
Munich Personal RePEc Archive

Thinking categorically about others: A

conjectural equilibrium approach

Azrieli, Yaron

Tel-Aviv University

14 May 2007

Online at https://mpra.ub.uni-muenchen.de/3843/

MPRA Paper No. 3843, posted 05 Jul 2007 UTC



May 14, 2007

THINKING CATEGORICALLY ABOUT OTHERS: A

CONJECTURAL EQUILIBRIUM APPROACH

YARON AZRIELI†

Abstract. Inspired by the social psychology literature, we study the implications
of categorical thinking on decision making in the context of a large normal form
game. Every agent has a categorization (partition) of her opponents and can only
observe the average behavior in each category. A strategy profile is a Conjectural
Categorical Equilibrium (CCE) with respect to a given categorization profile if
every player’s strategy is a best response to some consistent conjecture about the
strategies of her opponents.

We show that, for a wide family of games and for a particular categorization
profile, every CCE becomes almost Nash as the number of players grows. An
equivalence of CCE and Nash equilibrium is achieved in the settings of a non-
atomic game. This highlights the advantage of categorization as a simplifying
mechanism in complex environments. With much less information in their hands
agents behave as if they see the full picture. Some properties of CCE when players
categorize ‘non-optimally’ are also considered.

JEL classification: C72, D81, D84.

Keywords: Categorization, Conjectural equilibrium, Large games.

†This work is part of a Ph.D. dissertation written at the School of Mathematical Sciences of
Tel-Aviv University under the supervision of Prof. Ehud Lehrer. I am grateful to E. Lehrer as well
as to P. Jehiel and E. Kalai for their comments.
School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel. e-mail:
azrieliy@post.tau.ac.il .

1



1. Introduction

It is commonly accepted in the psychological literature1 that people represent the

world around them with the aid of categories. In particular, information about other

people is often being processed with the aid of social categories. As Macrae and

Bodenhausen (2000) write

“ Given basic cognitive limitations and a challenging stimulus world,

perceivers need some way to simplify and structure the person percep-

tion process. This they achieve through the activation and implemen-

tation of categorical thinking. Rather than considering individuals in

terms of their unique constellations and proclivities, perceivers prefer

instead to construe them on the basis of the social categories (e.g.

race, gender, age) to which they belong. . .”

The purpose of the current paper is to study some issues related to categorical

thinking in the context of decision making. Specifically, our concern here is with

equilibrium behavior of agents in a non-cooperative normal form game. Equilibrium

is viewed here as a steady state of a recurring interaction between agents with no

strategic links among the repetitions. As such, it is highly sensitive to the information

(and the way its being processed) that every agent has about the actions of her

opponents. It is a key assumption of this paper that categorical thinking affects

exactly this information.

To study the implications of categorization in such scenarios we define a solution

concept called Conjectural Categorical Equilibrium (CCE). This is a special case of

Battigalli and Guaitoli’s (1988) conjectural equilibrium. Each player i is equipped

with an exogenously given partition of her opponents. This is the categorization

that i uses in order to facilitate the process of information about the behavior of

her opponents. As a consequence, i is unable to observe the actions taken by each

individual player. Instead, she can only tell what is the average behavior within

each category in her partition. Thus, when deciding what action to choose, player

i is facing uncertainty as to the actual choices of her opponents. In this case it is

natural to assume that i has some conjecture (which conforms with her information)

about the profile of actions that her opponents actually play, and that she plays a

best response to her conjecture. When all players behave in this way the resulting

strategy profile is a CCE.

When an agent is categorizing her opponents there is a risk that it will lead her to

make sub-optimal decisions and to lose utility. Therefore, in order for categorization

to be efficient it should have the property that the loss of information incurred by

the categorical representation of other agents will not result in choosing the wrong

action. In other words, each agent wants to choose the action that she would choose

1See Section 7 for references.

2



had she known the entire strategy profile of her opponents. If the categorization of

every player has this property then every CCE is also a Nash equilibrium. We call

such a profile of categorizations sufficient. The main result of the paper concerns the

existence of non-trivial sufficient categorization profiles.

Our solution concept is plausible only if the number of participating players is

large. We therefore consider families of games with an increasing number of players.

The result we obtain is asymptotic. It is shown that, with appropriate anonymity

and continuity assumptions on the payoff functions, certain categorization profiles

become close to being sufficient as the number of players grows to infinity. These

categorization profiles are those in which each player lumps together players that

have symmetric influence on her payoffs.

The aforementioned result can be interpreted in several ways. First, it highlights

the advantage of categorization as a simplifying tool in complex environments. With

much less information in their hands agents behave as if they see the full picture. The

second interpretation is of normative nature. The result can be seen as a recommen-

dation of how one should categorize others when involved in a game-like situation.

Finally, the result also increases the plausibility of Nash equilibrium in large games

since it shows that an equilibrium must emerge even if players have limited informa-

tion about the strategies of their opponents.

The model we use in order to obtain the asymptotic result is adopted from Kalai

(2004). There is a finite universal set of actions S. Γ(S) is a family of normal form

games such that for every game G in Γ(S) and for every player i in G the set of

(pure) strategies available to i is some subset of S. With a fixed family Γ(S) in hand,

one can very naturally define notions of uniform continuity and anonymity in Γ(S).

These are the key assumptions needed in order to obtain the asymptotic existence of

a sufficient categorization profile. For a detailed discussion of the relation between

our assumptions and results and those of Kalai (2004, 2005) see Section 7.

As noted before, CCE is appealing when the number of players is large. It is

therefore natural to study it also in the setting of a game with a continuum of players.

Working in the model of Schmeidler (1973), we define CCE for a non-atomic game

similarly to its definition in the finite case. A simple sufficient condition for the

existence of sufficient categorization profile is provided. We then show that this

condition holds for a dense set of non-atomic games. Thus, every non-atomic game

can be approximated by a game in which a sufficient categorization profile exists.

The results described so far are of ‘positive’ nature. They emphasize the advan-

tages of categorization as an information processing mechanism. But these advan-

tages may cease to exist if an agent makes use of the ‘wrong’ categorization. To

illustrate this point we analyze two examples of non-atomic games in which agents

categorize their opponents not as one may think they should. In the first example it

is shown that this can lead to a CCE in which all the players get the worst possible
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payoff. In the second example there is a CCE which yield a higher total payoff for the

society than the Nash equilibrium of the game (though the payoffs to some players

is lower than their equilibrium payoffs).

The paper is organized as follows. In Section 2 we illustrate our solution concept by

means of an example. CCE for both finite normal form games and non-atomic games

is formally defined in Section 3. Section 4 contains the main results of the paper

about sufficient categorization profiles. The influence that different categorizations

may have on social efficiency is exemplified in Section 5. Some remarks about the

model are in Section 6. These include a possible refinement of CCE and a result

regarding CCE as a purifying device. Related literature is discussed in Section 7.

All the proofs are in Section 8.

2. Choosing university: A motivating example

Every year, a large population of school graduates is required to make decisions

regarding higher education issues. For concreteness, let us focus on the set of all

graduates who have decided to apply to a medical school and are facing the problem

of which university to apply to.

There may be many factors influencing the preferences of a candidate. Some of

these factors, such as the university’s location and reputation, are independent of the

choices of other candidates. But other factors are directly affected by the decisions

made by other candidates. For instance, the probability of being accepted depends

on the profile of other candidates applying to the same university. Also, the financial

support that a university provides to a student may be relative to her socioeconomic

background in comparison to the socioeconomic background of other students. Every

candidate may also have preferences regarding the characteristics of her future fellow

students.

The situation can, therefore, be described as a game where candidates are the

players and universities are the (common) set of actions available to each player.

Notice that a similar game occurs every year but there are no strategic links among

the repetitions since every time the set of players is new.

An equilibrium of this recurring game is a list specifying the university that each

candidate applies to (or a probability distribution over the set of universities) such

that no candidate would like to revise her choice had she known the choices of all

other candidates. But the assumption that a candidate knows the decision of any

other candidate seems unreasonable in this case. A more realistic assumption is

that every candidate has only partial information about the choices of others2. This

2We emphasize that the cause for the lack of information is not necessarily that this information
is unavailable. It may well be that a candidate uses a simplified representation of the situation
due to its complexity. It is not important for our purposes whether the candidate doesn’t have the
information or chooses not to use it.
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information is based on the results of games from previous years. For instance, by

visiting a certain university a candidate can get an impression of some characteristics

of the students in this institute. And by looking on statistics of acceptance from

previous years a candidate can learn the universities to which candidates with high

school grades apply.

The CCE solution concept assumes that the information of every candidate about

the decisions of others has a particular structure. Namely, each candidate categorizes

the rest of the candidates according to some subjective criteria and can only tell the

proportion of candidates choosing each university in each category3. For example, if

the categorization of a certain candidate is based solely on sex (a category of males

and a category of females) then this candidate will only know the proportions of

the males and of the females which applied to each university. If another candidate

categorizes according to school grades (say ‘low’, ‘average’ and ‘high’ categories) then

her information will be the distribution of applications among the various universities

in each of these 3 sets of candidates. A third candidate may categorize according to

both criteria, thus having 6 different categories.

Since the information of a candidate is not complete she can only conjecture what

are the true choices of the others. Her conjecture, however, must be consistent with

the information she has. If every candidate plays a best response to some consistent

conjecture the resulting profile of strategies constitute a CCE. Notice that every

Nash equilibrium of the game is a CCE since the true profile of strategies is always

a consistent conjecture. But there may be many other CCE’s which are not Nash.

However, the main result of this paper shows that in many large games every CCE

is close to being Nash if the players are categorizing ‘correctly’.

3. Definition of CCE

3.1. Finite games. A game G in normal form is defined by a triplet G = (N, {Si}i∈N ,

{ui}i∈N ). N = {1, . . . , n} is the set of players. For each i ∈ N , Si is the finite set

of pure strategies (actions) of player i. Denote by S the product S = ×i∈NSi and

for every player i ∈ N let S−i = ×j 6=iSj . A typical element of S (Si, S−i) will be

denoted by s (si, s−i). ui : S → R is the utility function of player i ∈ N . Each

player i may use a mixed strategy which is a probability distribution over Si, usually

denoted by4 σi. If σ = (σ1, . . . , σn) is a profile of strategies then σ−i denotes the

strategies of players other than i. As usual, ui will also be used to denote expected

utility whenever players use mixed strategies.

3If some candidates play a mixed strategy then the information is only the expected proportion
of each university in each category.

4Thus, for every si ∈ Si, σi(si) is the probability of player i choosing the action si according to
the mixed strategy σi.

5



Assume that every player i ∈ N categorize the rest of the players according to

some criteria. Formally, for every i ∈ N let Ci be a partition of the set N \ {i}.

That is, Ci = {B1, . . . , Bm} where each Bj is a non-empty subset of N \ {i}, j 6= k

implies Bj ∩ Bk = ∅, and ∪m
j=1Bj = N \ {i}. A categorization profile is a vector

C = (C1, . . . , Cn), where each Ci is a partition of N \ {i}. For two categorization

profiles C = (C1, . . . , Cn) and C ′ = (C ′
1, . . . , C

′
n), we say that C is finer than C ′ if5

Ci is finer than C ′
i for every i ∈ N .

Assume that there is a finite universal set of actions S (not to be confused with

the product set S) such that Si ⊆ S for every i ∈ N . Every profile of (possibly

mixed) strategies6 σ = (σ1, . . . , σn) ∈ ×i∈N∆(Si) and a non-empty set of players

B ⊆ N induce a probability distribution over S, denoted σB, which is defined by7

σB(s) = 1
|B|

∑

i∈B σi(s) for every s ∈ S. Thus, σB(s) is the expected proportion of

players choosing s in the set B according to the profile of strategies {σi}i∈B.

Given a player i ∈ N , a categorization Ci of N \ {i} and a profile of strategies

σ = (σ1, . . . , σn), let FCi
(σ−i) = {τ−i : τB

−i = σB
−i for every B ∈ Ci} be the set of

all strategy profiles of players other than i which induce the same distribution over

S like σ in every set B ∈ Ci. Elements of FCi
(σ−i) are called consistent conjectures

of player i when his opponents play according to σ−i.

Definition 1. σ = (σ1, . . . , σn) is a Conjectural Categorical Equilibrium (CCE)

w.r.t. the categorization profile C = (C1, . . . , Cn) if, for every i ∈ N , there exists a

profile of strategies τ−i ∈ FCi
(σ−i) such that σi is a best response to τ−i.

Assuming that a categorization profile is exogenously given, a profile of strate-

gies constitutes a CCE (w.r.t. the given categorization profile), if every player best

responds to some conjecture about the strategies of the others. However, the con-

jecture of every player must be consistent with what she knows about the strategies

of others, i.e., within the set FCi
(σ−i).

The set of all CCE in a game G w.r.t. a given categorization profile C is denoted

by CCEG(C). NEG is the set of Nash equilibria of the game G. The following

observation is simple but important (the proof is omitted).

Lemma 1. For every game G,

(i) If C refines C ′ then CCEG(C) ⊆ CCEG(C ′).

(ii) If C is the finest categorization profile in G (every cell of every categorization

contains only one player) then CCEG(C) = NEG.

Corollary 1. Every Nash equilibrium is a CCE w.r.t. any categorization profile.

5For two partitions P and P ′ of the same set, P is finer than P ′ (or equivalently, P ′ is coarser
than P ) if every cell of P ′ is a union of cells of P .

6If X is a finite set then ∆(X) denotes the family of all probability measures over X.
7σi(s) = 0 whenever s ∈ S \ Si.
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3.2. A continuum of players. By its nature, the concept of CCE is more plausible

when the number of players is large. It is therefore natural to study this concept

in the environment of a non-atomic game. As we shall see below, working in the

limit with a continuum of players removes the need for many of the technical details

involved in the finite model. As a consequence the results become sharper and clearer.

We follow the model and notation of Schmeidler (1973)8. The set of players is

identified with the T = [0, 1] interval equipped with the Lebesgue measure λ. There

are n pure strategies, each of them represented by a vector ei from the standard basis

of R
n. The set of possible mixed strategies of every player is9 P = conv({e1, . . . , en}).

A T -strategy is (the equivalence class of) a measurable function x̂ from T to P ,

specifying the strategy chosen by each of the players. P̂ is the set of all T -strategies

endowed with the L1 weak topology.

The utility of player t0 ∈ T when she chooses ei and almost every player in T plays

according to the T -strategy x̂ is ui(t0, x̂). Denote u(t0, x̂) = (u1(t0, x̂), . . . , un(t0, x̂)).

The payoff to player t0 when almost every player in T plays according to x̂ (and, of

course, t0 is playing x̂(t0)) is the scalar product x̂(t0) · u(t0, x̂). Thus, a game with a

continuum of players can be identified with the function u : T × P̂ → R
n.

We will only consider games u with the following two properties:

(1) u is continuous on P̂ for every t ∈ T ; and

(2) u is measurable on T for every x̂ ∈ P̂ .

As in the finite case, assume that every player t ∈ T has a finite and measurable

partition Ct of the set T of players10. Define FCt(x̂) = {ŷ ∈ P̂ :
∫

B
x̂dλ =

∫

B
ŷdλ

for every B ∈ Ct}. Again, if ŷ ∈ FCt(x̂) we say that ŷ is a consistent conjecture of

player t when the T -strategy is x̂.

Definition 2. A T -strategy x̂ ∈ P̂ is a Conjectural Categorical Equilibrium (CCE)

w.r.t. the categorization profile C = {Ct}t∈T if, for λ-almost every t ∈ T , there is a

T -strategy ŷt ∈ FCt(x̂) such that x̂(t) · u(t, ŷt) ≥ p · u(t, ŷt) for every p ∈ P .

Similarly to the finite case, we denote by CCEu(C) the set of all CCE in the game

with a continuum of players u w.r.t. the categorization profile C. NEu is the set

of Nash equilibria of u. The following is the analogue of Lemma 1 for the case of a

continuum of players.

Lemma 2. For every game with a continuum of players u,

(i) If C refines C ′ then CCEu(C) ⊆ CCEu(C ′).

(ii) NEu ⊆ CCEu(C) for every categorization profile C in u.

8Since we are interested in games which are not necessarily anonymous, the models of Mas-Colell
(1984) and of Rath (1992) are not suitable here.

9conv(A) denotes the convex hull of the set A.
10In this non-atomic setting it is not important for our purposes whether the partition is of T or

of T \ {t}. We also assume that the measure of each set in the partition is strictly positive.
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4. Sufficient categorization profiles

The current section contains the main results of the paper. It deals with a prop-

erty of categorization profiles which we call sufficiency. A categorization profile is

sufficient if a best response to every consistent conjecture of every player is also a best

response to the actual profile of actions. When an agent categorizes her opponents

according to a sufficient categorization she maintains her utility level with signifi-

cantly less mental effort. Exact and approximated sufficiency are formally defined

as follows.

Definition 3. Fix a game (either finite or non-atomic) and let ε ≥ 0. A categoriza-

tion profile C is ε-sufficient if every CCE w.r.t. C is an ε-Nash equilibrium11 of the

game. A categorization profile is sufficient if it is 0-sufficient.

The rest of this section discusses sufficient conditions for the existence of sufficient

categorization profiles. Of course, the finest categorization (in the finite case) in

which every category consists of only one agent is always sufficient. What we show,

however, is that for a wide family of games there are also non-trivial sufficient cate-

gorization profiles. We start with finite games and then move on to the non-atomic

case.

4.1. Sufficiency in finite games. We start with some notation. Fix a game G.

For a profile of actions s = (s1, . . . , sn) ∈ S and two players j, k ∈ N with Sj = Sk,

let sjk be the profile of actions in which every player other than j and k plays the

same as in s and players j and k exchange their choices. That is, player j plays sk,

player k plays sj and every player l ∈ N \ {j, k} plays sl. For a player i ∈ N , we say

that the players j, k ∈ N \ {i} are exchangeable for i (denoted j ∼i k) if Sj = Sk and

ui(s) = ui(s
jk) for every s ∈ S.

If j ∼i k then player i only cares about the pair of actions taken by players j and

k. She is not concerned with who plays what. Thus, assuming that i observes the

distribution of actions in each cell of her categorization, it is natural for her to put

j and k in the same cell.

It is easy to verify that ∼i is transitive and symmetric over N \ {i}. Let Ĉi be

the partition of N \ {i} to the equivalence classes of ∼i and let Ĉ = (Ĉ1, . . . , Ĉn).

Notice that our notation neglects the dependence of the categorization profile Ĉ on

the game G. This is so since it will always be clear what is the relevant game. Notice

also that Ĉ is endogenous: Nothing besides the description of the game is required

in order to determine it.

If players were only allowed to play pure strategies and, in addition, players would

always conjecture that their opponents play pure strategies then Ĉ would have been

11A strategy profile constitute an ε-Nash equilibrium in a finite game if no player can gain more
than ε by deviating. In the non-atomic case the same should hold almost everywhere.
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sufficient (see Lemma 6 in subsection 8.1). However, since players may randomize

some conditions on the game must be added in order to maintain the sufficiency of

Ĉ. Although restricting the generality of our discussion, these conditions are valid

for a wide family of games. The following definitions will be useful.

Definition 4. The degree of anonymity of a finite game G is the number d(G) =

mini∈N min
B∈Ĉi

|B|.

Definition 5. Fix a finite set of actions S. Let Γ(S) denote a family of normal form

games such that for every game G ∈ Γ(S) and for every i ∈ N , Si ⊆ S.

(a) Γ(S) is uniformly bounded if there is a number M > 0 such that for every

G ∈ Γ(S) and for every utility function ui ∈ G, |ui| ≤ M .

(b) Γ(S) exhibits a diminishing effect of a single player if there is a positive constant

M such that |ui(s) − ui(s
′
j ; s−j)| ≤ M

|N | for every G ∈ Γ(S), every two players

i, j ∈ N , every s ∈ S and every s′j ∈ Sj.

(c) Γ(S) has a logarithmic degree of anonymity if for every r, ε > 0 there is n0 such

that |N |
d(G)e

−rd(G) < ε for every game G ∈ Γ(S) with |N | > n0.

Theorem 1. Consider a family Γ(S) of normal form games which is uniformly

bounded, exhibits a diminishing effect of a single player and has a logarithmic degree

of anonymity. For every ε > 0 there exists n0 such that if G ∈ Γ(S) satisfies |N | > n0

then the categorization profile Ĉ in G is ε-sufficient.

Roughly speaking, Theorem 1 states that, under the conditions of uniform bound-

ness and diminishing effect of a single player, if each of the relations {∼i}i∈N partition

the set of players into a small number of large sets then every CCE w.r.t. this cat-

egorization profile is almost a Nash equilibrium. Note that, by Lemma 1, the same

holds for every CCE w.r.t. any categorization profile finer than Ĉ.

We illustrate the result of Theorem 1 with the following two examples.

Example 1. (Village versus beach) This example is taken from Kalai (2004,

Example 1). The universal set of actions is S = {v (village), b (beach)}. The family

Γ(S) contains games with |N | = 2n (n ∈ N) players of which n are ‘males’ and n

are ‘females’. The payoff of a male is equal to the proportion of females his choice

matches and the payoff of a female is equal to the proportion of males her choice

mismatches.

The categorization Ĉi of every player lumps together players of the same gender.

Indeed, the payoff of every player is not changed if two males (or females) exchange

their choices. Notice that the family Γ(S) is uniformly bounded (by M = 1), exhibits

a diminishing effect of a single player (again, with M = 1) and has a logarithmic

degree of anonymity (since d(G) = |N |−2
2 ). Thus, by Theorem 1, when the number

of players becomes large every CCE w.r.t. the profile Ĉ is almost Nash.
9



As a matter of fact, in this particular example Theorem 1 is redundant and a

stronger result can be achieved by a much simpler argument. The reason is that the

signal that every player observes is the expected proportions of males and females in

each of the locations v and b. But from this signal a player can deduce his/her payoff

for every possible choice. Thus, if a player’s choice is optimal w.r.t. some consistent

conjecture then it is also optimal w.r.t. the true strategy profile of his/her opponents.

It follows that in the village versus beach game, no matter what is the number of

players, Ĉ is sufficient (and not just ε-sufficient).

Example 2. (A generalized village versus beach) Let S be as in the previous

example and fix two Lipschitz and non-decreasing functions f, g : [0, 1] → R. We

consider games of the following form. For each player i ∈ N there is a set F i of

i’s friends and a set Ei of i’s enemies (F i ∩ Ei = ∅)12. The payoff to player i is

f(p) + g(q) where p is the proportion of i’s friends that her choice matches and q is

the proportion of i’s enemies that her choice mismatches.

It is clear that, without any further restrictions on the sets of friends and enemies,

a family Γ(S) of games in the above form will be uniformly bounded and will exhibit

a diminishing effect of a single player. In order to make sure that the family of games

has a logarithmic degree of anonymity we need that, for every i ∈ N , the sets F i

and Ei are not too small in comparison to N . For example, it is sufficient for this

purpose that there is a positive constant ρ such that |Ei|, |F i| ≥ |N |ρ for every i ∈ N

and for every game in the family13.

We emphasize that the simple argument of the previous example is not valid in this

new scenario since consistent conjectures may lead to wrong actions. Indeed, assume

that F 1 = {2, 3, 4}, E1 = ∅, and F i = Ei = ∅ for every player i > 1. Moreover,

assume that f(p) = p3. The following strategy profile is a CCE (w.r.t. Ĉ) which

doesn’t become close to Nash as the number of players increases. Player 1 plays v,

players 2 and 3 play v with probability 3/4 and b with probability 1/4, and player 4

plays b (the strategies of the other players are arbitrary). The true payoff to player 1

in this case is 0·f(1)+9/16·f(2/3)+6/16·f(1/3)+1/16·f(0) = 13/72, whereas if she

would switch to b she will get 0·f(0)+9/16·f(1/3)+6/16·f(2/3)+1/16·f(1) = 14/72.

Thus, the action of player 1 is suboptimal, independently of the number of players

in the game.

To see that the above profile is a CCE notice that one of the consistent conjectures

of player 1 is that players 2,3 play v with probability 1/4 and b with probability 3/4,

and player 4 plays v. If this is the belief that player 1 has then it is optimal for her

12We do not assume that the relations ‘to be a friend of’ and ‘to be an enemy of’ are symmetric
nor transitive.

13In fact, all we need in this particular example is that for every t ∈ IR there is k ∈ N such that
|Ei|, |F i| > t for every i ∈ N and for every game in the family with |N | > k. See subsection 6.4.
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to play v since, by symmetry, this would give her a payoff of 14/72. Switching to b,

however, would reduce the payoff to 13/72.

4.2. Sufficiency in non-atomic games. When there is a continuum of players it

will be meaningless to define a relation ∼t analogous to the relation ∼i in the finite

case. What we need in order to insure that a categorization profile will be sufficient is

that the utility of every player only depends on the distribution of actions in each set

of her partition. No other assumptions should be made and the sufficiency obtained

is not approximated as in the finite case. Thus, we have the following result.

Theorem 2. Let u be a game with a continuum of players. If C = {Ct}t∈T is a

categorization profile such that, for every t ∈ T , u(t, x̂) depends only on {
∫

B
x̂dλ}B∈Ct

then C is sufficient.

Example 3. (A non-atomic generalized village versus beach) The following

example is taken (with cosmetic changes) from Schmeidler (1973)14. The number of

possible actions for every player is n = 2. For i = 1, 2 the utility of player t ∈ T

when she chooses ei and when the T -strategy is x̂ is ui(t, x̂) = −
∫ t

0 x̂idλ, where x̂i is

the i’th component of the vector function x̂. Thus, every player t prefers the action

which was less frequently used by her predecessors - the players [0, t). This situation

can be seen as a continuous analogue of the generalized village versus beach game,

where for every player t ∈ T the set of enemies is [0, t) and the set of friends is

empty.

Notice that the utility of every player t depends only on the integral
∫ t

0 x̂dλ. Thus,

by Theorem 2 the profile of categorizations C = {Ct}t∈T defined by Ct = {[0, t], (t, 1]}

is sufficient.

The question naturally arises is how ‘common’ are games with the property that

the utility of every player depends only on the average behavior of a finite number

of groups of the participating players. Our next aim is to show that the set of games

with this property is dense within the set of all non-atomic games. This implies

that every non-atomic game can be approximated by a game in which a sufficient

categorization profile exists.

We denote by Y the set of all possible (continuous) utility functions of a player.

That is Y = {v : P̂ → IRn | v is continuous}. Since P̂ is a compact we can define

a norm in Y by ‖v‖ = sup
x̂∈P̂

‖v(x̂)‖, where ‖v(x̂)‖ is the Euclidean norm of IRn.

A non-atomic game u specifies the utility function of every player and is therefore

an element of the product space Y T . The set of all non-atomic games is denoted

by U ⊆ Y T (since u should be a measurable function of t not every element of Y T

is a game). Let Ũ ⊆ U be the set of all games u with the property that, for each

14The original purpose of this example was to show that not every non-atomic game has a pure
strategy equilibrium.
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player t, there is a finite and measurable partition Ct of T such that u(t, x̂) = u(t, ŷ)

whenever
∫

B
x̂dλ =

∫

B
ŷdλ for every B ∈ Ct.

Theorem 3. Ũ is dense in U .

5. CCE and social efficiency

The previous section considered the case in which every player categorizes her

opponents “correctly” in the sense that players within each category are anonymous

in the eyes of the categorizer. The aim of the current section is to study some of

the effects that “wrong” categorizations may have. In particular, we are interested

in the social efficiency of profiles of strategies which constitute a CCE in comparison

to the efficiency of profiles which are Nash equilibria.

There may be various reasons why agents categorize others according to payoff

irrelevant criteria (that is, not according to the partitions Ĉ). First, it may be that

the partition Ĉi contains too many elements for player i to handle. If player i has

a limited computational ability then the number of different categories that she can

create in her mind is bounded. Thus, she cannot sort her opponents optimally if the

number of categories she needs to do so is greater than her ability15.

Another reason for sub-optimal categorization may be lack of information. Namely,

player i may not know the effect that the actions taken by player j have on her pay-

off. This naturally brings up the question of how players should categorize in a game

with incomplete information, which we will not discuss here.

As opposed to the previous section we do not pursue here general results. Rather,

we restrict attention to two examples which reflect the implications that categoriza-

tion can have on social efficiency. The first example shows how CCE may cause all

the players to lose utility in comparison to their equilibrium payoffs (thus decreasing

the social efficiency of the strategy profile). In the second example it is shown that

a CCE may be more socially efficient than any Nash equilibrium. Both examples

are of non-atomic congestion games16 and can also be seen as special cases of the

(generalized non-atomic) village versus beach game.

Definition 6. Let u be a non-atomic game. The social efficiency of a strategy profile

x̂ ∈ P̂ is eff(x̂) =
∫

T
x̂(t)u(t, x̂)dλ(t).

Example 4. Consider the following non-atomic game with 2 possible actions (n =

2). If t ∈ [0, 1
2) then u1(t, x̂) =

∫

1

2

0 x̂2dλ and u2(t, x̂) = 1
2 −u1(t, x̂). For t ∈ [12 , 1] the

utility function is u1(t, x̂) =
∫ 1

1

2

x̂2dλ and u2(t, x̂) = 1
2 − u1(t, x̂). We call the players

in the interval [0, 1
2) type 1 players and those in [12 , 1] are called type 2 players.

15Recall that one of the reasons for the need to categorize in the first place is to save mental
resources. The issue of “optimal” categorization when there is a bound on the number of categories
seems to be of self interest.

16For a general study of social optimality in non-atomic congestion games see Milchtaich (2004).
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Thus, each player is trying to avoid players with his own type and is careless about

the choices of players from the other type.

Since payoffs depend only on the distribution of actions within each type of players

we may w.l.o.g. restrict attention to pure strategies. Denote by p1(x̂) = λ({t ∈

[0, 1
2) : x̂(t) = e1}) and p2(x̂) = λ({t ∈ [12 , 1] : x̂(t) = e1}) the proportions

of players of types 1 and 2 respectively who choose the first action according to

x̂. Then the social efficiency of a T -strategy x̂ is eff(x̂) = 2p1(x̂)(1
2 − p1(x̂)) +

2p2(x̂)(1
2 − p2(x̂)). Notice that, in any equilibrium x̂, it must be that p1(x̂) = 1

4 and

p2(x̂) = 1
4 . Therefore, the social efficiency in every equilibrium is 1

4 . Moreover, every

equilibrium is socially optimal in the sense that there is no profile of strategies x̂

with eff(x̂) > 1
4 .

By Theorem 2 the categorization profile defined by Ct = {[0, 1
2), [12 , 1]} for every

t ∈ T , as well as any finer categorization profile, is sufficient. However, assume

that players categorize their opponents differently and that the categorization of all

the players is the same. For instance, this corresponds to the case where players

are categorizing according to some publicly observed property (such as gender or

skin color). For simplicity we restrict attention to the case in which the (common)

categorization has only two elements (say, M=Males and F=Females) each of which

have a measure of 1
2 .

Let α = λ(M ∩ [0, 1
2)) be the measure of the set of type 1 males, and let g(α) =

min {eff(x̂) ; x̂ ∈ CEu({M, F})} be the lowest social efficiency of a CCE17. We have

Proposition 1.

g(α) =







1
4 − 16α2 0 ≤ α ≤ 1

8
0 1

8 ≤ α ≤ 3
8

1
4 − 16(1

2 − α)2 3
8 ≤ α ≤ 1

2

Specifically, if the payoff relevant partition (type 1 versus type 2) and the actual

categorization (males versus females) are independent (α = 1
4) or not “too depen-

dent” (1
8 ≤ α ≤ 3

8) then there exists a CCE in which all the players get the worst

possible payoff. As α approaches 0 or 1
2 the social efficiency of any CCE increases to

the optimal level.

Example 5. Consider the following non-atomic game with 2 possible actions (n =

2). If t ∈ [0, 3
4) then u1(t, x̂) = 1

4 +
∫

3

4

0 x̂2dλ + 2
∫ 1

3

4

x̂2dλ and u2(t, x̂) =
∫

3

4

0 x̂1dλ +

2
∫ 1

3

4

x̂1dλ. For t ∈ [34 , 1] the utility function is u1(t, x̂) = 2
∫

3

4

0 x̂2dλ +
∫ 1

3

4

x̂2dλ and

u2(t, x̂) = 1 + 2
∫

3

4

0 x̂1dλ +
∫ 1

3

4

x̂1dλ. Players in the interval [0, 3
4) are called type 1

players and those in [34 , 1) type 2 players. The payoff to players of each type equals

the proportion of players of their own type that their choice mismatches plus twice

17One can convince herself that g indeed depends only on α and not on the choice of the sets M

and F .
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the proportion of players of the other type that their choice mismatches. In addition,

players of type 1 get 1
4 if they choose the first action and players of type 2 get 1 if

they choose the second action.

As in the previous example, we restrict attention to pure strategy profiles and

denote p1(x̂) = λ({t ∈ [0, 3
4) : x̂(t) = e1}) and p2(x̂) = λ({t ∈ [34 , 1] : x̂(t) = e1})

the proportions of players of types 1 and 2 respectively who choose the first action

according to x̂. the efficiency of a T -strategy x̂ is then given by eff(x̂) = −2p1(x̂)2−

2p2(x̂)2 − 8p1(x̂)p2(x̂) + 11
4 p1(x̂) + 10

4 p2(x̂) + 1
4 . It is not hard to verify that there is

a unique equilibrium in this game. Namely, all type 1 players choose the first action

(p1(x̂) = 3/4) while all type 2 players choose the other option (p2(x̂) = 0). The

social efficiency of the equilibrium strategy is equal to 19
16 = 1.1875.

However, assume that the categorization of all the players is trivial. That is,

Ct = {T} for all t ∈ T . In this case there is a CCE which is more efficient than the

Nash equilibrium. Indeed, it is a simple exercise to check that the set of CCE in this

case is {x̂ : 1
2 ≤ p1(x̂) ≤ 3

4 , p2(x̂) = 0}. Taking x̂ to be a profile with p1(x̂) = 11
16

and p2(x̂) = 0 gives a CCE with social efficiency of 153
128

∼= 1.1953. Moreover, such a

profile is socially optimal.

6. Discussion

6.1. Simple conjectures: A refinement. In a CCE the conjecture of an agent

is limited only by the signal she observed (and by the restriction that agents play

independently of each other). One may want to restrict the belief that an agent can

have even more by requiring that it will be simple in some sense18. By so doing, a

refinement of CCE can be obtained.

Among all the possible conjectures of a player there is one which can quite naturally

be considered as the simplest. Namely, the conjecture in which all players in each

cell of her partition are playing the same strategy. A player holding this belief can

be seen as having a prototypical agent for each set in her partition. All the players in

each set are playing the same as their representing prototype. The common strategy

in each cell is then uniquely determined by the signal the player observed.

We would like to make this last idea formal both in finite games and in games

with a continuum of players. First, in the finite model, let fCi
(σ−i) ∈ FCi

(σ−i) be

the (unique) strategies vector of players other than i in which σj = σk whenever j

and k are in the same cell of the partition Ci. The refinement of CCE, which we

call prototypical equilibrium requires that every player i plays optimally against the

strategy profile fCi
(σ−i). Formally,

18This idea is certainly not new. Eliaz (2003) and Spiegler (2002 and 2004) are examples of
papers in which the solution concept takes into account the complexity of the belief of an agent
about what others will do.
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Definition 7. σ = (σ1, . . . , σn) is a prototypical equilibrium w.r.t. the categorization

profile C = (C1, . . . , Cn) if, for every i ∈ N , σi is a best response to fCi
(σ−i).

The definition in the non-atomic setting is similar. First, for a partition R of

T and a player t ∈ T , R(t) denotes the cell of R which contains t. If x̂ ∈ P̂ is a

T -strategy, let fR(x̂) denote the T -strategy defined by fR(x̂)(t) = 1
λ(R(t))

∫

R(t) x̂dλ.

Notice that always fR(x̂) ∈ FR(x̂).

Definition 8. x̂ ∈ P̂ is a prototypical equilibrium w.r.t. the categorization profile

C = {Ct}t∈T if x̂(t) is a best response to fCt(x̂) for almost every t ∈ T .

We emphasize that a prototypical equilibrium is always a CCE (w.r.t. the same

categorization profile). However, unlike CCE, it may well be that a Nash equilibrium

is not a prototypical equilibrium. Existence of a prototypical equilibrium in every

game (finite or infinite) is guaranteed by a standard fixed point argument.

6.2. Correlated conjectures. The sufficiency result of subsection 4.1 relies heav-

ily on the assumption that a player takes into account only independent profiles of

strategies of her opponents. That is, we rule out the possibility that some player

thinks that other players correlate their strategies, even though this correlated strat-

egy might be consistent with the signal that this player observes. The fact that

correlated conjectures are not allowed enables us to use the power of the laws of

large numbers, which otherwise fail.

To emphasize this point we return to the generalized village versus beach game

(Example 2). Assume that, for some player i ∈ N , F i = N \{i} and Ei = ∅, and that

F j = Ej = ∅ for all other players j. As opposed to Example 2, we do not assume

that the function f is non-decreasing19. Specifically, consider the function f defined

by f(x) = 3x for 0 ≤ x ≤ 1
3 and f(x) = 4

3 − x for 1
3 ≤ x ≤ 1.

If correlated conjectures were allowed then the following profile of strategies would

constitute a CCE w.r.t. the categorization profile Ĉ. Player i plays v with probability

1 and every other player plays v with probability 2
3 and b with probability 1

3 . Indeed,

a consistent (correlated) conjecture of player i is that either all the players play v

(with probability 2
3) or all the players play b (with probability 1

3). For this conjecture

the best response of i is v since 2
3f(1)+ 1

3f(0) > 2
3f(0)+ 1

3f(1). However, this profile

of strategies does not become approximately Nash as the number of players increases.

This is because the payoff to player i will be close to f(2
3) = 2

3 while deviating to b

would result in a payoff close to f(1
3) = 1.

6.3. Pure equilibrium. The fact that Nash equilibrium in pure strategies may fail

to exist is seen by many as a drawback of this solution concept. Even in games

with a continuum of players, a certain degree of anonymity is required in order

19A possible interpretation is that a player wants to be with her friends, but not with too many
of them.
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to insure the existence of a pure equilibrium (see Remarks 2 and 3 in Schmeidler,

1973). The reason that players need to randomize in equilibrium is to hide their

action from their opponents. The same goal can be achieved by using the CCE

solution concept. The fact that an agent cannot predict accurately her opponents

behavior eliminates in some cases the need for randomization in equilibrium. This

phenomenon is demonstrated in the following theorem.

Theorem 4. Let u be a game with a continuum of players, and let C∗ be a partition

of T . Assume that C = {Ct}t∈T is a profile of categorizations such that C∗ is finer

than Ct for every t ∈ T . Then there is a pure CCE w.r.t. C20.

To illustrate the idea consider Example 3. Assume that Ct = {T} for every t ∈ T .

Thus, the signal to every player is just the average behavior of the entire set of

players. The pure T -strategy x̂ defined by x̂(t) = e1 for 0 ≤ t ≤ 1
2 and x̂(t) = e2 for

1
2 < t ≤ 1 is a CCE w.r.t. C = {Ct}t∈T . Indeed, for every t ∈ T , FCt(x̂) contains a

T -strategy for which x̂(t) is a best response.

Finally, we note that the condition that Ct is coarser than some C∗ for all t ∈ T is

necessary for the theorem to hold. This can be seen by considering the categorization

profile Ct = {[0, t], (t, 1]}, t ∈ T in the above example.

6.4. On the degree of anonymity. The number d(G) describes the size of the

smallest set in the partitions Ĉ = {Ĉi}i∈N . The payoff to every player i ∈ N

depends only on the proportion of players playing each action in each of the sets in

Ĉi. Thus, the ratio between d(G) and |N | is, in some sense, a measure of the degree

of anonymity in the game G. If this ratio is large then the payoff function of every

player is relatively robust to opponents exchanging their actions with one another.

In other words, it is less important who plays what.

In order for Theorem 1 to hold, the games in the family Γ(S) should have a

sufficient degree of anonymity. The formulation of this is provided by Definition 5

(c). The reason that we call the required degree of anonymity logarithmic is that it

only requires that ln |N | = o(d(G)) uniformly in the family Γ(S).

Reading the proof of Theorem 1, one can see that the logarithmic degree of

anonymity can be replaced by the following two conditions combined. The first

is that21 d(G) → ∞ as |N | → ∞ (with no specification of the rate of convergence).

The second is that |Ĉi| ≤ M for some constant M > 0 for every i ∈ N and for every

G ∈ Γ(S). It is important to note that these conditions do not imply and are not

implied by the logarithmic degree of anonymity condition.

20Reading the proof, one can see that existence of a pure prototypical equilibrium w.r.t. C is also
guaranteed under the conditions of the theorem.

21Formally, for every k there is n0 = n0(k) such that d(G) > k for every game G ∈ Γ(S) with
|N | > n0.
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6.5. Self categorization. Throughout the discussion of finite games the partition

of player i is of the set N \{i}. Thus, i doesn’t include herself in any of the groups of

her categorization. The reason for this modeling choice is the common assumption

that every agent knows the action he plays. Inserting i into one of the cells of her

partition Ci (say B) can create a situation in which i’s conjecture (about what the

players in B are playing) is consistent with her signal (the expected behavior within

B) but not with the action which she actually plays. Leaving i out of her own

partition prevents such an awkward situation.

It should be noted, however, that individuals do not exclude themselves from their

categorical perception of the society. In fact, self categorization and identity are

among the most studied subjects in social psychology (for references see Ellemers et

al., 2002). The social categories to which one belongs and the way these categories are

seen by the society can have significant implications on one’s choices. This important

issue is not addressed by the current paper.

7. Related literature

Our main result (Theorem 1) is inspired by the works of Kalai (2004, 2005) on the

robustness of equilibria in large games. There, it is shown that when the number of

players is large Nash equilibria of a wide family of games is immune to many modifi-

cations of the game. These modifications include various extensive form versions of

the game such as sequential play (instead of simultaneous play) and versions in which

players can revise their initial choices. The importance of such results is that they

help to overcome difficulties in the modeling of real-life situations when the modeler

has missing details. Since in general it is impossible to construct an extensive version

of a game in which Nash equilibria corresponds to CCE of the original game, the

results of Kalai do not imply ours.

It is interesting to compare our model and assumptions to those of Kalai. A

first difference is that we study only complete information games while Kalai allows

players to be of several types (though a key assumption in his paper is that types

are drawn independently from some universal finite set). Another difference is in

the anonymity and continuity assumptions used. In Kalai’s paper the payoff to a

player depends on his own type and action and on the empirical distribution of type-

action characters of the other players. This implies that, with probability 1, the

categorization Ĉi will be the same for all the players22. In the current paper ‘types’

of players are subjective in the sense that the categorization Ĉi is likely to depend

on i. Moreover, the number of different ‘types’ (elements of the categorization Ĉi) is

22More accurately, for every two players i, j the partitions Ĉi excluding player j and Ĉj excluding
player i will be identical. Notice, however, that when different profiles of types are realized this
common categorization may very well change.
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not bounded and can grow to infinity as |N | grows to infinity (but not too fast since

logarithmic degree of anonymity must be maintained)23.

The condition of diminishing effect of a single player (Definition 5 (b)) is slightly

different than the uniform equicontinuity condition of Kalai (2004, Definition 3).

None of them implies the other. Uniform equicontinuity implies semi-anonymity in

the sense of Kalai (2004, Definition 2) which will make our analysis trivial. But

the diminishing effect condition requires that the change in payoff when one player

change his action will be inversely proportional to the number of players in the game.

This property is not implied by uniform equicontinuity.

The concept of Nash equilibrium in normal form games with a continuum of players

is originated in the work of Schmeidler (1973). The main result there is the existence

of a pure equilibrium when the game is anonymous. Similar results in different

models were obtained by Mas-Colell (1984) and by Rath (1992). Theorem 4 shows

that CCE can in some cases eliminate the need for randomization even if the game

is not anonymous. A comprehensive survey of the literature about games with a

continuum of players can be found in Ali Khan and Sun (2002).

CCE is a special case of Battigalli and Guaitoli’s (1988) Conjectural Equilibrium

(CE). Therefore, this paper can be seen as contributing to the literature originates

in the works of Bernheim (1984) and Pearce (1984)24, who defined the concept of

rationalizability. Rubinstein and Wolinsky (1994) generalized rationalizability to the

case where each agent observes some exogenously defined signal, which is a function

of the actions taken by the agents. A profile of actions is a Rationalizable Conjectural

Equilibrium (RCE) if every player’s action is optimal w.r.t. some consistent conjec-

ture about the actions of her opponents. A consistent conjecture is one that can’t

be contradicted by the realized signal that the agent observed when combined with

common knowledge of rationality. When the signal to every player contains only her

own action the RCE concept boils down to rationalizability, while when the signal to

every player is the entire profile of actions the RCE is the same as Nash equilibrium.

CE of Battigalli and Guaitoli (1988) is a weaker solution concept than RCE, since

the common knowledge of rationality assumption is removed. Thus, with the same

signal functions, a profile of strategies may be a CE but not an RCE.

One may ask why we use CE and not RCE as our solution concept. Two reasons

justify this choice. The first is that the games we analyze have many players. It

is natural to assume that in this case players do not “get into the head” of their

opponents and draw conclusions which change their beliefs, simply because it is too

23As noted in subsection 6.4, if the size of the partitions Ĉi is uniformly bounded in Γ(S) then
logarithmic degree of anonymity can be replaced by a weaker condition.

24Bernheim’s paper is more relevant to the current work since it highlights normal form games.
Pearce, on the other hand, emphasizes extensive form games.
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complicated to do so. Second, every RCE is also a CE. Thus, our main results

wouldn’t change had we define CCE using RCE and not CE.

Each one of these solution concepts is weaker than Nash equilibrium. In the final

section of their paper Rubinstein and Wolinsky (1994) suggest that the plausibility

of Nash equilibrium increases when every RCE is also Nash. They write

“. . . In games with this property the Nash equilibrium concept is

more compelling, because in a sense the equilibrium requires less in-

formation on the part of the players. It may therefore be of interest

to identify conditions under which, for some natural signal function

such as one’s own payoff, RCE and Nash equilibria are equivalent.”

Theorems 1 and 2 provide precisely the kind of conditions that Rubinstein and

Wolinsky are talking about. The signal function of a player, however, is not her own

payoff but the expected behavior of groups of her opponents.

Attempts to weaken the assumption that agents predict accurately the actions

of their opponents have been made in settings other than normal form games. For

extensive form games Fudenberg and Levine’s (1993) self-confirming equilibrium is

based on the fact that agents’ beliefs are correct only along the equilibrium path of

play25. In Jehiel’s (2005) analogy-based expectation equilibrium agents bundle nodes

in which other players should move and can only tell what is the average behavior in

every class of nodes. In fact, our prototypical equilibrium is a special case of Jehiel’s

concept. For repeated games, Kalai and Lehrer (1993a, 1993b) introduced the notion

of subjective equilibrium where player’s beliefs are not contradicted by the observed

choices of their opponents.

Some recent papers discuss the implications of categorical thinking for decision

making. Fryer and Jackson (2004) develop a model of how past experiences are

sorted into categories and show that certain biases in decision making emerge from

this process. Pȩski (2006) shows that in symmetric environments categorization is

an optimal way for predicting properties of future instances based on past instances.

Finally, for surveys about categorization in social psychology see Fiske (1998) and

Macrae and Bodenhausen (2000).

8. Proofs

8.1. Proof of Theorem 1. Fix a family of games Γ(S) which is uniformly bounded

(by a constant M > 0), exhibits a diminishing effect of a single player (w.l.o.g. with

the same constant M) and has a logarithmic degree of anonymity.

The proof of the theorem is divided into several lemmas. For the following Lemmas

3-7 and 9 fix a game G = (N, {Si}i∈N , {ui}i∈N ) ∈ Γ(S), a player i ∈ N , a profile of

strategies σ and a positive number δ. Assume that Ĉi = {B1, . . . , Bm}. For every

25See also Dekel et al. (1999).
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j = 1, . . . ,m and for every s ∈ S let

Dδ(Bj , s) =

{

s−i ∈ S−i :

∣

∣

∣

∣

#{l ∈ Bj : sl = s}

|Bj |
− σBj (s)

∣

∣

∣

∣

≥ δ

}

and

Dδ =

m
⋃

j=1

⋃

s∈S

Dδ(Bj , s).

Let Pσ−i
denote the probability measure on S−i induced by the profile of strategies

σ−i.

Lemma 3. Pσ−i
(Dδ(Bj , s)) ≤ 2e−2|Bj |δ

2

For every j = 1, . . . , m and for every s ∈ S.

Proof. For fixed 1 ≤ j ≤ m and s ∈ S consider the sequence of independent random

variables (Xl)l∈Bj
defined by Xl = 1 if player l realized strategy is s and Xl = 0

otherwise. Let X =
∑

l∈Bj
Xl. We have Dδ(Bj , s) =

{∣

∣

∣

X
|Bj |

− σBj (s)
∣

∣

∣
≥ δ

}

where

σBj (s) is the expected value of the variable X
|Bj |

. By a classical bound of Hoeffding

(see for instance Petrov, 1975 chapter III) the probability of this event is not greater

than 2e−2|Bj |δ
2

.

Lemma 4. Pσ−i
(Dδ) ≤ 2|S|me−2d(G)δ2

.

Proof. Using the previous lemma,

Pσ−i
(Dδ) ≤

m
∑

j=1

∑

s∈S

2e−2|Bj |δ
2

= 2|S|
m

∑

j=1

e−2|Bj |δ
2

≤ 2|S|me−2d(G)δ2

.

Lemma 5. If τ−i ∈ F
Ĉi

(σ−i) then |Pσ−i
(Dδ) − Pτ−i

(Dδ)| ≤ 2|S|me−2d(G)δ2

.

Proof. τ−i ∈ F
Ĉi

(σ−i) means that σBj (s) = τBj (s) for every j = 1, . . . , m and for

every s ∈ S. Thus, using Lemma 4 with τ−i instead of σ−i, we have Pτ−i
(Dδ) ≤

2|S|me−2d(G)δ2

. It follows that both Pτ−i
(Dδ) and Pσ−i

(Dδ) are in the interval

[0, 2|S|me−2d(G)δ2

].

Lemma 6. Fix two profiles of actions s, s′ ∈ S. If s−i ∈ F
Ĉi

(s′−i) then ui(s) = ui(s
′).

Proof. Assume that Ĉi = {B1, . . . , Bm}. s−i ∈ F
Ĉi

(s′−i) means that
#{l∈Bj : sl=s}

|Bj |
=

#{l∈Bj : s′
l
=s}

|Bj |
for every s ∈ S and for every j = 1, . . . , m. Thus, for every j =

1, . . . , m, there is a permutation of players’ names in the set Bj which transforms the

restriction of s to Bj to the restriction of s′ to Bj . However, every such permutation

of players in the set Bj can be achieved by a sequence of exchanges of pairs of players.

By the definition of the partition Ĉi, every such exchange doesn’t affect the payoff

of player i. The assertion follows.

Lemma 7. Let s−i, s
′
−i be two action vectors in Dc

δ (the complement of Dδ w.r.t.

S−i). Then |ui(si ; s−i) − ui(si ; s′−i)| ≤ δM for every si ∈ Si.
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Proof. Since both s−i and s′−i are in Dc
δ it follows that |#{l ∈ Bj : sl = s}−#{l ∈

Bj : s′l = s}| ≤ 2δ|Bj | for every j = 1, . . . ,m and for every s ∈ S. Thus, there is a

vector of actions s′′−i ∈ F
Ĉi

(s′−i) such that s′′−i is obtained from s−i by no more than
∑m

j=1 δ|Bj | = δ(|N | − 1) changes in players’ actions. By the previous lemma, we

have that |ui(si ; s−i) − ui(si ; s′−i)| = |ui(si ; s−i) − ui(si ; s′′−i)|. By assumption,

the influence of some player l 6= i changing her action on the utility function ui is no

greater than M
|N | . It follows that |ui(si ; s−i)−ui(si ; s′′−i)| ≤ δ(|N | − 1) M

|N | ≤ δM .

Lemma 8. Let Ω be a finite set, P, Q two probability measures on Ω, X : Ω → R a

random variable and ε > 0. Let A ⊆ Ω be an event such that |P (A) − Q(A)| ≤ ε,

and assume that r ≤ X(ω) ≤ R for every ω ∈ A (r ≤ R are two constants). Then
∣

∣

∑

ω∈A X(ω)(P (ω) − Q(ω))
∣

∣ ≤ R − r + εmax(|r|, |R|).

Proof. Denoting EP (EQ) the expectation operator w.r.t. to the measure P (Q), one

has
∣

∣

∣

∣

∣

∑

ω∈A

X(ω)(P (ω) − Q(ω))

∣

∣

∣

∣

∣

= |P (A)EP (X|A) − Q(A)EQ(X|A)|

≤ |P (A)EP (X|A) − Q(A)EP (X|A)| + |Q(A)EP (X|A) − Q(A)EQ(X|A)|

= |P (A) − Q(A)||EP (X|A)| + Q(A)|EP (X|A) − EQ(X|A)|

≤ ε max(|R|, |r|) + R − r.

Lemma 9. If τ−i ∈ F
Ĉi

(σ−i) then |ui(si ; σ−i)−ui(si ; τ−i)| ≤ δM+6M |S|me−2d(G)δ2

for every si ∈ Si.

Proof.

|ui(si ; σ−i) − ui(si ; τ−i)| ≤

∣

∣

∣

∣

∣

∣

∑

s−i∈Dδ

ui(si ; s−i)
(

Pσ−i
(s−i) − Pτ−i

(s−i)
)

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∑

s−i∈Dc
δ

ui(si ; s−i)
(

Pσ−i
(s−i) − Pτ−i

(s−i)
)

∣

∣

∣

∣

∣

∣

.

The first sum can be estimated by
∣

∣

∣

∣

∣

∣

∑

s−i∈Dδ

ui(si ; s−i)
(

Pσ−i
(s−i) − Pτ−i

(s−i)
)

∣

∣

∣

∣

∣

∣

≤ M ·
∑

s−i∈Dδ

|Pσ−i
(s−i) − Pτ−i

(s−i)| ≤ M ·
(

Pσ−i
(Dδ) + Pτ−i

(Dδ)
)

≤ M · 4|S||Ĉi|e
−2d(G)δ2

,

where the first inequality is due to the fact that Γ(S) is uniformly bounded by M ,

and the third inequality is by Lemmas 4 and 5. In order to estimate the second
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sum we use Lemma 8 with Ω = S−i, P = Pσ−i
, Q = Pτ−i

, X(ω) = ui(si ; ω) and

ε = 2|S|me−2d(G)δ2

. Notice that, by Lemma 7, the utility ui(si ; ·) is bounded in an

interval of length not larger than δM . Thus,
∣

∣

∣

∣

∣

∣

∑

s−i∈Dc
δ

ui(si ; s−i)
(

Pσ−i
(s−i) − Pτ−i

(s−i)
)

∣

∣

∣

∣

∣

∣

≤ δM + M · 2|S|me−2d(G)δ2

.

Summing up the two inequalities gives the desired bound.

We are now in a position to prove Theorem 1. It should be shown that, for a given

ε > 0, if G ∈ Γ(S) has a large enough number of players then every CCE in G w.r.t.

the categorization profile Ĉ is an ε-Nash equilibrium. Assume that σ is a CCE w.r.t.

Ĉ. Then, for every i ∈ N , there is a strategy profile τ−i ∈ F
Ĉi

(σ−i) such that σi is a

best response to τ−i.

Notice that |Ĉi| ≤
|N |
d(G) for every i ∈ N . Fix 0 < δ < ε

4M
and then take n0 large

enough so that 6M |S| |N |
d(G)e

−2d(G)δ2

< ε
4 for any game G ∈ Γ(S) with |N | > n0.

This is possible since Γ(S) has a logarithmic degree of anonymity. By Lemma 9,

|ui(si ; σ−i) − ui(si ; τ−i)| < ε
2 for any G ∈ Γ(S) with |N | > n0. Finally, since σi is

a best response to τ−i, we have for every i ∈ N and si ∈ Si

ui(si ; σ−i) ≤ ui(si ; τ−i) +
ε

2
≤ ui(σi ; τ−i) +

ε

2
≤ ui(σi ; σ−i) + ε.

8.2. Proof of Theorem 2. Assume that x̂ ∈ P̂ is a CCE w.r.t. a categorization

profile C = {Ct}t∈T which satisfy the conditions of the theorem. For every player

t ∈ T , the payoff function u(t, ·) is constant on the set FCt(x̂). Also, it is clear that

x̂ ∈ FCt(x̂). Thus, since for almost every t ∈ T x̂(t) is a best response to some

ŷ ∈ FCt(x̂), it follows that, for almost every t ∈ T , x̂(t) is also a best response to x̂.

This means that x̂ is also a Nash equilibrium.

8.3. Proof of Theorem 3. Let Πt : Y T → Y be the projection function on the

coordinate t. Since we work with the product topology in Y T it will be sufficient to

show that Πt(Ũ) is dense in Y for every t ∈ T . Since Πt(Ũ) is independent of t we

denote A = Πt(Ũ).

Recall that A is the set of all continuous functions v : P̂ → IRn with the property

that there exists a finite measurable partition R of T such that v(x̂) = v(ŷ) whenever
∫

B
x̂dλ =

∫

B
ŷdλ for every B ∈ R. In order to prove that A is dense in Y it is

sufficient to do so for each one of the n coordinates of v separately. Thus, with abuse

of notation, we let Y = {v : P̂ → IR | v is continuous} and A ⊆ Y is the class of

(real valued) functions which depend only on the integral of the T -strategy over a

finite number of sets in T .

Claim 1. A is a vector subspace of Y .
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Proof. Let v1, v2 ∈ A. Then there are finite partitions R1, R2 of T such that v1

depends only on
{∫

B
x̂dλ

}

B∈R1

and v2 depends only on
{∫

B
x̂dλ

}

B∈R2

. let R be a

finite partition which is finer than both R1 and R2. If
∫

B
x̂dλ =

∫

B
ŷdλ for every

B ∈ R then
∫

B
x̂dλ =

∫

B
ŷdλ for every B ∈ R1 ∪ R2. Thus, for such x̂, ŷ ∈ P̂ ,

v1(x̂) + v2(x̂) = v1(ŷ) + v2(ŷ). This implies that v1 + v2 ∈ A. Finally, if α ∈ IR then

obviously αv1 ∈ A

Claim 2. A is a subalgebra of (the algebra) Y . Moreover, A contains the constant

functions.

Proof. To prove that if v1, v2 ∈ A then v1 · v2 ∈ A repeat the argument of Claim 1.

Also, it is clear that every constant function is in A.

Claim 3. A separates points of P̂ . That is, for every x̂ 6= ŷ ∈ P̂ there is v ∈ A such

that v(x̂) 6= v(ŷ).

Proof. Fix x̂ 6= ŷ ∈ P̂ . For i = 1, . . . , n define the sets B1
i = {t ∈ T : x̂i(t) > ŷi(t)}

and B2
i = {t ∈ T : x̂i(t) < ŷi(t)}. x̂ 6= ŷ implies that there is 1 ≤ i ≤ n such that

λ(B1
i ) > 0 or λ(B2

i ) > 0. Assume w.l.o.g. that λ(B1
1) > 0. Consider the function

v ∈ Y defined by v(ẑ) =
∫

B1

1

ẑ1dλ for every ẑ ∈ P̂ .

First, notice that v ∈ A since it only depends on the integral of the T -strategy

over the set B1
1 . Also, by construction, x̂1(t) > ŷ1(t) for every t ∈ B1

1 . Since B1
1 has

a positive measure it must be that
∫

B1

1

x̂1dλ >
∫

B1

1

ŷ1dλ. Thus, v(x̂) > v(ŷ) and the

claim is proved.

Finally, recall that P̂ is a compact set. By the previous claims the conditions of

the Stone-Weierstrass theorem (see e.g. Ha, 2006, Theorem 5.4.1 in page 398) hold.

Thus, we can conclude that A is dense in Y . This proves the theorem.

8.4. Proof of Proposition 1. First, it is clear that g is symmetric around 1
4 , so

g(α) = g(1
2 − α) for every α ∈ [0, 1

4 ]. It is therefore sufficient to compute g on the

interval [0, 1
4 ].

Fix 1
8 ≤ α ≤ 1

4 and consider the T -strategy where all type 1 players choose e1 and

all type 2 players e2. Obviously, the efficiency of such profile is 0. We claim that

this is a CCE. To see this, let F ′ be a set of type 1 females with measure α, and

let M ′ be a set of type 2 males with measure α. Then the T -strategy Ŷ defined by

Ŷ (t) = e1 for t ∈
(

[0, 1
2) \ (M ∪ F ′)

)

∪ M ′ ∪
(

F ∩ [12 , 1]
)

and Ŷ (t) = e2 otherwise is

a consistent conjecture for every player. The best response for such a belief is e1 for

type 1 players and e2 for type 2 players.

Next, consider the case where 0 ≤ α ≤ 1
8 . Let F ′ be a set of type 1 females with

measure 1
4 + α, and let M ′ be a set of type 2 males with measure 1

4 + α. Define x̂ by

x̂(t) = e1 for t ∈ F ′ ∪
(

M ∩ [0, 1
2)

)

∪
(

[12 , 1] \ (F ∪ M ′)
)

and x̂(t) = e2 otherwise. We

have p1(x̂) = 1
4 + 2α and p2(x̂) = 1

4 − 2α so eff(x̂) = 4(1
4 + 2α)(1

4 − 2α) = 1
4 − 16α2.
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To see that x̂ is a CCE, consider the following T -strategy ŷ. The set M ∩ [0, 1
2)

of type 1 males play e2 and not e1 as in x̂. Instead, a set of measure α of type 2

males who played e2 according to x̂ is switching to e1. Similarly, the set of type 2

females is switching from e2 in x̂ to e1 in ŷ and a set of measure α of type 1 females

is switching from e1 to e2. It is clear that ŷ ∈ FCt(x̂) for every player t. Moreover,

p1(ŷ) = 1
4 and p2(ŷ) = 1

4 so for every player both actions give the same payoff (thus

both are best responses to ŷ).

Finally, notice that the efficiency of a T -strategy x̂ is decreasing in the distance

of p1(x̂) and p2(x̂) from 1
4 . It can therefore be verified that there is no categorial

equilibrium which yield a lower social efficiency.

8.5. Proof of Theorem 4. Before proving the theorem we need the following

lemma.

Lemma 10. For every finite partition R of T the map fR : P̂ → P̂ as defined in

subsection 6.1 is continuous in the L1 weak topology on P̂ .

Proof. Since fR is linear, continuity in the weak topology is equivalent to continuity

in the metric topology (see Dunford and Schwartz, 1988, Theorem 15, page 422).

The latter is guaranteed by the inequality
∫

T
|fR(x̂)−fR(ŷ)|dλ ≤

∫

T
|x̂− ŷ|dλ, which

follows from the fact that fR is the projection to the subspace of T -strategies which

are measurable w.r.t. the partition R.

Fix a game u and a categorization profile C = {Ct}t∈T , with Ct coarser than some

C∗ for every t ∈ T . By Lemma 2, it is sufficient to show that there is a pure CCE

w.r.t. the categorization profile {Ct = C∗}t∈T .

Consider the map fC∗ : P̂ → P̂ as defined in subsection 6.1. By Lemma 10 it

is continuous. It follows that the game ū defined by ū(t, x̂) = u(t, fC∗(x̂)) satisfies

assumptions (1) and (2) of subsection 3.2. Moreover, ū is an anonymous game, so

by Theorem 2 in Schmeidler (1973, see also Remark 2 there) there is a pure Nash

equilibrium in ū.

Denote by x̂ one such pure equilibrium of ū. We claim that x̂ is a prototypical

equilibrium (and therefore a CCE) of the game u. Indeed, for almost every t ∈

T , x̂(t) · ū(t, x̂) ≥ p · ū(t, x̂) for all p ∈ P . For every such t, by definition of ū,

x̂(t) · u(t, fC∗(x̂)) ≥ p · u(t, fC∗(x̂)) for all p ∈ P . This is exactly the definition of a

prototypical equilibrium w.r.t. the categorization profile {Ct = C∗}t∈T .
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