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Abstract—This paper suggests a robust LM (Lagrange 

Multiplier) test for spatial error model which not only reduces 

the influence of spatial lag dependence immensely, but also 

presents robust to changes of spatial layouts and distribution 

misspecification. Monte Carlo simulation results imply that 

existing LM tests have serious size and power distortion with the 

presence of spatial lag dependence, group interaction or 

non-normal distribution, but the robust LM test of this paper 

shows well performance. 
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I.  INTRODUCTION. 

Recently, issues on model specification and estimation 

have become integral parts of spatial econometrics. 

Meanwhile, diagnostic tests of spatial correlation are 

increasingly receiving more researchers’ attention. Their tests 

built on different principle under different models have some 

advantages and disadvantages. 

Moran’s I test could not give the accurate specification 

even if refusing the null hypothesis of no spatial correlation,  

though it could identify spatial effects effectively. Burridge 

(1980) proposed LM tests for spatial error model (SEM) and 

spatial autoregressive model (SAR) based on the Lagrange 

Multiplier principle. Anselin (2001) suggested an LM test for 

spatial autoregressive and moving average model (SARMA), 

which is a generalized form of SEM and SAR. 

Anselin (1988) proposed an LM test for spatial error 

autocorrelation in the presence of a spatially lagged dependent 

variable. However, implementation of the suggested test 

required nonlinear optimization or the application of a 

numerical search technique due to maximum likelihood 

estimation (MLE) and had not correct size and power. Noting 

that, Anselin et al (1996) applied the modified LM test 

developed by Bera&Yoon (1993) to spatial models and 

proposed simple diagnostic tests for spatial dependence by 

allowing the parameter of spatially lagged variable to 

fluctuate within zero’s neighborhood. Therefore, it performed 

well when the parameter remained small value (between ±

0.4). 

Zhang Jinfeng (2011) derived a robust LM test for spatial 

error model on the basis of Bera&Yoon theories which shared 

the optimality properties of the ( )C  test. The proposed test 

could reduce immensely computation burden in Anselin’s 

(1988) paper and solve the problem in Anselin (1996). 

The LM tests above are developed under the assumptions 

that the model error are normally distributed and spatial 

weight matrix is Rook contiguity. This leads to a natural 

question on how robust these tests are against distribution 

misspecification and changes of spatial layouts. To overcome 

this shortcoming, Baltagi&Yang (2010) suggested a 

standardized LM test (SLM) for spatial error model which 

was asymptotically equivalent to LM test. Monte Carlo results 

show that the new tests possess good finite sample properties 

while LM test was sensitive to error distribution and spatial 

layout.However, Baltagi&Yoon’s test did not consider the 

presence of spatially lagged dependence variable. Based on 

above discussion, it could be implied that whether the spatial 

lagged effect existed or not will influence the size and power 

of the test significantly. 
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In this paper, robust LM test is recommended based on 

Bera&Yoon’s and Baltagi&Yang’s theories under more 

relaxed assumptions on the error distributions, which is shown 

that our LM test is not only robust against distribution 

misspecification and model misspecification, but also quite 

robust against changes in the spatial layout. In Section 2 we 

develops new robust test. Section 3 provides some evidence 

on the performance of the robust test on the basis of results of 

a series of Monte Carlo simulation experiments. We close 

with some concluding remarks in Section 4. 

II. SPECIFICATION TESTS FOR SPATIAL ERROR MODEL 

As the treatment of Anselin (1988), we consider the mixed 

regressive spatial autoregressive model with a spatial 

autoregressive disturbance:  
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where y is an ( 1N  ) vector of observations on a dependent 

variable, X is ( N K ) matrix of exogenous variable, and β is 

a ( 1K  ) vector of parameters.   and   are scalar 

parameters of spatial lagged effect and spatial error effect, 

respectively. 1W  and 2W  are ( N N ) observable spatial 

weights matrix, ν  is a ( 1N  ) vector of disturbance terms 

and 2( , )ν N 0 I . 

Interested in testing 0 : 0H    with alternative hypothesis 

1 : 0H   . Zhang Jinfeng (2011) proposed an LM test on the 

basis of Bera&Yoon’s (1993) theories. Noting that 
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where 2[ ', ]'β  are ML estimators under 0   and 

0  . 0 1e y W y Xβ   ,      2

21 2'
A A AA AN

J S Xβ M S Xβ T tr S      .Our 

Monte Carlo simulations show that it is important to 

standardize it with Batagi&Yang’s theroies if one is using 

asymptotic critical values, especially for certain spatial 

layouts. Some discussion on this is given after Theorem 1. 

III. THE ROBUST LM TEST  

The following basic regularity conditions are necessary for 

studying the asymptotic behavior of these test statistics. 

Assumption A1: The innovations  i  are i.i.d. with 

mean zero, variance 2

 , and excess kurtosis  . Also, the 

moment 
4

iE



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 exists for some 0  . 

Assumption A2: For all i  and j , the elements ij
w  of 

N N
W   are at most order 1

N
h  uniformly, with the rate sequence 

 Nh , bounded or divergent, satisfying 0
N

h N   as N  goes 

to infinity. The N N  matrices  W  are uniformly bounded 

in both row and column sums with 0
ii

w   and 1
ijj

w   for 

all i . 

Assumption A3: The elements of the N K  matrix 

X are uniformly bound bounded for all N , and 1lim '
N N

X X  

exists and is nonsingular. Therefore,   1

' 'X X X X


and 

  1

' 'I X X X X


  are uniformly bounded in both row and column 

sums. 

Assumption A4: W  and   1

0
I W


 are bounded, where 

is a matrix norm. Then,   1

0
I W


  are uniformly bounded in 

a neighborhood of 0 . 

The Assumption A1 corresponds to one assumption of 

Kelejian&Prucha (2001) for their central limit theorem of 

linear-quadratic forms. Assumption A2 corresponds to one 

assumption in Lee (2004a) which identifies the different types 

of spatial dependence. Typically, one type of spatial 

dependence corresponds to the case where each unit has fixed 

number of neighbors such as Rook contiguity and in this case 

N
h  is bounded, and the other type of spatial dependence 

corresponds to the case where the number of neighbors of 

each spatial unit grows as N  goes to infinity such as the case 

of group interaction and in this case N
h  is divergent. To limit 

the spatial dependence to a manageable degree, it is thus 

required that 0
N

h N   as N  . Assumption A3 and A4 

correspond to two assumptions of Lee (2004a) for their 

central limit theorem of linear-quadratic forms. 

For simplification, we use notation  1 2
N
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12 iii
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 1 1

2Q MWA M n S I M
   , 2

22 iii
S q  with  iiq  are the diagonal 

elements of Q ,  23 'S tr QQ QQ  , 32 ii iii
S p q , and 

 33 'S tr PQ PQ  . Under the hypothesis 0 : 0H    vs 1 : 0H   , 

we derive a robust LM test following as 
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where, 2[ ', ]'β   is MLE of (1) under 0   and 0  , 

0 1e y W y Xβ   , 2 'e e N   and     2

24 1 1'S W Xβ M W Xβ  , with   

is the excess sample kurtosis of e . Therefore, following 

theorem is concluded. 

Theorem 1: if  1,2iW i  ,  i  and X  of Model (1)  

satisfy the Assumptions A1-A4, then under null hypothesis 

0H , (1) RLM  converges to that of  2 1 , and (2) RLM  is 

asymptotically equivalent to ZLM  when 0  . 

The formal proof of Theorem 1 is given in the Appendix. 

To help understanding the theory, we outline the key steps 

leading to the modification in (9). Fist note that 2'e W e  and 

1'e W y , part numerators of ZLM , is not centered because 
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that ZLM  is not yielding standard normal distribution. This 

motivate us to consider  2

2 2'e W e tr MW  

or  1
2 2' ' '
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 11
1 1' ' '

N K
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  . Upon finding the variance of the 

numerators and replacing 2  in the variance expression by 

its MLE, our test RLM  is obtained and the quadratic form 

'ε Pε  and 'ε Qε  with its mean and variance are readily 

available as long as the first four moment of the elements of 

ε  exist. Thus, our approach does not depend on the normality 

assumption. 

Although ZLM  test statistic is derived under the 

assumption that the innovations are normally distributed, 

Theorem 1 shows that it is asymptotically equivalent to the 

RLM  test. This means that all the two tests are robust against 

distributional misspecification when the sample size is large. 

But they behave differently under finite sample. The major 

difference between ZLM  and RLM  lies in the mean 

correction of the statistic 2

2'e W e   and the cross interaction 

when eliminating the spatially lagged effect. This correction 

may quickly become negligible as the sample size increases 

under certain spatial layouts, but not necessarily under other 

spatial layout. The relation of two statistics is expressed as 
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N
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 33 2 1AS T O  . Furthermore, with Assumption A2 and A4 and 

Lemma L4, the elements of 1W , 2W  and A
S  are uniformly of 

order 1

n
h  and the matrix are uniformly bounded in both row 

and column sums. Thus,  2 2 'tr W W ,  2 2tr W W ,  'A Atr S S  and 

 A Atr S S  are uniformly of order 1
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are uniformly of order 1

N
Nh . Assumption A2, A3 and Lemma 

L2  i  show that  1
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uniformly of order one and       1 2 1 2
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N

S S O h N o  . 

Obviously, the third component of (10) is uniformly of order 

 1 2

Nh N  or  high order one. Consequently, RLM  is 

asymptotically equivalent to ZLM . But, whether the 



 

 

correction of ZLM  is negligible or not depend on the ratio 

 1 2

Nh N
*

. 

IV. MONTE CARLO RESULTS 

The finite sample performance of RLM  proposed in this 

paper are evaluated based on a series of Monte Carlo 

experiments. These experiments involve a number of different 

error distributions and a number of changes of spatial layoutss. 

Detail in Baltagi&Yang’s(2010) paper. 

A.  Error distributions and spatial layouts 

Three general spatial layouts are considered in the Monte 

Carlo experiments: (i) standard normal, (ii) mixture normal, 

(iii) log-normal, all standardized to have mean zero and 

variance one. Comparing with standard normal distribution, 

the mixture normal gives an error distribution that si 

symmetric but leptokurtic while log-normal is both skewed 

and leptokurtic. The standardized mixture normal variates are 

generated according to 

   1 2
21 1i i i i iZ Z p p                    (5) 

where η  is a Bernoulli random variable with probability of 

success p  and Z  is standard normal independent of η . 

The parameter p  in this case also represents the proportion 

of mixing the two normal populations. In our experiments, we 

choose 0.05p  , implying that 95% of the random variates are 

from standard normal and the remaining 5% are form another 

normal population with standard deviation  . We choose 

10   to simulate the situation where there are gross errors in 

the data. The standardized lognormal random variates are 

genernated according to 

       
1 2

exp exp 0.5 exp 2 exp 1i iZ                 (6) 

The reported Monte Carlo results correspond to the 

following three spatial layouts. The first is based on the Rook 

                                                           

* For example,  1 2 0.15

N
h N N   when 0.7

N
h N , which means 

that if N=30,100,1000, then 0.15
N

 is 0.60, 0.50, 0.35. This suggests 

that difference between RLM  and ZLM  is 0.60 (N=30), 0.50 

(N=100), 0.35 (N=1000). If spatial layout is Group contiguity, this 

case of 0.7

N
h N may appear when group size is large and group 

number is small. Monte Carlo results imply that ZLM  test without 

modification have certain distortion of size and power. 

contiguity, the second is based on Queen contiguity and the 

third is based on the notion of group or social interaction, 

Group contiguity, with the number of groups G N  where 

0 1  . In the Rook or Queen contiguity, the number of 

neighbors of each spatial unit stays the same (2-4 for Rook 

and 3-8 for Queen) and does not change when sample size N  

increases, whereas in the Group case, the number of neighbors 

for each spatial unit increase with the increase of sample size 

but at a slower rate, and changes from group to group. The 

generating methods of the three spatial layouts referred 

Baltagi&Yang(2010). 

B.  Size and Power of the tests 

The Monte Carlo experiments are carried out based on the 

following data generating process: 

1 1 1 2 2 3 3 2,y W y X X X ε ε W ε ν                     (7) 

where 1X  is constant term, 2X and 3X  are drawn from 

 10 0,1U . The parameter    1 2 3, , 1,1,1    . Five different sample 

sizes are considered for each combination of error different 

distribution and spatial layouts. The parameter   is from 0 

to 0.5, step by 0.1, the same as parameter  . Each set of 

Monte Carlo results is based on 1000 samples. 

Comparisons are made between the newly proposed test 

RLM  and the existing ZLM  of Zhang Jinfeng (2011) to see 

the improvement of the new tests in the situations where there 

are distribution misspecification and changes of spatial 

layouts. Selected Monte Carlo results are summarized in 

Tables 1 and Figure 1-2 and the results of other sample size 

such as 30, 100, 400 are available from the author upon 

request. 

1). ZLM  test is sensitive to error distribution while our 

test RLM  not. First, as Table 1 illustrated, when spatial 

weight matrix is Rook contiguity and model error is normal 

distribution, under sample size N=50 ZLM  has the size close 

to 5%, which means their probability of refusing the null 

hypothesis 0 : 0H    is among their confidential interval, 

while RLM  is a bit of higher than 5%. However, under 

sample size N=200, the two tests, ZLM  and RLM , have no 

significant difference, and their sizes are all close to 5%. 

When model error is log-normal distribution, ZLM ’s size is 

less than the lower limit of confidential interval under sample 



 

 

size N=50 while RLM  is close to 5%. However, when sample 

size goes to 200, the sizes of ZLM (expect 0.2  ) and RLM  

are all close to 5%. But when error yields mixture-normal 

distribution, the two are all out of the confidential interval. 

Second, spatial weights matrix are Queen contiguity. While 

sample size N=50 for any distribution, ZLM ’s size is less than 

the lower limit of confidential interval while RLM ’s size is 

close to 5%. If sample size reaches to 200, ZLM  and RLM  

all have correct size. These results imply that if error is not 

normal distribution, the performance of ZLM  under small 

sample size is not good. But with sample size increasing, the 

performance is becoming better till to the correct size while 

our test RLM  remains good performance. This conclusion 

provides some proof for the Theorem 1, which means under 

usual spatial weights matrix, ZLM  and RLM  are 

asymptotically equivalent with sample number increasing. 

2). ZLM  is sensitive to changes of spatial layouts while 

RLM  not. As section 3 discussed, whether the correct terms of 

ZLM  are negligible or not depends on the ratio of  1 2

Nh N . 

The size results in Table 1 suggest that under the condition 

that error is normal distribution and spatial layout is Group 

contiguity, if 0.3  or 0.7

N
h N , the size of ZLM  is obviously 

smaller than 5% even if the sample size N goes to 200 while 

RLM  is close to 5%. It is the same as the case 0.5   or 

0.5

N
h N . If 0.7   or 0.3

N
h N and sample size N=50, 

ZLM (only   equal to 0.2 and 0.3) is less than the lower limit 

of confidential interval. When sample size N=200, only the 

case of   equal to 0.2 is out of the interval. However, RLM  

proposed in this paper performs well and its size is close to 

5%. 

3). If error distribution and spatial layouts do not yield 

regular assumption, RLM  has better size than ZLM . For 

example, when error is mixture-normal distribution and 

spatial weights matrix are Group contiguity ( 0.3   or 

0.7

N
h N ), size of ZLM  is close to 2.5%  under N=50 while 

RLM  is 4%. When sample size goes to 200, the size of ZLM  

and RLM  is 3% and 4.3%, respectively. The case of error is 

log-normal distribution and Group contiguity ( 0.3   or 

0.7

N
h N ) is similar to the above example. Furthermore, when 

spatial matrix are Group contiguity ( 0.5   or 0.5

N
h N ), the 

size of ZLM  is not located in the confidential interval for any 

non-normal distribution, while RLM  is close to 5%. Finally, 

if spatial layout is Group contiguity ( 0.7   or 0.3

N
h N ), ZLM  

and RLM  all have correct size since the correct part of ZLM  

could be negligible. 

4). The power of RLM  is better than ZLM  for any case. 

Figure 1-3 describe the power of the tests. When error is 

normal distribution as Figure 1 illustrated, the power of RLM  

is significantly better than ZLM  under sample size N=50, 

while the two have almost the same power under N=200(but 

RLM  is a little bit better). It is similar to the non-normal 

distribution cases. For instance, when model error is 

log-normal distribution (Figure 3) and spatial layout is Group 

contiguity, the power of ZLM  is inferior to RLM  with small 

sample size while under large sample size except the case of 

0.3   or 0.7

N
h N  the two tests have similar power. 

V. CONCLUSION 

This paper proposes a robust LM test, RLM , for spatial 

error model, and points out that our test is asymptotically 

equivalent to existing tests under certain condition. Also, our 

test is not sensitive to error distribution and spatial layouts. 

Monte Carlo results provide the proof of above remarks and 

suggest that our test RLM  is better under finite sample size. 

For example, when spatial weights matrix are Rook or Queen 

contiguity, the two tests is asymptotically equivalent with 

sample size increasing. However, when spatial layout is 

Group contiguity, especially the case of 0.3  , comparing 

with existing tests which have wrong size (smaller) for any 

distribution and sample size, while RLM  has the correct size. 

The proposed test is based on simple linear regression model, 

thus deriving robust tests of spatial panel data will be next 

step in the future. 
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APPENDIX: PROOF OF THE THEOREM 

To prove the theorems, we need the following lemmas. 

Lemma L1 (Lee, 2004a, p.1918): Let V  be an 1N   

random vector of i.i.d. elements with mean zero, variance 2 , 

and finite excess kurtosis 4

4 3
v

    . Let A  and B  be N  

dimensional square matrix with  iia  and  iib  are the 

diagonal elements of A  and B , respectively. Then: 

   2'E V AV tr A ,    2'E V BV tr B  and  
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
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Lemma L2 (Lemma A.9, Lee, 2004b): Suppose that the 

elements of the N K  matrix X are uniformly bounded; and 

1lim '
N

N X X
  exists and is nonsingular. Then the projectors 

  1

' 'X X X X


 and   1

' 'M I X X X X


   are uniformly bounded in 

both row and column sums. Suppose that A  represents a 

sequence of N N  matrices that uniformly bounded in both 

row and column sums. Then 

       
       
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Furthermore, if  1

ij N
a O h

  for all i  and j , then 

       
       
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where  
ii

MA  are the diagonal elements of MA , and ij
a  the 

diagonal elements of A . 

Lemma L3 (Lee, 2004a, p1918): Suppose that A  is a 

square matrix with its column sums being uniformly bounded 

and elements of the N K  matrix Z  are uniformly bounded. 

Then,    1 ' 1n Z AV O . Furthermore, if the limit of ' 'Z AA Z N  

exists and is positive definite, then 

   21 ' 0, lim ' 'D

n
N Z AV N Z AA Z N  . 

Lemma L4 (Kelejian&Prucha, 1995; Lee, 2002): Let  A  

and  B  be two sequence of N N  matrices that are 

uniformly bounded in both row and column sums. Let C  be 

a sequence of comfirmable matrices whose elements are 

uniformly  1

N
O h . Then 

 i  the sequence AB  are uniformly bounded in both row 

and column sums. 

 ii  the elements of A  are uniformly bounded and 

   tr A O N , and 

 iii  the elements of AC  and CA  are uniformly  1

N
O h .

 Proof of theorem 1: First, we note that 

 
 
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1
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           (A.1) 

Under 0H  and Assumption A1, Lemma L1 is applicable 

to 'ε Pε , which gives  2' 0Eε Pε tr P   and 

       4 2 4 2 4

12 131
' '

N

iii
Var ε Pε p tr AA tr A S S   


       . Letting 

0 1

2 1P W n S I  , we have 0P MP M . By Lemma L2  i  and 

Assumption A2,    2 1tr MW O  which gives  11
1N

S O N
 . 

Hence, the elements of 0P  are of uniform order  1

N
O h . 

Under Assumption A3, M  is uniformly bounded in both row 

and column sums (Lemma L2). It follows that the matrix of 

P  are uniformly bounded. Thus, the generalized central limit 

theorem for linear-quadratic form of Lee (2004a) is applicable, 



 

 

which shows that 'ε Pε  is asymptotically normal, or 

equivalently, 

  4

12 13' 0,Dε Pε N S S                (A.2) 

Second, we note that  

 
 

2 1 1 1

1 2 1 1 1
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      (A.3) 

Under 0H  and Assumption A1, Lemma L1 is also 

applicable to the above equation, then 

   1 2

1' ' 0E ε M W A Xβ ε Qε tr Q       and 

   1 4

1 22 23 24' 'Var ε M W A Xβ ε Qε S S S        . Letting 0 1 1

1 2Q W A n S I   , 

we have 0Q MQ . By Lemma L2  i  and Assumption A2, 

   1 1tr MW O  which gives  11
2N

S O N
 . Thus, the elements of 

0Q  are of uniform order  1

N
O h . Under Assumption A3, the 

elements of Q  are of uniform order  1

N
O h  and the row and 

column sums of the matrix Q  are uniformly bounded. 

Therefore, the 'ε Qε  is asymptotically normal based on the 

generalized central limit theorem of linear-quadratic form of 

Lee (2004a),   4

22 23' 0,Dε Qε N S S   . 

Third, by Assumption A2 and A3, it shows that  1

1W A Xβ  

is uniformly bounded and M  is uniformly bounded in both 

row and column sums. Hence, by Lemma L3, we have 

    1 2

1 241 ' 0,DN W A Xβ Mε N S N  . Thus,  1

1' 'ε M W A Xβ ε Qε   is 

asymptotically normal, or equivalently,  
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By A.1, A.3 and Lemma L1, we have 
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(A.5) 

With A.2, A.4 and A.5, we have 
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asymptotically normal, or equivalently,  
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Now, it is easy to show that 2 2p

   , p

    and 

24 24

pS S  by replacing 2

 ,   and 24S  with 2

 ,   and 

4
S , respectively. Slusky’s theorem suggests that the square of 

A.6 yields chi-square distribution with one degree of freedom. 

This finished the poof of Part (i). 

For Part (ii), it suffices to show that  1 1S O , 

   1

2 1 1S tr W A O
   and 24 24~S S  by Lemma L2  i , where ~  

stands for ‘asymptotic equivalence’. Following from Lemma 

L2, we have 
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Then      2 2 1tr PP tr W W O  ,        2 11 1
A A N

tr QQ tr S S tr WA O
   , 

     2 1Atr PQ tr W S O  .Hence,  13 2 2 2 2 22~ 'S tr W W W W T  ，

     2

22 1
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AA A A An
S S T tr S S Xβ M S Xβ J       and 

 33 2 2 2~ 'A A AS tr W S W S T  . Therefore, when 0  , RLM  is 

asymptotically equivalent to ZLM . This finishes the proof of 

Theorem 1. 

 



 

 

 

TABLE 1:  SIZE OF THE TESTS 

W    

Standard Normal Distribution Mixture-Normal Distribution Log-Normal Distribution 

N=50 N=200 N=50 N=200 N=50 N=200 

ZLM  RLM  ZLM  RLM  ZLM  RLM  ZLM  RLM  ZLM  RLM  ZLM  RLM  

Rook 

0.0 0.0506 0.0565 0.0468 0.0486 0.0459 0.0500 0.0590 0.0582 0.0383 0.0487 0.0467 0.0543 

0.1 0.0466 0.0555 0.0512 0.0539 0.0478 0.0486 0.0646 0.0650 0.0414 0.0485 0.0463 0.0479 

0.2 0.0440 0.0570 0.0459 0.0495 0.0431 0.0524 0.0614 0.0611 0.0393 0.0476 0.0427 0.0483 

0.3 0.0505 0.0579 0.0476 0.0504 0.0505 0.0522 0.0644 0.0639 0.0393 0.0483 0.0484 0.0530 

0.4 0.0450 0.0540 0.0476 0.0504 0.0491 0.0474 0.0642 0.0651 0.0398 0.0460 0.0495 0.0511 

0.5 0.0502 0.0570 0.0500 0.0496 0.0491 0.0533 0.0615 0.0593 0.0393 0.0478 0.0464 0.0492 

Queen 

0.0 0.0405 0.0537 0.0445 0.0459 0.0393 0.0461 0.0499 0.0527 0.0376 0.0530 0.0473 0.0500 

0.1 0.0405 0.0567 0.0492 0.0529 0.0401 0.0478 0.0481 0.0552 0.0383 0.0481 0.0433 0.0488 

0.2 0.0398 0.0530 0.0505 0.0479 0.0390 0.0479 0.0500 0.0519 0.0346 0.0494 0.0423 0.0533 

0.3 0.0420 0.0516 0.0471 0.0488 0.0410 0.0439 0.0545 0.0552 0.0330 0.0497 0.0454 0.0479 

0.4 0.0395 0.0520 0.0479 0.0521 0.0433 0.0471 0.0522 0.0560 0.0371 0.0544 0.0442 0.0550 

0.5 0.0414 0.0565 0.0460 0.0487 0.0370 0.0505 0.0516 0.0540 0.0345 0.0477 0.0443 0.0496 

Group 
0.3   

0.0 0.0255 0.0425 0.0349 0.0497 0.0249 0.0409 0.0300 0.0404 0.0251 0.0414 0.0317 0.0431 

0.1 0.0222 0.0405 0.0330 0.0486 0.0228 0.0408 0.0294 0.0433 0.0227 0.0394 0.0304 0.0436 

0.2 0.0253 0.0420 0.0309 0.0500 0.0245 0.0393 0.0302 0.0414 0.0217 0.0366 0.0306 0.0439 

0.3 0.0264 0.0432 0.0337 0.0534 0.0259 0.0390 0.0317 0.0449 0.0241 0.0372 0.0266 0.0435 

0.4 0.0231 0.0411 0.0325 0.0513 0.0238 0.0383 0.0310 0.0436 0.0243 0.0385 0.0295 0.0423 

0.5 0.0263 0.0404 0.0299 0.0511 0.0239 0.0374 0.0282 0.0406 0.0267 0.0424 0.0282 0.0458 

Group 
0.5   

0.0 0.0336 0.0471 0.0363 0.0497 0.0350 0.0434 0.0427 0.0471 0.0347 0.0480 0.0409 0.0504 

0.1 0.0359 0.0497 0.0397 0.0486 0.0343 0.0467 0.0415 0.0456 0.0346 0.0486 0.0396 0.0491 

0.2 0.0338 0.0517 0.0342 0.0500 0.0339 0.0469 0.0406 0.0451 0.0330 0.0472 0.0389 0.0481 

0.3 0.0333 0.0496 0.0404 0.0534 0.0347 0.0502 0.0413 0.0492 0.0325 0.0479 0.0393 0.0492 

0.4 0.0347 0.0460 0.0408 0.0513 0.0376 0.0444 0.0385 0.0465 0.0326 0.0481 0.0339 0.0459 

0.5 0.0331 0.0504 0.0373 0.0511 0.0357 0.0471 0.0402 0.0441 0.0332 0.0459 0.0382 0.0506 

Group 
0.7   

0.0 0.0460 0.0532 0.0470 0.0494 0.0464 0.0520 0.0519 0.0564 0.0417 0.0542 0.0474 0.0507 

0.1 0.0438 0.0486 0.0460 0.0534 0.0472 0.0507 0.0581 0.0597 0.0426 0.0485 0.0450 0.0493 

0.2 0.0408 0.0502 0.0430 0.0463 0.0432 0.0516 0.0584 0.0558 0.0433 0.0524 0.0439 0.0520 

0.3 0.0427 0.0562 0.0480 0.0524 0.0509 0.0544 0.0549 0.0611 0.0446 0.0533 0.0472 0.0530 

0.4 0.0462 0.0550 0.0455 0.0518 0.0473 0.0516 0.0581 0.0579 0.0453 0.0518 0.0477 0.0533 

0.5 0.0446 0.0551 0.0455 0.0479 0.0485 0.0565 0.0569 0.0540 0.0477 0.0500 0.0433 0.0515 

 



 

 

Figure 1. Power of the tests (standard normal (left two columns) and mixture-normal(right two columns) distribution): LM1: ZLM  and LM1: RLM  

 

 

 

 

 

 

 

 

 

 



 

 

Figure 2. Power of the tests (log-normal distribution) : LM1: ZLM  and LM1: RLM  

 

 

 

 


