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We propose an allocation rule that takes into account the importance of players and

their links and characterizes it for a fixed network. Unlike previous rules, our character-
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1 Introduction

The study of networks under the framework of cooperative games revolves around two basic

problems: how a network is formed and how to allocate the value it generates among its

members. In this paper we propose an allocation rule that takes into account the importance

of players as well as their links. Since a network describes the interaction structure between

agents, our allocation rule covers both bilateral and multilateral interactions. We provide a

characterization of this rule in terms of well-known axioms and compare it to other allocation

rules in the literature.

The notion of a “Network game” in cooperative games is rather recent and dates back

only to 2005 (Jackson,2005). The antecedents however are much older − in 1977, Myerson,

incorporated graphs in a cooperative game and extended the notion of Shapley value. This

value, later known as the Myerson value (Aumann and Myerson, 1988), is indeed the Shapley

value applied to the modified TU game obtained from the original TU game and the exoge-

nous (communication) network. Such a game was later termed as a communication game

with the network structure describing the communication possibilities and value generation

(see Jackson,2005). An alternative to Myerson value was the Position value proposed by

Meessen (1988) in which each link in a communication game was viewed as a player and then

applied the Shapley value to the corresponding link game. Since then many authors includ-

ing Haeringer (1999), Borm et al. (1992) , Slikker (2005,2006), Slikker and Anne van den

Nouweland (2001), Kamijo(2009), Kamijo and Kongo (2009) to name a few, have proposed

the axiomatic characterizations of these values and their variants.

In their seminal paper, Jackson and Wolinsky (1995) argued that while communication

games are a useful augmentation of cooperative games, they fail to be rich enough to capture

most applications where network structures are important. They proposed another model

where the value of a network can depend on exactly how agents are interconnected; the same

pair of agents can generate different values if they are directly connected than when they

are indirectly connected. Subsequently in his paper on allocation rules for network games

Jackson (2005) further argued that in communication games, a group may generate the same

productive value whether they are each connected to each other via a complete network or
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they are connected via a less complete network. To the extent that there are any costs as-

sociated with links, or benefits from shortened paths, it will generally be the case that the

value generated in these two scenarios will differ. This led to the introduction of a new class

of games which he termed as Network Games.

Two important allocation rules for network games, namely the Myerson and the Position

value were proposed and characterized by Jackson and Wolinsky (1995) and Slikker (2006).

These rules are indeed extensions of their counterparts in communication situations. In both

these cases however, the network is taken as given or fixed. Jackson (2005) introduced the

notion of flexible networks where the role of a player in all possible subnetworks of a given

network is also taken into account. The underlying notion here is the idea that the network

is not fixed and could ultimately evolve into one of the (better) subnetworks. He showed

that while the Myerson value of a communication game also had useful characterizations in

network games, it still inherits certain limitations and is based on some flawed properties as

well. It can be seen that similar arguments also limit the usefulness of the Position value for

network games. Jackson proposed another set of allocation rules for flexible networks among

which, the Player Based Flexible Network allocation rule (PBFN) and the Link Based Flex-

ible Network allocation rules (LBFN) are quite appealing. While flexible network allocation

rules have many advantages, they may not always be feasible and may also involve tedious

calculations. Hence in this paper we undertake the study of both fixed and flexible network

allocation rules.

The Myerson value is designed with the players in mind by taking coalitions (that are

restricted to the network) and computing the marginal contributions of the players in the

subnetworks stemming from those coalitions. The Position value on the other hand empha-

sizes more on links by defining a player set based on these links, i.e., each link is replaced by

a player. It essentially computes the marginal contributions of the links using the notion of

Shapley value and splits them equally between the players in any link. Observe that these

existing values have little account of simultaneous multilateral interactions. Even though,

Jackson’s flexible network values are able to account for both direct and indirect interactions

between different players by allowing for flexibility in the network, yet such interactions are
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partially multilateral as the marginal contributions are computed over one link at a time and

more importantly, they are exclusively either player based or link based. Thus it is useful

to have an allocation rule that cares about both players and their links in a manner that

incorporates the simultaneous multilateral interactions in a network.

In this paper, we have developed such an allocation rule for fixed network games and its

extension to flexible networks. We provide an axiomatic characterization of our rule following

standard axioms in cooperative game theory like linearity, dummy player axiom, anonymity,

monotonicity and efficiency. In doing so, we assume that the effect of interactions among play-

ers through indirect links is intransitive i.e., if in a network, player 1 is linked to player 2 and

player 2 is linked to player 3 while there is no link between 1 and 3, the interaction between 1

and 3 (information sharing, for example) takes place through their links with 2 and they will

not be awarded extra for such indirect links. We obtain a Shapley like allocation rule which

computes the weighted average of the marginal contributions of players in some sense. Our

rule differs from the network Myerson value given by Jackson (2005), as the Myerson value is

player oriented and no multilateral interaction is visible there. Our rule is also distinct from

the Position value in the sense that in addition to allowing multilateral interactions, it also

gives importance to the players by means of the values generated through their direct links,

while the Position value allows only pairwise or bilateral interactions one at a time. By the

same arguments, the extension of our rule to flexible networks differs from those of Jackson’s

PBFN and LBFN allocation rules. We focus on the role played by a player and her link set

simultaneously while determining her marginal contributions. In our framework a player is

important as in the existing player and link based rules, but the allocation is not determined

by simply restricting the player’s contributions over all coalitions under the given network or

by adding one of its links at a time to all its subnetworks. Rather we examine her role in the

presence of all her links together. Consequently, the allocation of a player depends on her

networking capacity i.e., her ability to forming links and also on her ability to generate value

under a particular game. A major drawback of both Myerson and the Position value is that

they are characterized by a rather strong condition called “component efficiency” for which

the associated game must necessarily be component additive. In the absence of a component
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additive game, the rules become arbitrary. Our rule does satisfy “component efficiency”, how-

ever is not dependent on it and hence our characterization holds even if there are externalities

across components.

The paper proceeds as follows. Section 2 provides the necessary mathematical prelimi-

naries, includes a brief description of the existing allocation rules and their characterization

results. Section 3 develops our notion of an interactive allocation rule and its characterization.

In Sections 4 we use a number of examples to illustrate differences between the different fixed

and flexible network allocation rules. Section 5 concludes.

2 Preliminaries

In this section, we present the definitions and results required for development of our model.

To a large extent this section is based on Jackson (2005).

Players

Let N = {1, ..., n} be a fixed set of players who are connected in some network relationship.

Networks

A network consists of a finite set of elements called nodes corresponding to players and a

finite set of pairs of nodes called links which correspond to bilateral relationships between

players. The network g is thus a list of unordered pairs of players {i, j}, where {i, j} ∈ g

indicates that i and j are linked in the network g. For simplicity, we write ij to represent

the link {i, j}. The degree of a player in a network is the number of direct links it has in the

network. Let gN be the set of all subsets of N of size 2. G = {g|g ⊆ gN} denotes the set of

all possible networks or graphs on N . The network obtained by adding another network g′ to

an existing network g is denoted by g + g′ and the network obtained by deleting subnetwork

g′ from an existing network g is denoted g \ g′. For g ∈ G, L(g) denotes the set of all links in

g and l(g), the total number of such links.
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Let N(g) be the set of players who have at least one link in g. That is,

N(g) = {i|∃j such that ij ∈ g}

Let n(g) = #N(g) be the number of players involved in g. Let Li(g) be the set of links that

player i is involved in, so that

Li(g) = {ij|∃j s.t.ij ∈ g},

By li(g) we denote the number of links in player i’s link set. It follows that l(g) = 1
2

∑

i li(g).

Networks on subsets of players

Given any S ⊆ N , let gS be the set of all subsets of S of size 2 i.e. the complete network

formed by the players in S.

Let g|S denote the subnetwork of g formed by the players in S. Formally we have,

g|S = {ij | ij ∈ g and i ∈ S, j ∈ S}.

Components

A component of a network g, is a non-empty subnetwork g′ ⊂ g, such that

(a) if i ∈ N(g′) and j ∈ N(g′) where j 6= i, then there exists a path in g′ between i and j,

and

(b) if i ∈ N(g′) and ij ∈ g, then ij ∈ g′.

Components of a network are the distinct connected subgraphs in it. The set of compo-

nents of g is denoted by C(g).

Value functions

A value function is a function v : G → R such that v(∅) = 0, where ∅ represents the empty

network i.e. network without links. The set of all possible value functions is denoted by V .
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The value function specifies the total worth that is generated by a given network structure.

It may involve both costs and benefits whenever this information is available.

Component additive value function

A value function v is component additive if

v(g) =
∑

g′∈C(g)

v(g′), for any g ∈ G.

Efficient networks

A network g ∈ G is efficient relative to a value function v if v(g) ≥ v(g′) for all g′ ∈ G.

Monotonic game

A game v is monotonic if for every g, g′ ∈ G, such that g ⊂ g′ we have v(g) ≤ v(g′).

The following definition of a monotonic cover was given by Jackson (2005) for discussing

properties of flexible networks.

Monotonic covers

Given a value function v, its monotonic cover v̂ is defined by,

v̂(g) = max
g′⊆g

v(g′) ∀g ∈ G

Three special value functions

Let vg denote the value function defined by

vg(g
′) =







1 if g ⊆ g′

0 otherwise
(2.1)

We call vg a basic value function. The name signifies that any v can be written as a linear

combination of basic value functions vg’s in a unique way. That is, any v can be represented
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as v =
∑

g cgvg with some unique collection of scalars cg.

Let us slightly change the above definition to obtain another value function v̂g with respect

to the network g as follows:

v̂g(g
′) =











1 if g ⊂
6=
g′

0 otherwise

(2.2)

A third value function denoted by v∗g is defined as follows:

v∗g(g
′) =







1 if g = g′

0 otherwise
(2.3)

All these value functions will be required at a later stage of our discussion.

Network games

A network game is a pair, (N, v), of a set of players and a value function. If N is fixed and

no confusion arises about this, we denote the network game by only v. A network game v is

monotonic if for g, g′ ∈ G with g′ ⊂ g, we have v(g′) ≤ v(g).

Allocation rules

An allocation rule is a function Y : G × V → R
n such that Yi(g, v) represents the al-

location to player i with respect to v and g. An efficient allocation rule Y is such that
∑

i Yi(g, v) = v(g), ∀v and g. It specifies how the value generated by the network is shared

among the players. Note that in the literature on network game theory, an allocation rule is

always efficient, however, we distinguish these two in order to present a more general notion

of a solution concept.

Component efficiency : An allocation rule Y is component efficient if for any component

additive v, g ∈ G, and g′ ∈ C(g),

∑

i∈N(g′)

Yi(g, v) = v(g′).
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Equal Bargaining power

An allocation rule satisfies equal bargaining power if for any component additive v , g ∈ G

and i, j ∈ N , it holds that,

Yi(g, v)− Yi(g − ij, v) = Yj(g, v)− Yj(g − ij, v).

Balanced link contributions

An allocation rule Y satisfies Balanced link contributions if for all g, v and N and all i, j ∈ N ,

∑

g′⊆Lj(g)

[Yi(g, v)− Yi(g \ g
′, v)] =

∑

g′⊆Li(g)

[Yj(g, v)− Yj(g \ g
′, v)]

Balanced link contributions states that the total contribution of a player to the payoff

of another player is the sum over all links of the first player of the payoff difference the second

player experiences if such a link is broken.

Jackson points out that equality in bargaining power of two players makes sense when they

are comparable in the network by some means. The same criticism applies to the axiom of

balanced link contribution also. For instance, consider a network that is quite asymmetric

with some players having many links and others a few links only. Then it is unlikely that

these axioms will be satisfied in such a network.

Probabilistic Allocation rule

Fix a player i in a network g, and let
{

pgig̃ |g̃ ⊆ g \ gi, gi ⊂ g, with i ∈ N(gi)
}

be a probability

distribution. An allocation rule Y is a probabilistic allocation rule if for every v and for every

i ∈ N ,

Yi(g, v) =
∑

g′⊆g\gi

pgig̃ {v(g̃ + gi)− v(g̃)} .

Thus Yi(., .) represents the expectation of player i’s marginal contributions in every possible

network g̃ ⊆ g \ gi.
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The Myerson value

The Myerson value was extended to network games by Jackson and can be written as follows:

Y NMV
i (g, v) =

∑

S⊂N\{i}

(v(g|S∪i)− v(g|S))

(

#S!(n−#S − 1)!

n!

)

(2.4)

Following is a characterization of the Myerson value due to Jackson and Wolinsky (Jackson

and Wolinsky, Theorem 4, pp 65) as restated by Jackson (2005).

Theorem 1. (Jackson (2005), Theorem 1, pg 134) Y satisfies component efficiency and

equal bargaining power if and only if Y (g, v) = Y NMV
i (g, v), for all g ∈ G and any component

additive v.

The Position Value

The position value Y NPos of a network game as extended by Slikker (2006), can be written

as follows:

Y NPos
i (g, v) =

∑

j 6=i
j∈N(g)





∑

g′⊂g\{ij}

1

2
{v(g′ + ij)− v(g′)}

{

l(g′)!(l(g)− l(g′)− 1)!

l(g)!

}





Thus the position value attributes to each player half of the value of each link she is involved

in. Slikker (2006) gave a characterization of the Position value as follows:

Theorem 2. (Slikker (2006), Theorem 3.1, pg 6) The Position value is the unique allocation

rule for network games that satisfies component efficiency and balanced linked contributions.

Note that both Myerson value and Position value (in communication situation as well as

Networks) are Probabilistic allocation rules as the co-efficients in each expression form a

probability distribution. Further, these rules are characterized by the requirement that the

value function be component additive. In absence of this assumption the allocation rule be-

comes arbitrary. Moreover, they require assumptions which may not always hold.

Consequently, Jackson (2005) proposed a new approach to network games called flexible net-

works and provided some alternative rules. This approach takes the potential of a player into
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account- her allocation is based not only on what she contributes in the current network, but

also in alternative networks related to this network. The rules give allocation to a player not

only by looking at her current position in the given network but also by considering her roles

in alternative networks. We begin with a few more definitions.

Flexible-network rules

An allocation rule Y is a flexible network rule if Y (g, v) = Y (gN , v̂) for all v and efficient g

(relative to v).

Additivity

An allocation rule Y is additive if for any v and v′, and scalars a ≥ 0 and b ≥ 0,

Y (gN , av + bv′) = aY (gN , v) + bY (gN , v′).

A weaker version of additivity was also proposed by Jackson.

Weak additivity

An allocation rule Y is weakly additive if for any monotonic v and v′, and scalars a ≥ 0 and

b ≥ 0,

Y (gN , av + bv′) = aY (gN , v) + bY (gN , v′),

and if av − bv′ is monotonic, then

Y (gN , av − bv′) = aY (gN , v)− bY (gN , v′).

The following is an important equity condition.
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Equal treatment of vital players

An allocation rule Y satisfies equal treatment of vital players if vg is a basic value function

for some g, then,

Yi(g, v) =











1

n(g)
, if i ∈ N(g)

0, otherwise.

The above conditions give rise to a player-based allocation rule given below.

The player-based flexible network (PBFN) allocation rule

Jackson’s PBFN allocation rule for efficient networks is given by,

Y PBFN
i (g, v) =

∑

S⊂N\{i}

(v̂(gS∪{i})− v̂(gS))

{

#S!(n−#S − 1)!

n!

}

. (2.5)

Theorem 3. (Jackson, 2005, Theorem 2, pp 141) An allocation rule satisfies equal treatment

of vital players, weak additivity, and is a flexible network rule if and only if it is defined by

(2.5) for all v and g that are efficient relative to v.

In order to define PBFN for inefficient networks, we need the following condition.

Proportionality

An allocation rule Y is proportional if for each i and v, either Yi(g, v) = 0 for all g, or for any

g and g′ such that v(g′) 6= 0,

Yi(g, v)

Yi(g′, v)
=
v(g)

v(g′)

The PBFN allocation rule for inefficient networks is given by

Y PBFN
i (g, v) =

v(g)

v̂(gN )

∑

S⊂N\{i}

(v̂(gS∪{i})− v̂(gS))

{

#S!(n−#S − 1)!

n!

}

. (2.6)

Jackson (2005) showed that for inefficient networks, an allocation rule that satisfies all the

conditions of Theorem 3 along with proportional rule if and only if it is given by (2.6) for all

v and g.
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Another interesting allocation rule proposed by Jackson for flexible networks is the link-based

allocation rule.

An allocation rule Y is link-based if there exists ψ : V×G→ R
n(n−1)/2 such that

∑

ij∈gN
ψij(g, v)

2
.

An allocation rule Y is said to satisfy equal treatment of vital links if vg is a basic value function

for some g 6= ∅, then,

Yi(g, vg) =
li(g)

2l(g)
.

The link-based flexible network (LBFN) allocation rule

Jackson’s LBFN allocation rule for any networks is given by

Y LBFN
i (g, v) =

v(g)

v̂(gN )

∑

j 6=i





∑

g⊂gN\{ij}

1

2
(v̂(g + ij)− v̂(g))

{

l(g)!([n(n− 1)/2]− l(g)− 1)!

[n(n− 1)/2]!

}





(2.7)

Theorem 4. (Jackson (2005), Theorem 4, pp 143) An allocation rule satisfies equal treatment

of vital links, weak additivity, and is a flexible network rule if and only if it agrees with Y LBFN

on efficient networks. It satisfies equal treatment of vital links, weak additivity, and is a flexible

network and proportional rule if and only if it is Y LBFN .

Remark 1. (Relationship between fixed and flexible network rules)

The similarity between the LBFN rule and the network Position value lies, even though they

arise from different model setups, in the fact that both allocate payoffs to the links instead of

players and then divide it equally between the linked players. One can easily verify that when

the value function is monotonic and g is the complete network, Y NPos and Y NMV coincides

with Y LBFN and Y PBFN respectively.

3 An Interactive Allocation Rule

In this section, we develop a new allocation rule for fixed networks, emphasizing both the

roles of the players and their links. We call such a rule: an interactive allocation rule.
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Consider a network g = {ij, jk, ik} with Li(g) = {ij, ik}. Now, player i can interact with j

and k separately one by one or simultaneously which may provide additional synergies. A

simultaneous interaction (one to all) would result in group decisions while pairwise interactions

(one to one) may focus on building up personal relationships and it is important to capture

both types of interactions. This feature clearly distinguishes our interactive allocation rule

from the rest of the existing rules.

We begin with the following definitions.

Definition 1. Let π be a permutation on N . For v ∈ V , the game πv is defined by, πv(πg) =

v(g), where πg is the network obtained after permuting the players in g ∈ G under π.

Definition 2. A player i is dummy for the value function v ∈ V with respect to the network

g, if ∀g′ ⊆ g \ Li(g), we have v(g′ + Li(g)) = v(g′) + v(Li(g)).

Note that a dummy player has no effect on g beyond its link set. We shall show that the

following five axioms characterize our proposed allocation rule:

Axiom 1. Linearity axiom (L): For g ∈ G, v, v′ ∈ V , and a, b ∈ R,

Yi(g, av + bv′) = aYi(g, v) + bYi(g, v
′), ∀i ∈ N.

Axiom 2. Dummy axiom (D) : For a dummy player i ∈ N , Yi(g, v) = v(Li(g)), for every

v ∈ V .

Axiom 3. Anonymity axiom (A): For all v ∈ V , permutations π,

Yi(g, v) = Yπi(πg, πv), ∀ i ∈ N.

Axiom 4. Monotonicity axiom (M): If v is monotonic, then Yi(g, v) ≥ 0 for every i ∈ N .

Axiom 5. Efficiency Axiom (E): For every v ∈ V ,
∑

i∈N(g) Yi(g, v) = v(g).

Proposition 1. If Y (g, v) satisfies linearity axiom (L), then for every g and every v, there

exists a family of real constants {agg′}g′⊆g such that

Yi(g, v) =
∑

g′⊆g

agg′v(g
′) (3.1)
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Proof. Fix a network g ∈ G. Denote by Gg, the set of all subnetworks of g. Consider the

class Vg of all network games defined on Gg. Clearly Vg is a 2l(g) − 1 dimensional subspace

of V . We say two games are equivalent in V , if they coincide in Gg. Then Vg partitions

elements of V into equivalence classes so that there is a one to one correspondence between

these equivalence classes and the members of Vg. Thus we can identify each equivalence class

by a unique value function in Vg. With a little abuse of notation, we thus accept that every

v ∈ V can be identified with a v∗ ∈ Vg. Since, every v
∗ ∈ Vg has a unique representation

v∗ =
∑

g′∈Gg

v∗(g′)v∗g′ where g′ ∈ Gg.

Therefore under this equivalence condition, every v ∈ V can be represented in a unique way

as v =
∑

g∈Gg
v(g)v∗g , and so the result follows by taking agg′ = Yi(g, v

∗
g′).

Observation 1. Jackson (2005) gave an example to illustrate the insensitivity of Myerson

value to alternative networks by taking two value functions v and v′ defined by v({12}) =

v({23}) = v({12, 23}) = 1, and v(g) = 0 for any other network g, while v′(g) = 1, for every g.

It is indeed interesting to see that under v player 2’s involvement is needed to generate any

value, while under g′, no player is special. However, if we consider only fixed networks as the

case may be where a flexible network is not possible, and if the two games coincide on that

network, then their corresponding payoffs are essentially identical. This can be interpreted

as a weaker version of consistency of fixed networks. This is what we have considered under

the equivalence condition in the above proof of proposition 1.

Proposition 2. If Y (g, v) satisfies L and D, then for every g ∈ G, there exists a family of

real constants {pgg′}g′⊆g such that

Yi(g, v) =
∑

g′⊆g\Li(g)

pgg′
{

v(g′ + Li(g))− v(g′)
}

(3.2)

Proof. Consider {Yi(g, v)}i∈N satisfying axioms L and D. By Proposition 1, there exists

{agg′}g′⊆g such that,

Yi(g, v) =
∑

g′⊆g

agg′v(g
′) (3.3)
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We write,

Yi(g, v) =
∑

g′⊆g\Li(g)

agg′+Li(g)
v(g′ + Li(g)) +

∑

g′⊆g\Li(g)

agg′v(g
′) (3.4)

Assume now that i is a dummy player for v with respect to g. Then,

Yi(g, v) =
∑

g′⊆g\Li(g)

v(g′)
[

agg′+Li(g)
+ agg′

]

+ agg′+Li(g)
v(Li(g)) (3.5)

For an arbitrarily fixed g′ ⊆ g \Li(g), consider the game v∗g′ . Now i is a dummy player in v∗g′

also. We have Yi(g, v
∗
g′) = v∗g′(Li(g)) = 0. Therefore, it follows from axiom D, that,

agg′+Li(g)
+ agg′ = 0.

Let agg′+Li(g)
= −agg′ = pgg′ . Consequently Equation (3.2) is obtained.

Our next proposition is about the anonymity axiom A, which would imply that the real

coefficients pgg′ are independent of choices of subnetworks of g as long as they have the same

number of links.

Proposition 3. Under axioms L, D and A and for every v, there exist real constants pgl(g′),

where l(g′) = 0, ..., l(g)− li(g), such that,

Yi(g, v) =
∑

g′⊆g\Li(g)

pgl(g′)
{

v(g′ + Li(g))− v(g′)
}

(3.6)

Proof. By axioms L and D and propositions 1 and 2, we have,

Yi(g, v) =
∑

g′⊆g\Li(g)

pgg′
{

v(g′ + Li(g))− v(g′)
}

(3.7)

Let g1, g2 ⊆ g \ Li(g) such that l(g1) = l(g2) and π be a permutation with πg1 = g2 leaving

the rest invariant.

By axiom A (anonymity), we have,

Yi(g, v
∗
g1+Li(g)

) = Yπi(πg, πv
∗
g1+Li(g)

) = Yi(g, v
∗
g2+Li(g)

).

It follows from equation (3.7) that,

pgg1 = pgg2

This implies that there exist constants, pgl(g′) ’s, l(g
′) = 0, 1, ..., l(g) \ li(g) depending on the

size of g′ ⊆ g \ Li(g) such that equation (3.6) holds. This completes the proof.
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The following result gives a characterizing property of the co-efficients pgl(g′) under axioms

L,D and A.

Proposition 4. Under axioms L,D and A , there exists a collection of constants

{

pgl(g′) : g
′ ⊆ g \ Li(g)

}

satisfying
∑

g′⊆g\Li(g)

pgl(g′) = 1

such that for all v,

Yi(g, v) =
∑

g′⊆g\Li(g)

pgl(g′)
{

v(g′ + Li(g))− v(g′)
}

(3.8)

Further under axiom M, each pgl(g′) ≥ 0.

Proof. Under axioms L,D and A, proposition 3 ensures the existence of expression (3.6).

Consider the game vLi(g). Clearly player i is dummy in it with respect to g. Thus,

1 = vLi(g)(Li(g)) = Yi(g, vLi(g)) =
∑

g′⊆g\Li(g)

pgl(g′)
{

vLi(g)(g
′ + Li(g))− vLi(g)(g

′)
}

=
∑

g′⊆g\Li(g)

pgl(g′).

Further, since the game v̂g′ (refer to equation 2.2) is monotonic for every g′ ⊆ g \ Li(g); by

axiom M, we have,

Yi(g, v̂g′) = pgl(g′) ≥ 0.

This completes the proof.

Thus, combining above results, we have the following.

Theorem 5. If Y (g, v) is an allocation rule that satisfies L,D,A and M, then it is a proba-

bilistic allocation rule.

We have so far obtained an axiomatic characterization of a probabilistic value for a network

game. It provides different allocation rules depending on the different probability distributions

one is considering. Thus to provide a precise model setup, we will consider here, a particular
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probability distribution under the following intuitive assumption:

Assumption 1 : For any given network, all subnetworks having the same number of links

are equally likely.

Remark 2. Note that Assumption 1 is inherent in every Shapley like solution concept. The

original Shapley hypothesis for cooperative games is that the probability of coalitions depend

on size, with the total probability of each size being the same and is indifferent about the

existence of all possible coalitions. In network literature, however it does not account for non

existing links among players.

Proposition 5. Let Yi(g, v) be a probabilistic value such that for all v and g,

Yi(g, v) =
∑

g′⊆g\Li(g)

pgl(g′)
{

v(g′ + Li(g))− v(g′)
}

. (3.9)

then under Assumption 1, it follows that,

pgl(g′) =
(l(g)− li(g)− l(g′))!l(g′)!

(l(g)− li(g) + 1)!

Proof. Create a subnetwork g′ of g \ Li(g). Draw a subnetwork at random consisting of all

possible number of links 0, 1, 2, ..., l(g \ Li(g)) = l(g) − l(Li(g)) = l(g) − li(g), each number

has probability

1
l(g)−li(g)+1 to be drawn.

Probability of getting one such network g′ of size l(g′) from g \ Li(g) is:

1
l(g\Li(g))Cl(g′)

If g′ is formed, player i will be paid a proportion of v(g′ + Li(g)) − v(g′), the marginal

contribution with respect to the direct links made by i in g with other players. Thus the

total probability of drawing a subnetwork is given by: 1
l(g)−li(g)+1 × 1

l(g\Li(g))Cl(g′)
, giving us

the required expression as:

pgl(g′) =
(l(g)− li(g)− l(g′))!l(g′)!

(l(g)− li(g) + 1)!

Therefore, we obtain our interactive allocation rule by means of the following proposition:
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Proposition 6. Given Assumption 1, Y : G × V → R satisfies axioms L, D, A, and M if

and only if for all i, it has the following with possibly a constant multiple,

Yi(g, v) =











∑

g′⊆g\Li(g)

{l(g \ Li(g))− l(g′)}! l(g′)!

{l(g \ Li(g)) + 1}!
{v(g′ + Li(g))− v(g′)}, if i ∈ N(g)

0, otherwise

(3.10)

Proof. The proof follows immediately from Propositions 1, 2, 4, 5, 6 and 7.

Note that Y defined in (3.10) does not satisfy axiom E (Efficiency), however, an efficient

interactive rule can be immediately obtained through simply multiplying it by the scaling

factor v(g)∑
i∈N(g) Yi(g,v)

. Thus, we call Y a proportional Interactive allocation rule. An efficient

Interactive allocation or simply an Interactive allocation rule denoted by Y I is therefore

deduced as follows:

Y I
i (g, v) =

v(g)
∑

i∈N(g) Yi(g, v)
Yi(g, v). (3.11)

where, Yi(g, v) is given by equation (3.10). Thus, it follows that the Interactive allocation

rule is unique up to a choice of the scaling factor.

Proposition 7. The allocation rule Y I given by equation (3.11) is component efficient.

Proof. The proof is straight forward.

Interactive Allocation Rule for Flexible Networks

Let us define the Interactive allocation rule for flexible network in two steps as follows:

(i) Let the proportional allocation rule for flexible network be defined as,

Y FN
i (g, v) =

v(g)

v̂(gN )

∑

g′⊆gN\Li(gN )

{l(gN \ Li(g
N ))− l(g′)}! l(g′)!

{l(gN \ Li(gN )) + 1}!
{v̂(g′ + Li(g

N ))− v̂(g′)}

(3.12)

Note that, under efficient g, Y FN
i (g, v) = Y FN

i (gN , v̂). Therefore, it follows from the definition

of a flexible network rule that,

(ii) The Interactive flexible network allocation rule Y FNI is given by,

Y FNI(g, v) =
v(g)

∑

i∈N Y FN
i (g, v)

Y FN
i (g, v) (3.13)
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A characterization of Y FNI is possible exactly in the same way as the one for Y I in fixed

networks. We first obtain the proportional allocation rule for the fixed network game (gN , v̂)

and multiply it with the factor v(g)
v̂(gN )

to get the corresponding proportional flexible network al-

location rule. This factor does not disturb the characterization process since the proportional

rule as its name signifies, can accommodate any such factor. Thus we have the following:

Proposition 8. Given Assumption 1, Y : G × V → R satisfies axioms L, D, A, M and E

and is a flexible network rule if and only if it is given by (3.13) in conjunction with (3.12).

The next section deals with some examples to show the difference among our rule, the

Myerson value, Position value and the PBFN and LBFN rules given by Jackson in a general

network game.

4 Examples

We now provide some examples to show the relationship between the existing allocation rules

we have considered in this paper and our proposed allocation rule.

Example 1. Let N = {1, 2, 3} and g = {12, 23}. Let v({12} = v({23} = v({12}, {23}) = 1

and v(g) = 0 for all other g. Then,

Y NMV (g, v) = Y PBFN (g, v) =

(

1

6
,
2

3
,
1

6

)

Y NPos(g, v) = Y LBFN (g, v) =

(

1

4
,
1

2
,
1

4

)

Y I(g, v) = Y FNI(g, v) =

(

1

4
,
1

2
,
1

4

)

Here, Y NMV identifies player 2 as the most important player and hence pays more to 2.

Y NPos takes into account the fact that the network with two links is no better than the ones

with one link each. So it pays a little to player 2 and a bit more to the others. Y I and Y FNI

also give player 2 less as multilateral interactions do not add anything.

Note that, if we change the value function slightly by assuming v({12}, {23}) = 2 and keep

everything else as it is, we find that all the above mentioned rules yield to the allocation

(12 , 1,
1
2). Under this new v, the network with two links is more valuable than the same
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network under the previous v and hence Y NPos and Y I (similarly Y LBFN and Y FNI) do not

penalize player 2, unlike the earlier case.

Example 2. Let N = {1, 2, 3}, g = {12, 23, 13} and v be such that v(g) = 4, v(12, 13) =

v(13, 23) = v(12, 23) = 6 and v(12) = v(23) = v(13) = 2. Thus, we have, v̂(g) = v̂(gN ) = 6 ,

v̂(12, 13) = v̂(13, 23) = v̂(12, 23) = 6, and v̂(12) = v̂(23) = v̂(13) = 2. We have,

Y PBFN (g, v) = Y LBFN (g, v) = Y I(g, v) = Y FNI(g, v) = Y NMV (g, v) = Y NPos(g, v) =

(

4

3
,
4

3
,
4

3

)

.

Note that in this case, the value function does not satisfy monotonicity. Since all subnetworks

with same number of links generate the same value and the network under construction is

the complete network, all values are identical. This is very similar to what is stated in

Observation 1.

Example 3. N = {1, 2, 3}, g = {12, 23, 13} and v be such that v(g) = 4, v(12, 13) =

v(13, 23) = 2, v(12, 23) = 6 and v(12) = v(23) = 1 and v(13) = 0. Thus, v̂(g) = v̂(gN ) = 6.

We have,

Y NMV (g, v) =

(

7

6
,
10

6
,
7

6

)

.

Y NPos(g, v) =

(

11

12
,
26

12
,
11

12

)

.

Y I(g, v) = (1, 2, 1) .

Y PBFN (g, v) =

(

22

18
,
28

18
,
22

18

)

.

Y LBFN (g, v) =

(

19

18
,
34

18
,
19

18

)

.

Y FNI(g, v) =

(

14

13
,
24

13
,
14

13

)

.

Note that, here, link {13} has spillovers for the other links in the network but it can not

generate a value of its own. Accordingly Y NMV and Y PBFN evaluate the contributions of

players 1 and 3 in the network whereas Y NPos and Y LBFN consider link {13}’s contribution

as a whole. However, Y I and Y FNI emphasize both players as well as links, they try to realize

the contributions of players 1 and 3 through their link {13} and thus their payoffs under these

rules lie between those given by the player based and the linked based rules.
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Example 4. We finally apply our allocation rule to a more interesting network game with a

larger players’ set. Let g = {15, 12, 34} and the value function assigns as v({15}) = v({12}) =

1, v({34}) = 0, v({15, 12, 34}) = 6, v({15, 12}) = 4, v({15, 34}) = v({12, 34}) = 2. Note that

there are two components in g with externalities across them, i.e., the value function is not

component additive.

Then

Y I(g, v) = (2.432, 1.135, 0.648, 0.648, 1.135) .

Y FNI(g, v) = (2.332, 1.424, 0.41, 0.41, 1.424)

Here v is not component additive, however it is efficient and monotonic upto g. So the

Myerson value and the PBFN coincide and we have,

Y NMV (g, v) = Y PBFN = (2.166, 1.417, 0.5, 0.5, 1.417) .

Similarly, The Position value and the LBFN being coincident are given by,

Y NPos = Y LBFN = (2.5, 1.25, 0.5, 0.5, 1.25) .

In this example, Y NPos gives player 1 the highest because of the number of links she is involved

in. Y I gives her more than Y NMV and less than Y NPos because it takes both players and

multilateral interactions into account simultaneously. For this same reason, our allocation

rule in flexible networks also gives player 3 and 4 less and players 2 and 5 more than what is

given by the other rules.

We conclude this section with an illustration of an important property of Y I .

Property 1. (Reward to a player with more links within a network): For players i, j ∈ N(g),

if li(g) > lj(g) then Yi(g, v) ≥ Yj(g, v).

Proof. It is sufficient to show the result holds for a basic value function vg as every value

function is a unique linear combination of such basic value functions. Let us first compute

the proportional allocation rule Y (g, v):

Yi(g, vg) =
∑

g′⊆g\Li(g)

{l(g \ Li(g))− l(g′)} ! l(g′)!

{l(g \ Li(g) + 1}!
{vg(g

′ + Li(g))− vg(g
′)}

=
{l(g \ Li(g))− l(g \ Li(g))}!l(g \ Li(g))!

{l(g \ Li(g)) + 1}!
{vg(g)− vg(g \ Li(g))}
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Thus,

Yi(g, vg) =
1

l(g)− li(g) + 1
so that

Y I
i (g, vg) =

1
∑

i∈N(g) Yi(g, vg)× {l(g)− li(g) + 1}
.

The assertion follows.

5 Conclusion

In this paper, we have obtained and characterized an allocation rule for fixed networks and

subsequently extended it to flexible networks. These rules differ from the existing ones in

the literature in the sense that they emphasize both players and their links. We characterize

our allocation rule with a new set of axioms that have been used in cooperative games, but

not in network games. Unlike previous rules our characterization does not require component

additivity and thus allows for spillovers across components. Moreover our allocation rule

incorporates multilateral interactions in both fixed and flexible networks. We believe that

this research can lead to a more general characterization of network allocation rules.
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