generation; and methodological advancement. How does this paper 

contribute to these objectives? The AIE model contributes to empirical understanding by generating a bottom up model 

of profit expectations. The methodological advancements include: (1) introducing a ‘pressure to change profit 

expectations index’, (2) introducing ‘runtime weighted model averaging’ a variant on Bates and Granger’s model 

averaging
8
 to handle models with varying complexity but a fixed number of parameters such as the AIE model, and (3) 

using calibration and prediction of benchmark models to evaluate the AIE model. 

The structure of the paper is as follows. Sec. 2 discusses the methodology for the AIE model and runtime weighted 

model averaging. Sec. 3 presents the results: an evaluation of runtime weighted model averaging and visualisation of the 

network and model variance topologies. Sec. 4 discusses the results. Sec. 5 concludes the paper. 
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2. METHODOLOGY 

The AIE model combines the adaptive expectations model
1
 and the interactive expectations model

2
 extended with small 

world networks
3
 within an agent based model

9
.  

Supplementing the components above, the AIE model introduces two techniques: (1) a ‘pressure to change profit 

expectations index’ (p
x
) to replace the probabilistic treatment in the interactive model

2
, and (2) ‘runtime weighted model 

averaging’ to enhance prediction.  

Each run of the AIE model has a unique set of parameters and a model variance. The model variance is the SSE/T 

between the all–firms profit expectations index of the AIE models and of the D&B profit expectations survey
4
 in Fig. 1. 

The model’s multiple 

equilibria are located by 

finding the runs with 

low model variance or 

the local minima. An 

alternating gradient and 

limited broad sweep 

search method is used 

to find the multiple 

equilibria in the AIE 

model. These multiple 

equilibria are then used 

in ‘runtime weighted 

model averaging’ to 

enhance prediction. 

The structure of this 

section is as follows. 

Sec. 2.1 discusses 

linking the macro level 

indices with the micro 

level firms’ behaviour 

and initialising the AIE model. Sec. 2.2 discusses the calculation of p
x
. Sec. 2.3 discusses searching for local minima or 

equilibria in the AIE model. Sec. 2.4 discusses runtime weighted model averaging.  

2.1 Linking Macro Indices to Firms’ Micro Behaviour 

The AIE model starts with and uses macro level all–firms profit indices
4
 to assign profit expectations and actualisation 

levels to individual firms. To do this the profit expectations index is decomposed into the percentage of firms expecting 

profits to increase, to undergo no change and to decrease, using Eq. (1).  

 Profit Expectations Index = % business expecting increases – % business expecting decreases  (1) 

Additionally, the profit actualisation index is decomposed into the percentage of firms whose profits actually increase, 

undergo no change and decrease, using Eq. (2).  

Profit Actualisation Index = % business with actual increases – % business with actual decreases  (2) 

The decomposition requires the percentage of firms that expect ‘no change’ in profits from an Australian Bureau of 

Statistics
10

 table, see Fig. 2. This ‘no change’ dataset is used to represent the D&B
4
 ‘no change’ data for both the profit 

expectations and actual profits. This ‘no change’ data is the best that could be found. Each firm i at time t is assigned a 

level of expectations (ei,t) of 1, 0 or –1 to represent whether they expect profits to increase, to undergo no change or 

decrease, using the percentage breakdowns. The actualisations (ai,t) are assigned similarly. So far these assignments 

reflect the D&B indices
4
. The calibration period starts just after the phase change in Fig. 2. Sec. 3 discusses this further. 

Fig. 1.The Dun and Bradstreet All–firms Profit Expectations and Actual Indices4  
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The first two periods of a 

dataset from the D&B 

survey
4
 are used to 

initialise the each firm’s 

level of profit 

expectations and actual 

profits. Sec. 2.2 discusses 

how these firms change 

their expectations based 

upon the p
x
 for each 

successive period. Once 

the AIE model calculates 

the expectations of each 

firm for each period, the 

AIE model’s expectations 

index is calculated using 

Eq. (1). A measure of the 

goodness of fit of the 

model run is the model 

variance between the all–

firms profit expectations 

index of the AIE model’s 

run and D&B
4
. The runs 

with the lowest model 

variance are local minima or equilibria. Sec. 2.3 discusses searching for the equilibria and Sec. 2.4 discusses runtime 

weighted model averaging. 

2.2 The Pressure to Change Profit Expectations Index 

The p
x

i,t is calculated for each firm i each quarter t. Rather than using a probability to assign a change in expectations to 

an agent, which is common in the expectations literature
2,11

. This paper introduces the p
x
 as a subjective measure 

representing decision making in the face of uncertainty as opposed to a probability. Probability is more useful in 

representing a known risk. Each agent in the model is subjected to pressure to change their profit expectations. Eq. (6) 

shows how the maximum and minimum p
x
 is restricted to 100 and –100 respectively. In addition to the index’s 

suitability to measure decision making under uncertainty, the index more easily handles double jumps in expectations. A 

double jump in expectations is when a respondent changes from expecting profits to decrease in one quarter to expecting 

profits to increase in the next quarter, or vice versa, bypassing the intervening ‘no change’ in expectations. This relaxes 

Flieth and Foster
2
’s simplifying assumption that no such double jumps would occur over a quarter. Eq. (3) shows the 

calculation of the p
x
, Eq. (3a) for firms who currently expect profits to decrease, Eq. (3b) for firms who currently expect 

no change on profits and Eq. (3c) for firms who currently expect profits to increase.  

These basic tendencies (β) are, as the name suggests, the tendency for a firm to feel pressure to change to another level of 

expectations. The basic tendency to increase (β+
), to decrease (β–

) and to neutral (β0
) could be interpreted respectively as 

optimism, pessimism, or neutral feelings that permeate the economy. Looking at Fig. 1, it appears that there are overly 

optimistic expectations, because profit expectations exceed profit actualisations most of the time, so one would predict 

that the basic tendency to increase is greater than the basic tendency to decrease. The AIE model does find this to be the 

case. 

 

  

 

Fig. 2 Components of the Profit Expectations Index and Phase Transition10 
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The interactive influence (I) in Eq. (3) indicates the influence of other firms holding a certain level of profit expectations 

on the firm. This is adapted from Ref. 2, see Eq. (4).  

Eq. (3) differs from Eq. (4) in that it 

connects the firm via a network rather 

than assuming total connectivity. Sec. 2.3 

discusses the AIE network topology (L 

and ρ) and parameter ranges. Note to ease 

comparison between Eq. (3) and Eq. (4) 

that the variable names in Eq. (4) have 

been made consistent. 

Eq. (4) results in a probabilistic treatment 

of the whole population’s expectations, 

whereas Eq. (3) considers each firm 

within a network of interactive influence. 

These two differing approaches are appropriate to the situation being studied. Ref. 2 examines interactive expectations 

using an electoral opinion poll, whereas this paper examines interactive profit expectations among the manufacturing, 

wholesale and retail divisions. Ref. 2’s approach more closely approximates a complete graph as individuals are exposed 

to regular national media coverage of political events, which includes regular surveys of the voting population. The AIE 

model’s approach more closely resembles a network of interconnected supply chains as firms are linked to one another 

via orders in expectation of sales in a similar fashion to the ‘beer distribution game’. Admittedly, the two approaches are 

not as black and white as portrayed, but more different shades of grey.  

 

The AIE model borrows the network naming conventions and topology parameters from Ref. 3, the code from Ref. 12, 

and parameter increments from Ref. 11. This ensures that the design of the AIE model’s network builds upon the 

Eq. (3) – Pressure to change profit expectations index 

 

For firm i who currently expects profits to decrease (ei,t = –1) 

 The pressure to increase expectations 

 p
x
i,t = β+

 + β0
 + A [ ai,t – ei,t ] + A–1 [ ai,t–1 – ei,t–1 ] + I [ (Li,t

+
 + Li,t

0) / L ]^δ   (3a) 

For firm i who currently expects no change in profits (ei,t = 0) 

 positive pressure to increase expectations and  

 negative pressure to decrease expectations 

 p
x
i,t = β+

 – β–
 + A [ ai,t – ei,t ] + A–1 [ ai,t–1 – ei,t–1 ] + I [( Li,t

+
 / L )^δ – ( Li,t

–
 / L )^δ]  (3b) 

For firm i who currently expects profits to increase (ei,t = 1) 

 The pressure to decrease expectations 

 p
x
i,t = β–

 + β0
 + A [ ei,t – ai,t ] + A–1 [ ei,t–1 – ai,t–1 ] + I [ (Li,t

–
 + Li,t

0) / L ]^δ   (3c) 

Where 

 p
x
i,t = pressure to change profit expectations index for firm i at time t 

  p
x
i,t  ∈  [–100, 100 ] 

 β+
 = basic tendency to increase expectations 

 β0
 = basic tendency to neutral expectations 

 β–
 = basic tendency to decrease expectations 

 A = adaptive influence this quarter 

 A–1 = adaptive influence last quarter 

 ai,t = profit actualisation of firm i at time t  

  where a decrease, no change or increase is –1, 0 or 1 respectively 

 ei,t = profit expectations of firm i at time t 

  where a decrease, no change or increase is –1, 0 or 1 respectively 

 I = interactive influence 

 L = total number of links to a node or firm (2, 4, 6, …, 22) 

 L
+
 = the number of linked firms who expect profits to increase (e = 1) 

 L
0
 = the number of linked firms who expect no change in profits (e = 0) 

 L
–
 = the number of linked firms who expect profits to decrease (e = –1) 

 δ = interactive power (1.0, 1.2, 1.4, …, 3.0) 

Eq. (4) shows the Interactive Influence from Ref. 2 to compare with the 

AIE interactive component in Eq. (3) 

 

For firms who currently expect profits to decrease – the interactive 

pressure to increase expectations 

  I [ (N
+
 + N

0
) / N ]^2   (4) 

Where 

 I = interactive influence 

 N = total number of firms  

 N
+
 = the total number of firms who expect profits to increase 

 N
0
 = the total number of firms who expect no change in profits 

 δ = interactive power = 2 
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existing literature. However the results in Sec. 3 show that an alternative network approach is required, a point taken up 

in the Sec. 4. The AIE model also relaxes the assumption in Ref. 2 that the interactive power in Eq. (4) is two by 

allowing the power to vary from 1 to 3 by 0.2 increments to test Ref. 2’s assumption. 

 

In addition to the network lattice, the AIE model differs from Ref. 2 in that it also incorporates an adaptive expectations 

influence (A) from Ref. 1. This allows a connection between profit actualisations and profit expectations, which Ref. 2’s 

Interactive Expectations lacks. In Eq. (3a), the parameters A and A–1 act as weights in the p
x
 and the parameters ( ai,t – ei,t 

) and ( ai,t–1 – ei,t–1 ) form a link between the profit actualisation and profit expectations. The AIE model uses the current 

and last quarter only, assuming a cognitive bias called the recency effect holds. Additionally, the model reflects the fact 

that a firm lacks full information about the actual profits for the current quarter until the following quarter, so a firm 

behaving adaptively would use the full information available from last quarter and the partial information available about 

the current quarter.  

Eq. (5) – Determining the pressure level at which to change expectations 

For firms who currently expect profits to decrease,   (5a) 

 determining the pressure level to increase expectations 

 if random (  p
+
  )  <  p

x
i,t  then  ei,t+1 = 0  

  the firm increases expectations one level  

 if random (  p
++

  –  p
+
  ) < (  p

x
i,t  –  p

+
  )  then ei,t+1 = 1 

  the firm increases expectations two levels 

For firms who currently expect no change in profits    (5b) 

 determining the pressure level to increase or decrease profit expectations 

 if p
x
i,t  >  0  and if random(  p

+  
 ) < abs(  p

x
i,t  )  then  ei,t+1  =  1 

  the firm increases expectations one level 

 if p
x
i,t < 0 and if random(  p

– 
  ) <  abs(  p

x
i,t  )  then  ei,t+1  =  –1 

  the firm decreases expectations one level 

For firms who currently expect profits to increase    (5c) 

 The pressure to decrease expectations 

 if random (  p
–
  )  <  p

x
i,t  then  ei,t+1  =  0 

  the firm decreases expectations one level  

 if random (  p
– –

  –  p
–
  )  <  (  p

x
i,t  –  p

–
  )  then  ei,t+1  =  –1 

  the firm decreases expectations two levels 

Where 

 p
+
 = the pressure level at which a firm increases profit expectations by 1 level 

 p
++

 = the pressure level at which a firm increases profit expectations by 2 levels 

 p
–
 = the pressure level at which a firm decreases profit expectations by 1 level 

 p
– –

 = the pressure level at which a firm decreases profit expectations by 2 levels 

 ei,t+1 = profit expectations the firm holds next quarter 
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Eq. (5) shows how the p
x
 in conjunction with a random number generator and the ‘pressure levels to change 

expectations’ (p
+
, p

++
, p

–
 and p

– –
) determines the level of expectations the firm holds for the next quarter (ei,t+1).  

The random function in Eq. (5) reports a random integer greater than or equal to 0, but strictly less than the pressure to 

change level. The random function uses a flat distribution (Ref. 9). 

The profit expectations index for the next quarter is calculated from the number of firms holding positive and negative 

expectations for next quarter as per Eq. (1). These values are aged and the process is repeated for each quarter to form a 

single run. At the end of the run, the model variance between the all–firms profit expectations of D&B
4
 and of the AIE 

model is calculated. What has been described is the process for a single run to find the model variance for a single set of 

parameter values. Sec. 2.3 discusses the process used to search the parameter space for local minima of model variance 

or equilibria. 

Eq. (6) shows how the weights in 

the p
x
 are set to 100. The constraint 

allowed the elimination of one 

parameter from the parameter 

sweeping; the basic tendency 

neutral (n) was chosen for 

elimination. In Eq. (3), because the 

parameters ai,t, ei,t, ai,t–1 and ei,t–1 can all take the values 1, 0 or –1, this can result in doubling the weight of A or A–1 on 

the p
x
. The factor of two in Eq. (6) reflects this. Additionally, the parameter β–

 proved to be redundant and eliminated by 

setting it to zero. 

2.3 Searching the parameter space for local minima or equilibria 

This section discusses the search for minima or equilibria in the AIE model. The search for the lowest model variance 

between the profit expectations index of the AIE model and of the D&B
4
 survey combines the gradient method with a 

limited broad sweep to prevent the gradient method becoming lodged on a local minimum and to reduce the risk of 

missing other local minima, which may be equally plausible solutions to a global minimum. These equally plausible 

equilibria become candidates for inclusion in runtime weighted model averaging discussed in Sec. 2.4. Additionally the 

limited broad sweep provides for visualisation, see Sec. 3.2. 

Each run is defined by the eleven parameters: β+, I, L, δ, A, A–1, ρ, p+
, p

++
, p

–
 and p

– –
.  The gradient and limited broad 

sweeps method involves setting an initial value for the 11 parameters. The 11 parameter values to initialise the gradient 

method are based upon reason and assumptions. Each parameter value is allowed to vary plus or minus one increment: β+ 

±1, I±1, L±2, ρ±0.1, δ±0.2, A±1, A–1±1, ρ±1, p+
±1, p

++
±1, p

–
±1

 
and p

– – 
±1. This gives 3

11
 parameter combinations or 

runs. The minimum parameter values are L = 2, δ = 1 and β+ = β0 
= I = A = A–1 = ρ = p+ 

= p
++ 

= p
– 

= p
– – 

= 0. The 

condition in Eq. (6) determines β0
. The gradient method is repeated until a local minimum is found. The parameter 

values from the local minimum are used in a limited broad sweep. To make a limited broad sweep, the pressure levels to 

change expectations (p
+
, p

++
, p

–
 and p

– –) are held constant. The ranges for other parameters are β+ 
±5, I±5, L = (2, 4, 6, 

…, 22), δ = (1.0, 1.2, 1.4, …, 3.0), ρ = (0, 0.1, 0.2, …, 1), A±5, A–1±5. This gives 11
6
 parameter combinations or runs. 

The parameters from the run with the minimum model variance in the limited broad sweep are used to initialise the next 

gradient method search. The gradient method and limited broad sweep are repeated until a global minimum is found. 

Eq. (6) – Setting the maximum and minimum p
x
 to 100 and –100 

respectively 

 100  =  β+
 + β0

 + I + 2 * [ A + A–1 ]    

 (6) 
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2.4 Runtime Weighted Model Averaging 

This section discusses the derivation of the runtime 

weighted model averaging and the reason why 

existing weighting methods are inappropriate for the 

AIE model.  

Eq. (7) shows Greene
13

’s version of the Bayesian 

Information Criteria (BIC). The BIC is inappropriate 

to form model averaging weights for the AIE models 

because the BIC definition of complexity is 

inapplicable as the number of free parameters in the 

AIE model is constant but the complexity of the 

model varies greatly by altering two parameters: (1) 

the probability of a link being rewired and (2) the 

number of links in a network. Together, they provide 

for 121 levels of complexity or network structures. 

The 121 structures are the product of the 11 settings 

for the number of links in the network and 11 

settings for the probability of a link being rewired. 

Levin
14

’s Kt complexity provides a more suitable and 

alternative complexity measure. Levin complexity 

makes the assumption that Universal Turing 

machines are able to simulate each other in linear 

time to retain invariance with Kolmogorov 

complexity (Ref. 15). The time for an AIE model to 

run becomes a proxy for complexity. Each of the 121 

network structures require different running times; 

generally the more links in the network the longer 

the running time; intuitively more complex. The 

probability of a link being rewired has the general 

effect of making the running time longer; again 

intuitively more complex. Eq. (8) shows the complexity component of the BIC formula in Eq. (7) replaced with the 

Levin
14

’s Kt complexity; t is the model runtime and the constant K renamed c is determined by experiment. This constant 

c will vary according to the speed of the computer running the AIE model, using the same computer to measure the 

runtime for all the versions of the AIE model would prevent this problem. Alternatively each computer could be 

benchmarked using the runtime of the least complex AIE model. This runtime on each computer becomes the unit time 

for each computer, allowing for a quasi universal constant c. 

Eq. (9) shows Ref. 16’s observation that the BIC gives a 

rough approximation to the logarithm of the Bayes factor 

(K), which is easy to use and does not require evaluation 

of the prior distribution.  

The derivation of the weight in Eq. (11) assumes that 

theorem 2 of Levin
14

’s complexity is Kt when it is Kt + c. 

However Eq. (11) can be derived from either form of 

Levin’s complexity; the simpler form aids clarity. 

BIC(k) = log σ2  
+  ( k log n ) / n   (7) 

Where 

 k = the number of parameters in the model 

 n = sample size 

 σ2
 = model variance 

 

BIC* = log σ2 
  + ( ct log n ) / n   (8) 

Where 

 * denotes a modification to representing 

 complexity that is using ct to replace k in Eq. (7) 

 t = the time for the model to run 

 c = some constant to be determined by experiment 

 

log K ≈ –(n/2) BIC    (9) 

Where 

≈ denotes approximately 

Modified Bayes Factor from Eq. (8) and Eq. (9). 

K*  ≈ σ–n
 n

–ct/2
      (10) 

 

Eq. (11) shows the Bayes factor from Eq. (10) used to 

form a weight for each model. 

wm =      σ–n
m  n^(–ctm/2)     (11) 

              ΣM
i σ–n

i  n^(–cti/2) 

 Where 

 wm = weight for each model m 

 M = the number of models 
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3. RESULTS 

This section provides the results comparing the AIE 

model over a short calibration period against the 

benchmark model, the rational expectations hypothesis. 

The short calibration period is March 2000 to December 

2006. The period starts after the phase transition seen in 

Fig. 2. The prediction period is March 2006 to June 2007. 

The forthcoming paper
17

 compares calibrating the AIE 

model over a longer and a shorter period. Ref. 17 finds 

that calibration using the shorter period provides more 

accurate predictions, concluding that the economy makes 

sufficient structural changes during a phase transition to 

make calibrations over both sides of a phase transition 

inaccurate for prediction. Consequently this paper only 

addresses the short calibration. 

3.1 AIE model calibrated over the short period 

Fig. 3 shows the 200 runs with the lowest model variance 

ranked in order of ascending model variance.  

Table 1 shows the parameter values for the five runs with 

the lowest model 

variance in ascending 

order. Noteworthy is the 

widely spaced 

equilibria. This is 

consistent with the 

multiple equilibria 

modelled in Ref. 2. 

Notable is that p+ and 

p++ are smaller in 

magnitude than p– and 

p– – respectively. This is consistent with the all–firms profit expectations indices being greater than the actualisation 

indices seen in Fig. 1. Note also that the values of L, δ and ρ are widely spread.  This is consistent with   Fig. 8, Fig. 9 

and Fig. 10 showing widely spread minimums. 

Fig. 4 shows the effect of varying the runtime weighted model averaging constant c against the model variance during 

the calibration phase. Noteworthy is that the runtime weighted model averaging constant of zero gives the lowest model 

variance of 20.00, which means in this case that during the calibration phase the runtime component of the weighting is 

redundant. The solid line in Fig. 5 shows the model averaging of the profit expectations index for c = 0. The dotted line 

in Fig. 5 shows the profit expectations index for the run with the lowest model variance whose parameters are given in 

Table 1. The dashed line in Fig. 5 shows the D&B profit expectations index; this is the index the model is simulating. The 

model averaging decreases the model variance during the calibration phase from 21.59 to 20. 

Fig. 3 The 200 runs with the lowest model variance 

Table 1 Parameter values for the five runs with the lowest model variance (SSE/T)  

Run SSE/T δ ρ L β+ I A A–1 p+ p++ p– p– – 

1 21.59 1.2 0.6 16 3 27 13 18 45 117 48 122 

2 22.25 1.8 0.9 22 5 24 10 19 45 117 48 122 

3 22.80 2.8 1 12 4 30 9 18 45 117 48 122 

4 24.11 1.4 0.3 22 4 28 12 22 45 117 48 122 

5 24.44 1.8 0.8 8 4 30 9 19 45 117 48 122 
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Fig. 6 shows the prediction of the profit expectation index using a c = 0. The model averaging has decreased the model 

variance from 90.63 to 75.12. Fig. 7 evaluates the model averaging in the prediction and shows that increasing c to 0.6 

decreases the model variance from 75.12 to 74.70. The discussion takes up this point.  

Table 2 shows the AIE model benchmarked against rational expectations hypothesis. The prediction of the AIE model 

based on the single run from the calibration with the lowest model variance is slightly smaller than the rational 

expectations hypothesis. The AIE prediction using runtime weighted model averaging reduced the model variance 

further.  

 

Fig. 4. Finding the optimal runtime weighted model 

averaging constant c 
    Fig. 5. Comparing the Calibration of the AIE model against the 

D&B Index. 

       Fig. 6 Prediction based upon the calibration 

Fig. 7 Evaluating the prediction using runtime 

weighted model averaging 
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3.2 Visualisation to evaluate finetuning the network 

topology 

This section shows how varying the network topology (L 

and ρ) and interactive power (δ) affects the model 
variance. L, ρ and δ determine the interactive component 
of the p

x
. 

  Fig. 8, Fig. 9 and Fig. 10 show how varying the network 

topology affects the model variance for δ = 1.0, 1.2 and 
1.4 respectively. The dark patches are the low model 

variance values and the white patches the high model 

variance values. Thinking of dark green valleys and the white tops of mountains is a helpful analogy. The figures show 

multiple equilibria or minima. The minimum in Fig. 9 shows the run from Fig. 5 with the lowest model variance at 21.59; 

Table 2 shows the parameters values for the five runs with the lowest model variance, including run 1 from Fig. 5. 

3.3 Model averaging across unique network topologies improves predictive power 

In Sec. 3.1, the runtime weighted model averaging technique is applied to the 200 runs with the lowest model variance. 

As noted these 200 runs would contain multiple equilibria for the same network topology. This section takes the single 

run with the lowest model variance for each of 71 of the network topologies and applies the model averaging techniques. 

Table 3 shows that the predictive performance is greatly enhanced more than when simply taking the 200 runs with the 

lowest model variance. All model averaging techniques in Table 3 reduce the model variance over the single run for 

calibration and prediction; the single run model variance is 21.39 and 114.88 respectively.  

Table 2 Benchmarking the AIE model against the rational 

expectations hypothesis using the model variance (SSE/T). 

 

Calib-

ration 

Pred-

iction  

AIE Model short 

calibration 

Single run 21.59 90.63 

Model Averaging 20.00 75.12 

Rational Expectations Hypothesis 200.76 93.00 
 

  

Fig. 8 SSE/T for various L and ρ for δ = 1.0 Fig. 9 SSE/T for various L and ρ for δ = 1.2 

SSE/T 
 

Fig. 10 SSE/T for various L and ρ for δ = 1.4 
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Fig. 11 shows the optimal 

calibration model averaging 

technique. The dashed line in 

Fig. 11 shows first stage in the 

technique, which involves 

ranking the models in 

ascending order of model 

variance. The solid line in Fig. 

11 shows the second stage in 

technique, which involves 

model averaging the first two 

models, model averaging the 

first three models and so on 

until a model average for all 

71 models is calculated. Fig. 

11 shows that model averaging the first 8 models minimises the model variance. Fig. 12 evaluates the performance of the 

optimal calibration techniques. The prediction of each model is averaging as described in Fig. 11, while maintaining the 

rank order from Fig. 11. The number of models to average to minimise the model variance is 8 for both the calibration 

and evaluation.  

Table 3 shows that the prediction of the optimal calibration technique has the lowest model variance of all the model 

averaging techniques. The prediction of the runtime weighted technique produced the second lowest model variance. The 

evaluation of the runtime weighted technique finds that c = 4 would gave a lower model variance in the prediction than 

the c = 3 from the calibration. The prediction of the Bayes Factor technique has the third lowest model variance. The 

Bayes factor is a benchmark for the runtime weighted technique. It is the runtime weighted technique less the Levin’s 

runtime component or the BIC less the number of parameters (K) component. The prediction of the simple model 

averaging techniques has the highest model variance. The simple model averaging averages all 71 models giving each an 

equal weight.  

4. DISCUSSION 

4.1 AIE Model 

The visualisation in Sec. 3.2 provides a clearer picture of the network topology problem in the interactive component of 

the AIE model. The current AIE model uses a 200 node ring lattice network whose topology is controlled by two 

parameters: L and ρ. This approach is based upon the literature3,11,12
. Sec. 3.2 demonstrates multiple equilibria in the 

model. Many combinations of L and ρ can be calibrated to find a low model variance value. Finetuning the network 
failed to identify a unique solution; in fact the multiple equilibria are quite disparate. This suggests that the method 

Table 3 Model averaging comparison using 71 models  

each having unique network topologies. 

 

Model Averaging Method 

Calibration Prediction 

SSE/T 

Evaluation 

SSE/T c or runs SSE/T c or runs 

 Single Run 21.39 1 run 114.88   

 Optimal Calibration 18.27 8 runs 46.93 46.93 8 runs 

 Runtime Weighted 18.83 c = 3 58.61 58.26 c = 4 

 Bayes Factor (Benchmark) 18.93  63.88   

 Simple (Benchmark) 20.48  64.26   
 

 Fig. 11. Optimal Calibration: Finding the optimal number of 

runs to model average 

  
Fig. 12. Optimal Calibration: Evaluating the predictive performance 
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requires some form of restriction on the network parameterisation. Additionally, any form of simple ring lattice may be 

unable to represent the interactive network. This is an avenue for further research. However Sec. 3.3 shows that model 

averaging using the run with the lowest model variance from each network topology improves predictive performance. 

The primary motivation for the AIE model is to capture emergence from the endogenous factors. However to do so may 

require allowance for exogenous factors other than actual change in percentage profits used in the current AIE model. 

Further research involves identifying the most significant exogenous factors for incorporation into the AIE model, such 

as a change in interest rate. 

4.2 Model averaging 

All the model averaging techniques decreased the model variance for both the calibration and the prediction. The runtime 

weighted model averaging in Sec. 3.3 shows that including some penalty for complexity in prediction is useful. 

Combining the optimal calibration and runtime weighted model averaging techniques may reduce the model variance of 

predictions further. This is left for further research.  

The method outlined in this paper for finding the runtime weighted model averaging constant c proves suitable when the 

run with the lowest model variance from each network topology is used. The following alternative method for finding c 

is left for further research. The alternative uses models that have differing numbers of parameters, calculating their BIC 

and runtime then using these two measures to find a suitable value for c. 

5. CONCLUSION 

5.1 The AIE model 

The AIE model provides an explanatory description of profit expectations formation, with a smaller model variance for 

the calibration and predictive benchmarks using the model averaging techniques. However the rational expectations 

hypothesis has a high model variance, so is not a particularly stringent benchmark to surpass. This means that the AIE 

model requires more stringent benchmarks and improvement before it is ready to investigate policy implications. 

A major constraint on improving the AIE model is the number of parameters that can be tested, so a focus is determining 

which parameters to include and how to get the best use out of the parameters. These are considerations for traditional 

mathematical economics also, but the relative times for testing models are hours compared to weeks for agent based 

models. Simulated annealing may reduce calibration times, which is left for further research. 

The interactive component of the AIE model may be improved by increasing the interactive memory and/or replacing the 

aggregate model with a divisional model whose interactive links between firms of differing division have magnitudes 

based upon an output–input table.  

Beinhocker
18

’s three factors of emergence provide a useful framework to structure the reason why parameters are 

included in a model: (1) exogenous shocks, (2) participants’ behaviour and (3) institutional structure. This paper has 

identified the following corresponding items for further research: exogenous shocks, the inclusion of the change in 

interest rates, see D&B
4
; participant behaviour, see Yu

19
’s dynamic cognitive model; and institutional structure, using a 

disaggregated interactive network and incorporating an input–output table. These changes feature in the forthcoming 

papers.  
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