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Abstract

We consider a set of minimal identification conditions for dynamic factor
models. These conditions have economic interpretations, and require fewer
number of restrictions than when putting in a static-factor form. Under these
restrictions, a standard structural vector autoregression (SVAR) with or with-
out measurement errors can be embedded into a dynamic factor model. More
generally, we also consider overidentification restrictions to achieve efficiency.
General linear restrictions, either in the form of known factor loadings or
cross-equation restrictions, are considered. We further consider serially corre-
lated idiosyncratic errors with heterogeneous coefficients. A numerically stable
Bayesian algorithm for the dynamic factor model with general parameter re-
strictions is constructed for estimation and inference. A square-root form of
Kalman filter is shown to improve robustness and accuracy when sampling the
latent factors. Confidence intervals (bands) for the parameters of interest such
as impulse responses are readily computed. Similar identification conditions
are also exploited for multi-level factor models, and they allow us to study the
spill-over effects of the shocks arising from one group to another.
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1 Introduction

Dynamic factor models of high dimension are increasingly used in data rich environ-
ments. This is particularly the case in economics and finance where common shocks
drive the comovements of economic variables. As a result, economists are increas-
ingly relying on these models for policy analysis. Examples include Bernanke et al.
(2005), Stock and Watson (2005), and Kose et al. (2003), among others. This paper
considers identification issues for a general class of dynamic factor models and their
Bayesian estimation.

Two sources of dynamics are considered. One is that the latent factor is dynamic.
An example would be xit = λ′

ift + eit, where ft is a vector autoregressive process.
While ft is dynamic, the relationship between xit and ft is static. The other source of
dynamics is that ft affects xit dynamically, for example, xit = γ′

ift+τ ′
ift−1+eit so that

the lags of ft directly impacts xit. We shall refer to the first example as a static factor
model in spite of ft being dynamic. The second example can be put into a static factor
framework. Let Ft = (f ′

t , f ′
t−1)

′ and λ′
i = (γ′

i, τ ′
i), then xit = λ′

iFt + eit. There exists a
large literature for analyzing static factor models. There are drawbacks by treating
a dynamic factor model as a static one. For example, the number of static factors
is doubled here. To fix the rotational indeterminacy, the number of normalization
restrictions would be (2q)2 = 4q2, quadrupling the number of restrictions that are
actually needed for identification.

We propose a set of simple identification schemes for the dynamic factor models.
These identification restrictions have economic interpretations. They allow a struc-
tural vector autoregression model (SVAR) to be analyzed through the factor analysis
framework, while permitting measurement errors. We then consider the Bayesian es-
timation of dynamic factor models under these identification schemes. The Bayesian
method proposed here has a few desirable features. First, we allow cross-equation
restrictions as well as sign restrictions on the factor loadings, which is not available
in the principal component analysis of factor models as in Stock and Watson (1998)
and Bai and Ng (2002). Second, we employ the Jeffreys priors to account for the lack
of a priori information about model parameters. Third, we combine the structural
restrictions with a square-root form of the Kalman filter to improve the numerical
robustness and accuracy when sampling the latent factors. Fourth, to make random
draws from the posterior of the factor loadings and the latent factors, we provide a
robust algorithm that guarantees the variance of the conditional normal distribution
to be numerically positive definite when it should be.

The Bayesian analysis framework proposed in this paper is able to perform es-
timation and hypothesis testing of large (N, T ) dynamic factor models with rich
dynamic structures in both the measurement equations and the law of motion for
the dynamic factors. We will also consider another source of dynamics, that is, the
idiosyncratic errors are serially correlated. We show how this dynamics is naturally
handled within the Bayesian framework.

Our method is closely related to the factor-augmented vector autoregression
(FAVAR) approach of Bernanke et al. (2005), and the dynamic factor model of Stock
and Watson (2005). The model of Bernanke et al. (2005) features a static factor
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model for the measurement equation plus a VAR specification for the latent factors
and a few observed aggregate macro variables. Stock and Watson (2005) further
consider a setup featuring lags of dynamic factors and serially correlated error terms
in the measurement equation, which in turn implies a high dimensional VAR with a
large number of restrictions on the autoregressive coefficients. Both papers consider
a two-step approach which applies either a direct principal components method or an
iterated principal components method to estimate the static factor space, and then
uses the estimates to obtain information about dynamics of either static factors or
dynamic factors. Bernanke et al. (2005) also consider a Bayesian approach utilizing
the Gibbs sampling method for state-space models. They impose conjugate priors
for model parameters, and derive the posterior under the identifying assumption for
conventional static factor models.

Our method differs from that of Bernanke et al. (2005) or Stock and Watson
(2005) in several important aspects. Most importantly, we consider a minimal set of
identifying restrictions to directly identify the dynamic factors instead of the static
factors or the associated factor space. Secondly, different from most existing liter-
ature, our identifying restrictions allow the dynamic factors to be cross-correlated,
and thus allow the study of impulse response function of one factor to the innovation
of another factor. Thirdly, we develop a Bayesian approach to analyzing dynamic
factor model with general cross-equation restrictions along with sign restrictions on
factor loadings; the Jeffreys priors are considered for the model parameters. Finally,
we also consider the Bayesian estimation of serial correlations in the idiosyncratic
errors, which is important for economic time series. The outcome of the Bayesian
analysis is the posterior distribution of model parameters along with the latent dy-
namic factors. The impulse responses and the associated confidence bands are natural
by-products.

To conduct model comparison so as to determine the number of dynamic factors,
we use the partial Bayes factor, in which the first few observations are used to form a
proper prior distribution for computing the marginal likelihood of the latter sample.
This is in line with O’Hagan (1995)’s fractional Bayes factors or Berger and Pericchi
(1996)’s intrinsic Bayes factors. The Bayesian method proposed in this paper can
also incorporate proper prior distributions so as to derive the conventional Bayes
factors or the marginal likelihood of the data for the purpose of model comparison.

Another related paper is by Del Negro and Otrok (2006), which conducts Bayesian
analysis of dynamic factor models with time-varying factor loadings and stochastic
volatilities. Their main focus is the time-varying feature of the model. The identi-
fying restrictions assume that factors are mutually independent. The measurement
equations are static. Under their identifying assumptions, the factors are separately
identified subject to a sign change. Our identification scheme targets the dynamic
factors themselves instead of the static factors, and the dynamic factors are identi-
fied without independence assumption. The time-varying parameters version of the
dynamic factor model is an important model capable of characterizing the evolution
of business cycles. To fix idea, we do not explore that direction in this paper.

In the literature, the maximum likelihood estimation of dynamic factor models
has been considered by many authors, such as Watson and Engle (1983), Quah and
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Sargent (1993), Jungbacker and Koopman (2008), and Doz et al. (2011). The max-
imization can be implemented through the expectation-maximization (EM) method
as in Doz et al. (2011). The EM method iterates between the expectation step and
the maximization step until convergence so as to achieve the local maximum of the
likelihood function. The generalized least squares estimator for non-dynamic factor
models is studied by Breitung (2011) and Choi (2012).

The Bayesian MCMC approach provides a more complete picture regarding the
sampling distribution of the objective of interest, the outcome of which is the pos-
terior joint distribution of the model parameters and the latent factors. Our focus
is on the analysis of dynamic factor models with structural restrictions, in which
factors are potentially correlated with each other. The existing literature focuses on
estimating a rotation of the underlying factors. The identification conditions in the
context of dynamic factor models has not been well understood in the literature, an
issue to be examined in the next section.

2 Dynamic factor models

We consider a dynamic factor model featuring a dynamic factor representation of the
observables similar to Geweke (1977) and Forni et al. (2000) and a law of motion
for the factors given by a V AR(h) process. Using the same notation as in Bai and
Ng (2007), the model is given by (1) and (2):

Xt = Λ0ft + Λ1ft−1 + · · · + Λsft−s + et (1)

where the q × 1 vector ft is the latent dynamic factor, the N × 1 vector Xt is the
observable at time t, the N × q matrix Λj is the dynamic factor loading for ft−j,
j = 0, 1, ..., s. To fix idea, we first assume that et is i.i.d. N (0, R), and will relax
this assumption later when we consider serially correlated error terms. The dynamic
factor follows a V AR (h) process

ft = Φ1ft−1 + · · · + Φhft−h + εt, (2)

where εt is i.i.d. N (0, Q). We assume that {et}
T
t=1 is independent of {εt}

T
t=1. The

above dynamic factor model has two different aspects of dynamics. First, there are s
lagged factors entering equation (1), representing a dynamic relationship between ft

and the observable Xt. Second, the dynamics of the factors is explicitly parametrized
by a V AR(h) process. This paper emphasizes the dynamics in equation (1), it is
this dynamics that makes a major distinction between dynamic and static factor
analysis. When s = 0 (no lags entering the measurement equations), the model will
be regarded as a static factor model, as is customary in the existing literature, even
though ft is dynamic. The number of dynamic factors is the dimension of ft, i.e., q,
irrespective of s and h.

Model (1) can be put into a static factor form. Let

Λ = (Λ0, Λ1, ..., Λs), Ft = (f ′
t , f ′

t−1, ..., f ′
t−s)

′
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Then
Xt = ΛFt + et. (3)

There are q(s + 1) number of static factors, which is the dimension of Ft. Because of
rotational indeterminacy, factor models, either in its dynamic form or in static form,
are not identifiable without additional restriction. Classical factor analysis (e.g.,
Anderson and Rubin (1956), or Lawley and Maxwell (1971)) focuses on static factor
models. Classical factor analysis assumes a fixed N , and the model is often estimated
by the maximum likelihood method. Under large N , the principal components (PC)
method is often used to estimate (3). The PC method would need to impose q2(s +
1)2 restrictions to uniquely fix the rotational indeterminacy. These restrictions are
discussed by Bai and Ng (2010). Let F = (F1, ..., FT )′. The restrictions in static
factor analysis takes the form

(i) F ′F/T = Ir, where r = q(s + 1), and Λ′Λ is diagonal, or
(ii) F ′F/T = Ir, and the first r × r block of Λ is lower triangular, or
(iii) Ft is unrestricted, and the first r × r block of Λ is an identity matrix.

In each form, there are q2(s + 1)2 restrictions. These restrictions do not necessarily
structurally identify Ft (or ft), but a rotation of Ft. The reason is that these restric-
tions are normalization restrictions, and they may not have economic interpretation
in general. For some special cases, for example, when s = 0, (iii) allows the identi-
fication of ft and Λ. In general, we only estimate rotations of Ft and Λ under the
static factor framework.

The identification method to be introduced requires only q2 restrictions, far fewer
than the static counterpart. We impose restrictions on the innovations εt, instead
of ft. Because ft is a VAR process, the components of ft are mutually correlated,
even when the components of innovations are uncorrelated. So it is appropriate not
to assume ft to have uncorrelated components.

2.1 Identification of the dynamic factor model

It is well know that the dynamic factor model defined in (1) and (2) is not identified
without further restrictions. One can always pre-multiply the dynamic factor ft with
an arbitrary full rank q × q matrix to define a new model. The newly defined model
will be observationally equivalent to the original dynamic factor model. We consider
two types of identifying restrictions and discuss their implications for structural factor
analysis as well as structural VAR analysis. The key identification result is that we
only need q2 restrictions. Let

Λ0 =

[

Λ01

Λ02

]

where Λ01 is q × q. Two different sets of identification restrictions, referred to as
DFM1 and DFM2, are given below.

DFM1: var (εt) = Iq, and the q × q matrix Λ01 is a lower-triangular matrix and
its diagonal elements are all strictly positive.

This is sufficient to identify the dynamic factor model. There are a total of q2

restrictions in DFM1 irrespective of the number of lags s and h in the model. The
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requirement var(εt) = Iq imposes q(q + 1)/2 restrictions and the requirement that
Λ01 is lower triangular imposes q(q − 1)/2 restrictions. The latter restriction says
that the first variable X1t is affected contemporaneously by the first dynamic factor,
and the second variable X2t is affected contemporaneously by the first two dynamic
factors, and so on. In practice, the choice of the first q variables is important.

It is important to recognize that no restrictions are imposed on Λ1, ..., Λs. More-
over, it makes more sense to assume the innovations εt to be mutually uncorrelated
than to assume ft to be mutually uncorrelated. This leaves the autoregressive co-
efficient matrix Φj, j = 1, ..., h in (2) unrestricted, allowing the dynamic factors to
interact with each other.

Under DFM1, we shall say Λ0 is lower triangular for ease of exposition.

Proposition 1. Consider the dynamic factor model as in (1) and (2). Under
DFM1, the dynamic factors ft and the dynamic factor loadings Λj, j ∈ {0, 1, ..., s}
are uniquely identified.

The proof is in Appendix A. Similar to Proposition 1, if εt has an identity covari-
ance matrix and Λj is lower-triangular for some j ∈ {0, 1, ..., s}, then the dynamic
factor model in (1) and (2) is identified up to a sign change. We summarize the
result in Corollary 1.

Corollary 1. Consider the dynamic factor model as in (1) and (2). Assume that
var (εt) = Iq, Λj is a lower-triangular matrix for some j = 0, 1, ..., s, and the diagonal
elements of the first q × q block of Λj are all strictly positive. Then the dynamic
factors ft and the dynamic factor loadings Λj, j ∈ {0, 1, ..., s} are uniquely identified.

Notice that in DFM1, other normalizations on the factor loadings also work, as
long as they imply q(q − 1)/2 non-redundant restrictions. For example, the normal-
ization that Λ′

jΛj being diagonal for some j ∈ {0, 1, ..., s} also works, which is similar
to the normalization in principal component analysis of factor models (see Anderson
(1984), Connor and Korajzcyk (1986), Stock and Watson (2002), Bai and Ng (2002),
Bai (2003), etc.). A variation to DFM1 is that var (εt) is diagonal but Λ01 has 1’s
on the diagonal.

We next consider a different set of identification conditions.

DFM2: The q × q block of Λ01 is an identity matrix, that is,

Λ0 =

[

Iq

∗

]

.

This is also sufficient to identity the factor model. Again, there are q2 restrictions,
and no restrictions are needed for Λ1, ..., Λs. In DFM2, the identifying restrictions
are on the dynamic factor loadings only, which leave the V AR (h) dynamics of ft

completely unrestricted. In DFM2, the innovations to factors εt can be linked to
structural shocks that are implied by economic theory, which allows a structural
VAR representation of the dynamic factors; see Section 7. Both DFM1 and DFM2

6



differ from the conventional practice which restricts the covariance matrix of the
dynamic factors ft or the static factors Ft to be an identity matrix.

Proposition 2. Consider the dynamic factor model as in (1) and (2). Under the
normalization that the upper q × q block of Λ0 is an identity matrix (DFM2), the
dynamic factors ft and the dynamic factor loadings Λj, j ∈ {0, 1, ..., s} are uniquely
identified.

Similar to Proposition 2, if the upper q × q block of Λj is an identity matrix for
some j ∈ {0, 1, ..., s}, then the dynamic factor model in (1) and (2) is identified. We
summarize the result in Corollary 2.

Corollary 2. Consider the dynamic factor model as in (1) and (2). Under the
normalization that the upper q × q block of Λj is an identity matrix for some j ∈
{0, 1, ..., s}, then the dynamic factors ft and the dynamic factor loadings Λj, j ∈
{0, 1, ..., s} are uniquely identified.

Using a state space representation of the factor model, Doz et al. (2011) explicitly
considers the dynamics in factors. Although they consider a vector autoregression in
the factors, the factors considered therein are still “static factors”. Only the current
factors ft enter the measurement equation at time t. Their specification also differs
from Amengual and Watson (2007) in that their shocks to factors have a full rank
covariance matrix. Stock and Watson (2005) considers a more general version of
dynamic factor models. They allow the error terms in the observation equation to
be serially correlated. Like Doz et al. (2011), their identification is also based on
restricting the static factors, so that the principal component analysis is embedded
into an iterative least squares estimation. Our identification scheme is directly on
the dynamic factors ft, not on the static factors Ft = (f ′

t , f ′
t−1, ..., f ′

t−s)
′.

Our estimation of the model is based on a likelihood approach, using the Bayesian
estimation of a restricted linear state space system. The likelihood estimation is
feasible and computationally efficient due to the fact that q ≪ N . An alternative
likelihood approach is to use the expectation-maximization algorithm, which is not
considered in this paper. We choose the Bayesian approach mainly because it allows
a coherent hypothesis testing, and the Bayes factors allow a simple model comparison
procedure to determine the number of dynamic factors and the number of lags in
model (1) and (2).

3 Implications for multi-level factor models

The dynamic factor model with a multi-level factor structure has been increasingly
applied to study the comovement of economic quantities at different levels (See Gre-
gory and Head (1999), Kose et al. (2003), Crucini et al. (2011), and Moench et
al. (2011), etc.). When researchers confront the model with data, they usually find
ways to impose economic meaning of factors. For example, Kose et al. (2003) and
a number of subsequent papers consider a dynamic factor model with a multi-level
factor structure to characterize the comovement of international business cycles on
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the global level, regional level, and country level, respectively. This section considers
similar identification conditions for multi-level factor models.

In a typical setup, consider C countries, each having a nc × 1 vector of country
variables Xc

t , t = 1, ..., T, c = 1, ..., C. One may model Xc
t as being affected by a world

factor fW
t , a regional factor f r

t , r = 1, ..., R, and a country factor f c
t , c = 1, ..., C, all

factors being latent,

Xc
t = Λc

W fW
t + Λc

Rf rc

t + Λc
Cf c

t + ec
t , (4)

where Λc
W , Λc

R, Λc
C are the matrices of factor loadings of country c, ec

t is the vector of
idiosyncratic error terms (possibly serially correlated) for country c’s variables, and
rc denotes the region that country c belongs to.

The data generating process for factors is given by a vector autoregression (VAR)
with diagonal autoregressive coefficient matrix and independent error terms. Let F R

t

be a vector collecting all the regional factors, and F C
t be a vector collecting all the

country factors. An example of VAR(1) specification of factors is given by,







fW
t

F R
t

F C
t





 =







ρW 0 0
0 ρR 0
0 0 ρC













fW
t−1

F R
t−1

F C
t−1





+







uW
t

UR
t

UC
t





 , (5)

where {ρW , ρR, ρC} are also diagonal matrices conformable to the dimension of cor-

responding factors. The innovation to factors
[

uW
t , UR

t , UC
t

]′
is independent of ec

t at
all leads and lags and is i.i.d. normal,







uW
t

UR
t

UC
t







i.i.d.
∼ N





0,







σ2
W 0 0
0 σ2

R 0
0 0 σ2

C











 ,

where σ2
R, σ2

C are themselves diagonal matrices. Given some sign restriction, this spe-
cial VAR specification allows one to separately identify the factors at different levels
up to a scale normalization. To achieve identification up to a sign normalization, it

is sufficient to assume the variance of
[

uW
t , UR

t , UC
t

]′
is an identity matrix.

3.1 Motivating a new identification scheme

Observe that it is sufficient but not necessary to assume the independence among
{

fW
t , f r

t , f c
t , r = 1, ..., R, c = 1, ..., C

}

in order to achieve identification of the factors.

Equation (5) rules out the possibility that different factors are related. In practice,
factors might be correlated through spill-over effects. Take the world factor for
example. It might contain the exogenous oil shock as well as the spill-over effects
from individual countries or regions. A shock that is originated from a large economy
like US might have an impact on other economies. This implies that the innovation
to an individual country might have a spill-over effect on the rest of the world, and
thus possibly has a effect on the dynamics of the world factor.
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According to the identification scheme given in Proposition 1 (DFM1), our new
identification scheme allows the autoregressive coefficient matrix in equation (5) to
be unrestricted. Under our assumption and using the same notation as (5), we have







fW
t

F R
t

F C
t





 =







ρ11 ρ12 ρ13

ρ21 ρ22 ρ23

ρ31 ρ32 ρ33













fW
t−1

F R
t−1

F C
t−1





+







uW
t

UR
t

UC
t





 , (6)

where the innovation to factors
[

uW
t , UR

t , UC
t

]′
is independent of ec

t in equation (4) at
all leads and lags and is i.i.d. normal with a diagonal covariance matrix, as described
earlier.

This implies that conditional on the history
{

f j
t−s, s = 1, 2, ..., t − 1, j = W, R, C

}

,

fW
t , fR

t , fC
t are independent. However, unconditionally different factors can be cor-

related with each other.
Equation (6) allows us to separately identify different factors, and more impor-

tantly, it allows us to evaluate the impulse responses of different factors to the factor

innovations
[

uW
t , UR

t , UC
t

]′
. For example, a shock to UC

t not only affects the country

factor fC
t , but also affects both the world factor and the regional factor. This allows

us to evaluate the spill-over effects of country-level shocks as well as region-level
shocks to other economies.

In addition, equation (6) nests the conventional specification of Kose et al. (2003)
in equation (5) as a special case if we further restrict the autoregressive coefficient
matrix in (6) to be diagonal. When confronting the model with data, we will be able
to test equation (6) against equation (5) using a Wald-test in classical estimation, or
using the Bayes factors in Bayesian estimation.

3.2 Identification: the case with two levels

We will focus on a simplified specification with only two levels of factors: a world
factor and a country-specific factor. Consider C countries, each having a nc × 1
vector of country variables Xc

t , t = 1, ..., T, c = 1, ..., C. One may model Xc
t as being

affected by a world factor fW
t and a country factor f c

t , c = 1, ..., C,

Xc
t = Λc

W fW
t + Λc

Cf c
t + ec

t . (7)

Stacking the observations from all countries, we can write (7) in matrix form as,









X1
t

...
XC

t









=









Λ1
W Λ1

C
...

. . .

ΛC
W ΛC

C





















fW
t

f 1
t
...

fC
t













+









e1
t
...

eC
t









. (8)

Under the the same notation as (5) , we have

[

fW
t

F C
t

]

=

[

ρ11 ρ12

ρ21 ρ22

] [

fW
t−1

F C
t−1

]

+

[

uW
t

UC
t

]

, (9)
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where the innovation to factors
[

uW
t , UC

t

]′
is independent of ec

t at all leads and lags
and is i.i.d. normal,

[

uW
t

U c
t

]

i.i.d.
∼ N

(

0,

[

σ2
W 0
0 σ2

C

])

. (10)

We assume that the dimension of fW
t and f c

t are k × 1 and kc × 1 respectively,
c = 1, ..., C.

Proposition 3. Define a dynamic factor model as in (8), (9), and (10). Assume
that σ2

W = Ik, σ2
C = Ik1+···+kC

, Λ1
W and {Λc

C}C
c=1 are all lower-triangular matrices with

strictly positive diagonal terms, and [Λc
W , Λc

C ] is of full column rank (c = 1, · · · , C),
then the factor model is uniquely identified.

The proof is in Appendix A. Proposition 3 can be easily extended to the case
with more than two levels. A key feature with multi-level factor models is that there
are many zero blocks in the loading matrix. The zero blocks are not sufficient to
prevent the rotational indeterminacy, additional restrictions are needed. For efficient
estimation, we will take into account the zero restrictions. Finally note that equation
(7) is static. The presence of lags of fW

t and f c
t will not affect the identification

conditions, and the proposition still holds, similar to the first two propositions. A
similar set of identification conditions, which does not require sign restrictions on the
factor loadings, is to require both σ2

W and σ2
C to be diagonal, and Λ1

W and {Λc
C}C

c=1

to be lower-triangular matrices with 1’s on the diagonal.

4 Bayesian estimation using Gibbs sampling

This section deals with Bayesian estimation of the dynamic factor models in Section
2 implemented by the Gibbs sampling. The method largely follows Carter and Kohn
(1994)’s multimove Gibbs-sampling algorithm for estimation of the state space mod-
els. To avoid numerical singularities due to round-off errors, we will use the square
root form of the Kalman filter (Bierman, 1977) and apply the Sherman-Morrison-
Woodbury identity to guarantee that the covariance matrices are always numerically
positive definite (see Appendix). We will first discuss the case with no serial corre-
lation in the error terms. In Section 6, we consider the case with serially correlated
error terms.

Consider the dynamic factor model defined in equations (1) and (2),

Xt = Λ0ft + Λ1ft−1 + · · · + Λsft−s + et

ft = Φ1ft−1 + · · · + Φhft−h + εt.

Assume {et, t = 1, ..., T} is independent of {εt, t = 1, ..., T}, et ∼ N (0, R), εt ∼
N (0, Q), and are iid over t. Define k = max {s + 1, h} and let Φh+1 = · · · = Φk = 0
if k = s + 1 > h. Let F ∗

t = [f ′
t , ..., f ′

t−k+1]
′, we obtain a state space representation of

the dynamic factor model, with the state equation governed by

F ∗
t = Φ∗F ∗

t−1 + ut,

10



ut = G εt,

where the qk × qk matrix Φ and the qk × q matrix G are given below

Φ∗ =

















Φ1 Φ2 · · · Φk

Iq 0 0 · · 0
0 Iq · · · 0
· · · · · .
0 · · Iq · 0

















, G =

















Iq

0
.
.
0

















.

When k = h > s, Ft = (f ′
t , f ′

t−1, ...f ′
t−s)

′ is a subvector of F ∗
t and the measurement

equation is given by
Xt = [Λ, 0] F ∗

t + et,

with the AR coefficient matrix in the state equation given by

Φ =

















Φ1 Φ2 . Φh−1 Φh

Iq 0 0 0 0
0 Iq . . .
. . . 0 .
0 . . Iq 0

















.

To facilitate the analysis, we proceed with the case k = h ≥ s + 1 and consider
the identification scheme DFM2, in which the upper q × q block of Λ0 is Iq.

The basic idea is to treat both the model parameters and the factors as missing
data. The Gibbs sampling consists of the following two steps:

• Conditional on the model parameters and the observed data, generate the
factors.

• Conditional on the factors and the observed data, generate the model param-
eters.

The second step is essentially the same as regression analysis with parameter restric-
tions. We next examine the first step.

4.1 Sampling the factors conditional on parameters

We use the notation XT = [XT , XT −1, ..., X1]
′ to denote the history of X up to time

T . For

F ∗
t =









ft
...

ft−h+1









,

only the last q elements of F ∗
t are unknown, namely ft−h+1, once F ∗

t+1 is given. We
want to sample F ∗

t from the joint distribution

p
(

F ∗
T , ..., F ∗

1 |XT
)

= p
(

F ∗
T |XT

)

T −1
∏

t=1

p
(

F ∗
t |F ∗

t+1, ..., F ∗
T , XT

)

11



= p
(

F ∗
T |XT

)

T −1
∏

t=1

p
(

F ∗
t |F ∗

t+1, X t
)

, (11)

where the second equality is derived from the Markov structure of the state space
system. According to (11), it is the same as sampling F ∗

t , t = T, T − 1, ..., 1, using a
backward-sampling algorithm, in which we first sample F ∗

T from

p
(

F ∗
T |XT

)

= N
(

F ∗
T |T , PT |T

)

, (12)

where F ∗
T |T = E

(

F ∗
T |XT

)

and PT |T = V ar
(

F ∗
T |XT

)

and they are obtained from the
Kalman filter. Then we may sample F ∗

t from

p
(

F ∗
t |F ∗

t+1, X t
)

= N (ht, Ht) , t = T − 1, ..., 1.

Given F ∗
t+1, only the last q elements of F ∗

t are random, which can be drawn from

p
(

ft−h+1|F
∗
t+1, X t

)

, t = T − 1, ..., h. (13)

In the linear Gaussian specification of the dynamic factor model, the distribution of
ft−h+1 conditional on F ∗

t+1 and X t is normal. So we just need to derive the conditional
mean and the conditional variance of ft−h+1. Based on West and Harrison (1997),
we proceed according to the following sampling scheme.

First, notice that the kernel of the conditional density p
(

ft−h+1|F
∗
t+1, X t

)

can be
written as

p
(

ft−h+1|F
∗
t+1, X t

)

= p
(

ft−h+1

∣

∣

∣

∣

ft+1, ft, ..., ft−h+2, X t
)

∝ p
(

ft−h+1, ft+1|ft, ..., ft−h+2, X t
)

= p
(

ft−h+1|ft, ..., ft−h+2, X t
)

p
(

ft+1|ft, ..., ft−h+2, ft−h+1, X t
)

.

The distribution of ft−h+1 conditional on (ft, ..., ft−h+2, X t) can be easily derived
from the joint distribution of F ∗

t ≡ (ft, ..., ft−h+2, ft−h+1)
′ conditional on X t from the

Kalman filter. To see this, let

F ∗
t |X t ∼ N

([

µ1t

µ2t

]

,

[

P11,t P12,t

P21,t P22,t

])

,

where µ1t and µ2t are of dimension qh × 1 and q × 1 respectively. The dimension
of the blocks in the variance matrix is defined accordingly. The moments of this
multivariate normal distribution are derived from the standard Kalman filter. Then

ft−h+1|
(

ft, ..., ft−h+2, X t
)

∼ N (µt, Σt) , (14)

where1

µt = µ2t + P21,tP
−1
11,t

(

(ft, ..., ft−h+2)
′ − µ1t

)

,

1In the Appendix, we show how we may apply the Sherman-Morrison-Woodbury identity to
guarantee that Σt is always numerically positive definite.
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Σt = P22,t − P21,tP
−1
11,tP12,t.

Next, from the law of motion for the dynamic factors ft+1 = Φ1ft + · · · + Φhft−h+1 +
εt+1, and εt+1 ∼ N(0, Q), the distribution p (ft+1|ft, ..., ft−h+2, ft−h+1, X t) is given by

ft+1|
(

ft, ..., ft−h+2, ft−h+1, X t
)

∼ N (Φ1ft + · · · + Φhft−h+1, Q) (15)

Based on (14) and (15), we may derive the kernel of our target density

p
(

ft−h+1|F
∗
t+1, X t

)

∝ N (µt, Σt) · N (Φ1ft + · · · + Φhft−h+1, Q)

∝ exp
{

−0.5 (ft−h+1 − µt)
′ Σ−1

t (ft−h+1 − µt)
}

·

exp
{

−0.5 (mt+1 − Φhft−h+1)
′ Q−1 (mt+1 − Φhft−h+1)

}

,

where mt+1 = ft+1 − Φ1ft − · · · − Φh−1ft−h+2. The kernel can be further simplified
as

p
(

ft−h+1|F
∗
t+1, X t

)

∝ exp
{

−0.5 (ft−h+1 − µ∗
t )

′ Ω−1
t (ft−h+1 − µ∗

t )
}

,

where

Ωt =
(

Σ−1
t + Φ′

hQ−1Φh

)−1
,

µ∗
t = Ωt

(

Σ−1
t µt + Φ′

hQ−1mt+1

)

.

In sum, conditional on the model’s parameters, the following recursion describes
how to draw from p

(

F ∗
T , ..., F ∗

1 |XT
)

.

• STEP 1. Apply Kalman filter to obtain F ∗
T |T = E

(

F ∗
T |XT

)

and PT |T =

V ar
(

F ∗
T |XT

)

, and then draw F ∗
T from

p
(

F ∗
T |XT

)

= N
(

F ∗
T |T , PT |T

)

. (16)

• STEP 2. For t = T − 1, ..., h, draw ft−h+1 from

p
(

ft−h+1|F
∗
t+1, X t

)

= N (µ∗
t , Ωt) . (17)

• The parameters of the normal distribution are determined as follows. Use the
notation from the Kalman filter procedure and partition F ∗

t = [∗, f ′
t−h+1]

′, let

F ∗
t |X t ∼ N

([

µ1t

µ2t

]

,

[

P11,t P12,t

P21,t P22,t

])

.

Define

µt = µ2t + P21,tP
−1
11,t

(

(ft, ..., ft−h+2)
′ − µ1t

)

,

Σt = P22,t − P21,tP
−1
11,tP12,t,

13



mt+1 = ft+1 − Φ1ft − · · · − Φh−1ft−h+2,

Ωt =
(

Σ−1
t + Φ′

hQ−1Φh

)−1
,

µ∗
t = Ωt

(

Σ−1
t µt + Φ′

hQ−1mt+1

)

.

Steps 1 and 2 finish one round of sampling from p
(

F ∗
T , ..., F ∗

1 |XT
)

.

The above algorithm considers the case where h ≥ 2. In the special case where h = 1,
ft−h+1 = ft = F ∗

t . Then we may simply sample from

p
(

ft|ft+1, X t
)

∝ p
(

ft+1|ft, X t
)

p
(

ft|X
t
)

, t = T − 1, ..., 1.

Note that

ft+1|
(

ft, X t
)

∼ N (Φ1ft, Q) ,

ft|X
t ∼ N

(

E
(

ft|X
t
)

, V ar
(

ft|X
t
))

.

So

p
(

ft|ft+1, X t
)

∝ N (µt, Σt) · N (Φ1ft, Q)

∝ exp
{

−0.5 (ft − µt)
′ Σ−1

t (ft − µt)
}

·

exp
{

−0.5 (ft+1 − Φ1ft)
′ Q−1 (ft+1 − Φ1ft)

}

,

and the kernel can be further simplified as

p
(

ft|ft+1, X t
)

∝ exp
{

−0.5 (ft − µft)
′ Ω−1

ft (ft − µft)
}

,

where

Ωft =
(

Σ−1
t + Φ′

1Q
−1Φ1

)−1
,

µft = Ωft

(

Σ−1
t µt + Φ′

1Q
−1ft+1

)

.

4.2 Sampling model parameters conditional on the factors

Let θ be the collection of all the model parameters

θ = {Λ0, · · · , Λs, Φ1, · · · , Φh, R, Q} .

Consider the dynamic factor model defined in equations (1) and (2),

Xt = Λ0ft + Λ1ft−1 + · · · + Λsft−s + et

ft = Φ1ft−1 + · · · + Φhft−h + εt.

Assume {et, t = 1, ..., T} is independent of {εt, t = 1, ..., T}; et are iid N (0, R) and
εt are iid N (0, Q). We will use Jeffreys diffuse priors (Zellner, 1971) for θ.
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4.2.1 Sampling {Φj, j = 1, ..., h} and Q conditional on the factors

Let

Ht = [f ′
t−1, ..., f ′

t−h],

H =









Hh+1
...

HT









,

G =









f ′
h+1
...

f ′
T









.

Let
A = (Φ1, ..., Φh)′ , α = vec (A) , ε = (εh+1, ..., εT )′ .

Then the AR (h) process for the dynamic factors can be written as

G = HA + ε, or

vec (G) = (Iq ⊗ H) α + vec (ε) ,

where vec (ε) ∼ N (0, Q ⊗ IT −h).

• Use Jeffreys diffuse priors

p (A, Q) = p (A) p (Q) ,

p (A) = const.

p (Q) ∝ |Q|−(q+1)/2.

• The corresponding posterior takes the form (Zellner, 1971):

α|Q, G ∼ N
(

α̂, Q ⊗ (H ′H)
−1
)

,

Q−1|G ∼ Wishart
(

Ω−1, v
)

,

where2

Â = (H ′H)
−1

H ′G,

α̂ = vec
(

Â
)

,

Ω =
(

G − HÂ
)′ (

G − HÂ
)

,

v = T − h − hq.

2Q|G ∼ |Q|−
T −h−hq+q+1

2 exp
{

− 1

2
tr
(

Q−1Ω
)}

is inverse Wishart parametrized by

(Ω, v = T − h − hq). The mean of Q is given by Ω

v−q−1
. Equivalently, Q−1|G is Wishart

parametrized by
(

Ω−1, v = T − h − hq
)

.
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4.2.2 Formulating the restrictions on factor loadings

In additional to the minimal identifying restrictions as in DFM1 or DFM2, there
may be other overidentifying restrictions. For example, the multi-level factor model
has many zero blocks. Cross-equation restrictions may also be present. We show
how these restrictions can be imposed in a systematic way.

We start with a static factor representation of (1)

Xt = ΛFt + et,

where Ft = [ft, ft−1, ..., ft−s]
′, and Λ = [Λ0, · · · , Λs]. Let X be the (T − s − 1) × N

data matrix, F be the (T − s − 1) × qs matrix of the static factors, then we have a
matrix representation of the factor model

X = FΛ′ + E, or

vec (X) = (IN ⊗ F ) λ + vec (E) , (18)

where λ = vec (Λ′) and vec (E) ∼ N (0, R ⊗ IT −s−1) .
The identifying restrictions in DFM2 impose linear restrictions on the factor

loadings. We discuss the Gibbs sampling step in case of linear restrictions on the
factor loadings. For λ = vec (Λ′), consider the following restriction

λ = Bδ + C, (19)

where δ is a vector of free parameters with dim (δ) ≤ dim (λ) . In general, B and C
are known matrices and vectors that are defined by either identifying restrictions or
other structural model restrictions. We give an example how B and C in (19) can
be obtained from DFM2.

• Example: In DFM2, the upper-left q×q block of Λ is Iq. So B is a Nq (s + 1)×
[Nq(s + 1) − q2] selection matrix consisting of zeros and ones. C is a vector of
zeros and ones. δ is a [Nq(s + 1) − q2] × 1 vector of free parameters. There
are q ones and q2 − q zeros in λ, for which the corresponding rows of B are
given by zeros and the corresponding elements of C are given by either one or
zero. Combining all other rows of B we obtain an identity matrix INq(s+1)−q2 .
For this particular case, one only needs to sample the free parameters in Λ
equation-by-equation due to the absence of cross-equation restrictions.

In view of (19), we may rewrite the factor model (18) as

vec (X) = (IN ⊗ F ) λ + vec (E)

= (IN ⊗ F ) (Bδ + C) + vec (E) ,

or as follows
vec (X) − (IN ⊗ F ) C = [(IN ⊗ F ) B] δ + vec (E) .

Let y = vec (X) − (IN ⊗ F ) C and Z = [(IN ⊗ F ) B]. With restrictions on factor
loadings, the dynamic factor model is rewritten as a regression model

y = Zδ + vec (E) , vec (E|Z) ∼ N (0, R ⊗ IT −s) .
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4.2.3 Sampling {Λ0, · · · , Λs, R} conditional on the factors and the restric-

tions

We extend Zellner (1971)’s Bayesian multivariate regression analysis to the case with
linear restrictions on regression coefficients. We consider diffuse priors for the factor
loadings and R. Notice that the likelihood can be written as

p (y|Z, δ, R) ∝ |R|−
T −s

2 exp
{

−
1

2
(y − Zδ)′ (R ⊗ IT −s)

−1 (y − Zδ)
}

= |R|−
T −s

2 exp
{

−
1

2
tr
[

(X − FΛ′)
′
(X − FΛ′) R−1

]

}

,

where Λ is subject to linear restrictions that are parametrized by δ. Noting that

(X − FΛ′)
′
(X − FΛ′) =

(

X − F Λ̂′
)′ (

X − F Λ̂′
)

+
(

Λ − Λ̂
)

F ′F
(

Λ − Λ̂
)′

= S +
(

Λ − Λ̂
)

F ′F
(

Λ − Λ̂
)′

,

where

Λ̂ = X ′F (F ′F )
−1

,

S =
(

X − F Λ̂′
)′ (

X − F Λ̂′
)

.

We may further write the likelihood as

p (y|Z, δ, R) ∝ |R|−
T −s

2 exp
{

−
1

2
tr
[

SR−1
]

−
1

2
tr
[

(

Λ − Λ̂
)

F ′F
(

Λ − Λ̂
)′

R−1
]}

.

Impose the Jeffreys prior for δ and R:

p(δ) = const, p(R) ∝ |R|−(N+1)/2

p(δ, R) = p (δ) p (R) .

This also implies that the prior on R−1 is p(R−1) ∝ |R−1|−(N+1)/2. We obtain the
following joint posterior for δ and R:

p (δ, R|X, F ) ∝ |R|−
T −s+N+1

2 exp
{

−
1

2
tr
[

SR−1
]

−
1

2
tr
[

(

Λ − Λ̂
)

F ′F
(

Λ − Λ̂
)′

R−1
]}

.

We may write
p(δ, R|X, F ) = p(δ|R, X, F )p (R|X, F ) .

Here

p(R|X, F ) ∝ |R|−v/2exp
(

−
1

2
tr
[

R−1S
]

)

, v = T − s + N + 1 − r.

p(δ|R, X, F ) ∝ |R|−r/2exp
{

−
1

2
tr
[

(

Λ (δ) − Λ̂
)

F ′F
(

Λ (δ) − Λ̂
)′

R−1
]}

(20)

∝ |R|−r/2exp
{

−
1

2
tr
[

(

λ (δ) − λ̂
)′ [

R−1 ⊗ F ′F
] (

λ (δ) − λ̂
)

]}
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Given the linear restriction λ (δ) = Bδ + C, and let µδ = B (B′B)−1
(

λ̂ − C
)

, we
have

p (δ|R, X, F ) ∝ |R|−r/2exp
{

−
1

2
tr
[

(

Bδ + C − λ̂
)′ [

R−1 ⊗ F ′F
] (

Bδ + C − λ̂
)

]}

∝ |R|−r/2exp
{

−
1

2
tr
[

(δ − µδ)
′
[

B′
(

R−1 ⊗ F ′F
)

B
]

(δ − µδ)
]

}

,

which implies that

δ|R, X, F ∼ N
(

B (B′B)
−1
(

λ̂ − C
)

,
(

B′
(

R−1 ⊗ F ′F
)

B
)−1

)

. (21)

Thus we may draw δ according to (21) and construct the associated loading matrix
Λ (δ). Note that in the special case where there is no cross-equation restrictions and
R is diagonal, B′ (R−1 ⊗ F ′F ) B becomes a block-diagonal matrix, and the factor
loading can be drawn equation-by-equation. From (20), we may draw R according
to a inverse-Wishart distribution

R|X, F ∼ invWishart (S, T − s + N + 1 − r) .

4.2.4 Restrictions on R

If the cross-section dimension N is small in (1), we may allow R = V ar (et) to be
an unrestricted covariance matrix. Given our knowledge of the model structure, the
factors and the factor loadings can be identified through the autocorrelation function
implied by the dynamic model3. However, if N is large, it is practically infeasible to
make inference on an unrestricted R. On the other hand, for large N , the majority
of the cross-correlation in the data matrix is accounted for by the dynamic factors.
Although the identification of the dynamic factor model allows an unrestricted R,
to preserve a parsimonious model structure, we may consider restricting R to be
diagonal when N is large.

Other plausible restrictions include making R a block-diagonal matrix. For ex-
ample, in the multi-level factor model, we may allow the error term et to be cross-
correlated within the same group, but uncorrelated between groups.

We consider a diagonal R = V ar (et) given as follows

R =









σ2
1

. . .

σ2
N









.

Impose the diffuse independent prior for δ (free parameters in loadings) and R:

p(δ) = const, p(σ2
n) ∝ 1/σ2

n

3In the static factor models, identification usually requires a diagonal R so as to achieve identi-
fication through the covariance of the data. In the dynamic factor models, however, one can relax
the assumption of a diagonal R and can still achieve identification through the autocovariances of
the data.
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p(δ, R) = p (δ)
[

ΠN
n=1p(σ2

n)
]

.

We obtain the following joint posterior for δ and R:

p (δ, R|X, F ) ∝ |R|−
T −s+2

2 exp
{

−
1

2
tr
[

SR−1
]

−
1

2
tr
[

(

Λ − Λ̂
)

F ′F
(

Λ − Λ̂
)′

R−1
]}

,

in which R is a diagonal matrix. We may write

p(δ, R|X, F ) = p(δ|R, X, F )p (R|X, F ) .

Here the density p (δ|R, X, F ) is the same as (21). The density p (R|X, F ) is given
by

p(R|X, F ) ∝ |R|−v/2exp
(

−
1

2
tr
[

R−1S
]

)

=
[

ΠN
n=1σ

2
n

]−v/2
exp

(

−
1

2
tr
[

R−1S
]

)

.

Also notice that S = ê′ê where ê = [ê1, ..., êN ] = X − FΛ′. We have

exp
(

−
1

2
tr
[

R−1S
]

)

= exp

(

−
1

2

[

ê′
1ê1

σ2
1

+ · · · +
ê′

N êN

σ2
N

])

=
N
∏

n=1

exp

(

−
1

2

[

ê′
nên

σ2
n

])

.

In sum

p(R|X, F ) ∝
N
∏

n=1

(

σ2
n

)−(v/2−1)−1
exp

(

−
ê′

nên/2

σ2
n

)

.

Thus we may obtain a draw for σ2
n one-by-one according to the following inverse-

Gamma distribution

σ2
n|X, F ∼ invGamma (v/2 − 1, ê′

nên/2) , v = T − s + 2 − r.

Or by noticing that p (1/σ2
n) = p (σ2

n) · (σ2
n)

2
, we may drawn the precision 1/σ2

n

according the Gamma distribution4

1

σ2
n

|X, F ∼ Gamma
(

v/2 − 1, (ê′
nên/2)

−1
)

.

4.2.5 Sampling {Λ1, ..., Λs} given a diagonal R

When the cross-section dimension N is large, we may restrict R to be diagonal or
block diagonal. If R is diagonal, then the dynamic factor loadings can be sam-
pled equation-by-equation when there is no cross-equation restriction on the factor
loading. Note that

vec (Λ′) |R, X, F ∼ N
(

λ̂, R ⊗ (F ′F )
−1
)

,

4We follow the notation from Matlab, which defines Gamma pdf as p (x|α, β) ∝ xα−1e−x/β .
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where

R ⊗ (F ′F )
−1

=









σ2
1 (F ′F )−1

. . .

σ2
N (F ′F )−1









.

Let Λ′ = [λ1, ..., λN ], then conditional on {R, X, F}, the columns of Λ′ are indepen-
dent. If the restrictions on the factor loadings are on an equation-by-equation basis,
we are able to sample the factor loadings equation-by-equation:

δi|R, X, F ∼ N
(

Bi (B′
iBi)

−1
(

λ̂i − Ci

)

, σ2
i (B′

iF
′FBi)

−1
)

, (22)

where the restriction for equation i is given by λi = Biδi +Ci and λ̂i = (F ′F )−1 F ′Xi

is the OLS estimator of regressing Xi on F .

4.2.6 Prior on the initial state vector

When sampling the factors, we utilize the Kalman filter which requires sampling
from the prior

p (F ∗
h |Xh)

conditional on the model parameters. Here F ∗
h = [f ′

h, ..., f ′
1]

′ is the initial observation
of the state vector. We assume that this prior is a normal distribution whose moments
are independent of the model parameters. The simplifying assumption allows us to
avoid the use of Metropolis-Hasting algorithm to sample from a more complicated
prior distribution, which might depend on the model parameters in a nonlinear way.

When sampling the autoregressive coefficient matrices Φj, we do not impose any
stationarity restrictions. In the literature, usually an indicator function, I [s (Φ)], is
multiplied to the prior density of Φj so as to restrict the roots of the AR process to
be outside the unit circle (see Kim and Nelson (1999), Cogley and Sargent (2005)).
We do not make such restrictions on the belief that if stationarity of the factors is
valid it should be supported and justified by the posterior distribution. On the other
hand, the posterior distribution allows us to make inference about the stationarity
of the factors.

5 Model comparison with diffuse priors

Under the minimal identification scheme DFM1 or DFM2, we are able to discrimi-
nate between models with different lags and number of dynamic factors using Bayes
factors. To fix idea, we will impose the identification scheme DFM2 (the upper q × q
block of Λ0 being identity) throughout. Let M1 and M2 be two possible competing
models for the time series X ≡ {X1, ..., XT }, both being dynamic factor models but
with different lags h, s and number of factors q. The Bayes factor for model M2

against M1 from data X is the ratio

B21 =
p (X|M2)

p (X|M1)
.
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Note that if we multiply the Bayes factors by the ratio of priors for both models,
we obtain the posterior odds of the two models. A key objective of interest is the
marginal likelihood of the data

p (X|Mj) =

ˆ

p (X, θ|Mj) dθ

=

ˆ

p (X|θ, Mj) π (θ) dθ

where p (X|θ, Mj) is the likelihood under model Mj and π (θ) is the prior. Note
that if we use the diffuse prior, p (X|Mj) in general is not well defined unless θ
has a compact support. Possible alternatives to Bayes factors in case of diffuse
priors include fractional Bayes factors (O’Hagan (1995)) and intrinsic Bayes factors
(Berger and Pericchi (1996)). To fix idea, we will adopt a version of the fractional
Bayes factors for the purpose of comparing different dynamic factor models in case
of diffuse priors. Note that the intrinsic Bayes factors can be obtained in a similar
way.

Given a fraction b of the data X0 ≡ {X1, ..., X[T b]}, calculate the posterior based
on the training sample

p
(

θ|Mj, X1, ..., X[T b]

)

≡ p
(

θ|Mj, X0
)

.

Then calculate the marginal likelihood for X1 ≡ {X[T b]+1, ..., XT } conditional on the
training sample

p
(

X1|Mj, X0
)

=

ˆ

p
(

X1, θ|Mj, X0
)

dθ

=

ˆ

p
(

X1|θ, Mj, X0
)

p
(

θ|Mj, X0
)

dθ.

The fractional Bayes factor is then given by

BF
21 =

p (X1|M2, X0)

p (X1|M1, X0)
.

Note that

p
(

θ|X1, X0
)

∝ p
(

X1|θ, X0
)

p
(

θ|X0
)

∝ p
(

X1, X0|θ
)

π (θ)

where π (θ) is the diffuse prior. This suggests two equivalent sampling schemes
to sample from the posterior p (θ|X1, X0). One is to treat p (θ|X0) as the prior and
p (X1|θ, X0) as the likelihood. The other is to treat π (θ) as the prior and p (X1, X0|θ)
as the likelihood. Thus, to calculate the fractional Bayes factor, we may use the same
algorithm as in the previous section to obtain posterior draws from p (θ|X1, X0).

The algorithm consists the following three steps.
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Step 1. Assume Jeffreys priors on θ. Conduct a Bayesian analysis of the training
sample X0 to obtain a sequence of posterior draws {θ(l), F (l)}L

l=1. Obtain the posterior
density given X0

p
(

θ|M j, X0
)

=

ˆ

p
(

θ, F |M j, X0
)

dF

=

ˆ

p
(

θ|M j, F, X0
)

p
(

F |M j, X0
)

dF

≈
1

L

L
∑

l=1

p
(

θ|M j, F (l), X0
)

Note that p
(

θ|M j, F (l), X0
)

has a closed-form solution.

Step 2. Repeat Step 1 for the whole sample X = {X0, X1} to obtain another
sequence of posterior draws {θ(l), F (l)}L

l=1. Obtain the posterior density given X

p
(

θ|M j, X
)

≈
1

L

L
∑

l=1

p
(

θ|M j, F (l), X
)

.

Step 3. Calculate the fractional marginal likelihood for X1 conditional on X0

p
(

X1|Mj, X0
)

=

ˆ

p
(

X1|θ, Mj, X0
)

p
(

θ|Mj, X0
)

dθ

=

ˆ

p (X1|θ, Mj, X0) p (θ|Mj, X0)

p (θ|Mj, X)
p (θ|Mj, X) dθ

≈
1

L

L
∑

l=1

p
(

X1|θ(l), Mj, X0
)

p
(

θ(l)|Mj, X0
)

p (θ(l)|Mj, X)
.

A convenient alternative to Step 3 is to calculate the fractional marginal likelihood
for X1 conditional on X0 according to the identity (Chib (1995))

p
(

X1|Mj, X0
)

=
p (X1|θ, Mj, X0) p (θ|Mj, X0)

p (θ|Mj, X1, X0)
.

Thus we may obtain the logarithm of the fractional marginal likelihood

log
(

p
(

X1|Mj, X0
))

= log
(

p
(

X1|θ∗, Mj, X0
))

+ log
(

p
(

θ∗|Mj, X0
))

− log
(

p
(

θ∗|Mj, X1, X0
))

,

where θ∗ is the posterior mean for θ.
Note that given the recursive structure of the dynamic factor model, it is easy to

calculate the conditional likelihood

p
(

X1|θ, Mj, X0
)

which is multivariate normal:

p
(

X1|θ, Mj, X0
)

= ΠT
t=[T b]+1p (Xt|Xt−1, ..., X1, θ, Mj)
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= ΠT
t=[T b]+1N (E (Xt|Xt−1, ..., X1, θ, Mj) , V ar (Xt|Xt−1, ..., X1, θ, Mj))

in which the mean and variance of the normal distribution are given by the Kalman
filter.

Regarding the choice of the fraction, O’Hagan (1995) proposes three alternatives:

b = n0

n
, b = n0log(n)

nlog(n0)
, or b =

√

n0

n
, ranked by increasing robustness, where n0 is the

minimal training sample size such that a posterior is well defined.

6 Serial correlation in the measurement errors

The above analysis is based on i.i.d. measurement errors. The methodology can
be readily extended to the case with serially correlated measurement errors. In
particular, consider:

Xt = Λ(L)ft + et,

where Λ (L) = [Λ0, Λ1L, ..., ΛsL
s], where L is the lag operator. The measurement

error follows an VAR(1) process

et = ρet−1 + ut, ut ∼ i.i.d. N(0, R)

where

ρ =









ρ1

. . .

ρN









, R =









σ2
1

. . .

σ2
N









.

The factors follow a V AR (h) process

ft = Φ1ft−1 + · · · + Φhft−h + εt.

Applying (I − ρL)on both sides of the measurement equation, we obtain

(I − ρL) Xt = (I − ρL) Λ(L)ft + ut, ut ∼ i.i.d. N(0, R).

Let X̃t ≡ (I − ρL) Xt, Λ̃ (L) ≡ (I − ρL) Λ (L), then

X̃t = Λ̃ (L) ft + ut.

Thus conditional on parameters {ρ, Λ, R, Φ, Q}, the latent factors can be analyzed
using the same backward sampling algorithm as before. Conditional on the data and
the factors, the Gibbs sampler for model parameters is constructed as follows. Note
that for the ith measurement equation

xit − ρixi,t−1 = λi(L)′ (ft − ρift−1) + uit,

where λi(L)′ is the ith row of Λ(L).
Conditional on ρ and R, the factor loadings can be analyzed from simple regres-

sion analysis with known variance. Conditional on Λ(L), the ρ and R can also be
analyzed equation-by-equation for the regression eit = ρiei,t−1 + σiuit.

The details are given below.
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6.1 Sampling model parameters conditional on the factors

Let θ be the collection of all the model parameters

θ = {Λ0, · · · , Λs, Φ1, · · · , Φh, ρ, R, Q} .

We will again use Jeffreys diffuse priors (Zellner, 1971) for θ. Note that sampling
{Φj, j = 1, ..., h} and Q conditional on the factors is basically the same as before.
After adding serially correlated error terms, we need to revise the Gibbs sampler of
{Λ0, · · · , Λs, ρ, R} conditional on the factors and the identifying restrictions.

Similarly, impose the diffuse independent prior for Λ, ρ, and R:

p(Λ) = const, p (ρ) = const, p(σ2
n) ∝ 1/σ2

n

p(Λ, ρ, R) = p (Λ) p (ρ)
[

ΠN
n=1p(σ2

n)
]

.

Given the diffuse prior, the posterior for Λ conditional on ρ and R is

p (Λ|X, F, ρ, R) ∝ p (X|F, Λ, ρ, R)

∝
N
∏

i=1

exp











−
1

2

∑T
t=s+2

(

xit − ρixi,t−1 − λi (L)′ (ft − ρift−1)
)2

σ2
i











.

Let yit = xit − ρixi,t−1, git = ft − ρift−1. The measurement equation is given by

yit = λi (L)′ git + uit

= λ′
i









git
...

gi,t−s









+ uit

=
[

g′
it · · · g′

i,t−s

]

λi + uit.

Or
yi = Giλi + ui,

where

Gi =









g′
i,s+2 · · · g′

i,2
. . .

g′
iT · · · g′

i,T −s









is (T − s − 1) × (s + 1) q.

Also note that

Gi =









f ′
s+2 · · · f ′

2
. . .

f ′
T · · · f ′

T −s









− ρi









f ′
s+1 · · · f ′

1
. . .

f ′
T −1 · · · f ′

T −s−1









,

Y =









y′
1
...

y′
N









= X −









ρ1

. . .

ρN









X−1.
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We are able to sample λ′
i = [λ′

i0, ..., λ′
is] equation by equation:

λi|λ−i, R, X, F ∼ N
(

λ̂i, σ2
i (G′

iGi)
−1
)

,

where λ−i is λ with λi removed, and

λ̂i = (G′
iGi)

−1
G′

iyi.

Let eit = xit − λi(L)′ft, then

eit = ρiei,t−1 + uit.

We obtain the following joint posterior for ρ and R conditional on Λ and F :

p (ρ, R|X, F, Λ) ∝
N
∏

i=1

1

(σ2
i )

T −s−1

2
+1

exp

{

−
1

2

∑T
t=s+2 (eit − ρiei,t−1)

2

σ2
i

}

=
N
∏

i=1

1

(σ2
i )

T −s

2

1

(σ2
i )

1

2

exp

{

−
1

2

∑T
t=s+2 (eit − ρiei,t−1)

2

σ2
i

}

Thus (ρi, σ2
i ) can be analyzed on an equation-by-equation basis. Let

ûit = eit − ρ̂iei,t−1,

ρ̂i =
e′

i,−1ei

e′
i,−1ei,−1

,

ûi = [ûi,s+1, ..., ûiT ]′ .

In sum

p(σ2
i |X, F, Λ) ∝

(

σ2
i

)−(v/2−1)−1
exp

(

−
û′

iûi/2

σ2
i

)

, v = T − s.

Thus we may obtain a draw for σ2
i one-by-one according to the following inverse-

Gamma distribution

σ2
i |X, F, Λ ∼ invGamma (v/2 − 1, û′

iûi/2) , v = T − s.

Alternatively, we may drawn the precision 1/σ2
i according the Gamma distribution

1

σ2
i

|X, F, Λ ∼ Gamma
(

v/2 − 1, (û′
iûi/2)

−1
)

.

The posterior distribution of ρi is given by

ρi|ρ−i, X, F, Λ, R ∼ N
(

ρ̂i, σ2
i /
(

e′
i,−1ei,−1

))

.
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7 Implications for structural VAR analysis

The dynamic factor model is useful for analyzing the structural VAR (SVAR) models,
especially when the variables are measured with errors. Consider a standard SVAR
given by

A (L) Zt = at

where Zt is a q × 1 vector of economic variables, and at is the vector of structural
shocks with E(ata

′
t) = Iq. Let

A (L) = A0 − A1L − · · · − ApLp,

with A0 6= Iq. The reduced form is given by

Zt = B (L) εt,

where at = A0εt, or E (εtε
′
t) = A−1

0 (A′
0)

−1.
SVAR analysis aims to identify A0 under structural restrictions. Suppose that Zt

is only observable with measurement error ηt

Yt = Zt + ηt.

In this case, it is difficult to analyze the SVAR model. Now suppose that a large
number of other observable variables (Wt) are determined by

Wt = Γ0Zt + · · · + ΓsZt−s + ewt.

Essentially, Wt is also driven by the fundamental structural shocks at through Zt.
This is the essence of comovement for economic variables.

Let

Xt =

[

Yt

Wt

]

, et =

[

ηt

ewt

]

, ft = Zt,

Λ0 =

[

Iq

Γ0

]

, Λj =

[

0
Γj

]

, j 6= 0.

Then we have a structural dynamic factor model

Xt = Λ0ft + · · · + Λsft−s + et, (23)

B−1 (L) ft = εt.

According to our identification scheme DFM2, equation (23) is identified and can be
analyzed using a Bayesian approach. In particular, without further assumptions, we
are able to estimate ft = Zt, B (L), Λi, and E (εtε

′
t) = A−1

0 (A′
0)

−1. We may also
incorporate additional structural restrictions as in standard SVAR analysis, so as to
estimate A0.
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8 Simulation study

8.1 Serially uncorrelated measurement errors

This section uses some simulation studies to show the effectiveness of the Bayesian
estimation method given our identifying restrictions. We first consider a dynamic
factor model with q = 2, s = 1, h = 2. In particular, the data is generated according
to (1) and (2):

Xt = Λ0ft + Λ1ft−1 + · · · + Λsft−s + et,

ft = Φ1ft−1 + · · · + Φhft−h + εt,

where the parameters are draw from

λijs ∼ i.i.d. U(0, 1),

et ∼ i.i.d. N(0, R),

εt ∼ i.i.d. N(0, Q).

We choose R = IN , Q = Iq, and

[Φ1, Φ2] =

[

0.5 0 0.2 0
−0.1 0.2 0.1 0.1

]

.

Besides our identifying restrictions DFM1, we also impose extra restrictions on the
factor loadings. For every five rows, we assume that the first row is only affected
by the first dynamic factors, the second row being affected by the second dynamic
factors only, the third row being affected by lagged factors only, the fourth row being
affected by current factors only, the fifth row being unrestricted. Thus the matrix of
factor loadings is restricted as follows

Λ =















































1 0 0 0
0 1 0 0
1 0 0 0
0 1 0 0
∗ ∗ ∗ ∗
∗ 0 ∗ 0
0 ∗ 0 ∗
0 0 ∗ ∗
∗ ∗ 0 0
∗ ∗ ∗ ∗
...

...
...

...















































where “∗” denotes the position of free parameters.
With the sample size chosen to be N = 10, 20, 50, 100, 150, 200 and T = 50, 100, 200,

we first generate a sample of size N = 200, T = 200. Then we estimate the model
according to eighteen samples with different combinations of N and T . We use the
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Jeffreys diffuse prior throughout the estimation. The length of the Gibbs sampling
chain is chosen to be ten thousand.5 We discard the first five thousand draws before
calculating the posterior mean and standard deviations. We calculate the posterior
mean as our point estimates for the dynamic factors and compare them to the true
factors. To evaluate the estimation outcome, we project the true factors on the es-
timates to obtain the adjusted R-squared of a regression through the origin. For
example, for the j-th factor, we regress fj on f̂j to obtain the adjusted R-squared

R̄2
j . We also regress fj on both f̂1 and f̂2 to obtain R̄2

j,space to measure the closeness
of factors to the estimated factor space. Figure 1 shows the result. In each one of
the four graphs, there are three lines, each connecting the adjusted R-squared of
different N for a given T . For example, the solid line shows the pattern how R̄2

j or

R̄2
j,space increases over the cross-section dimension N given T = 200. Such a pattern

is in line with the theory on large dimensional factor models (such as Bai and Ng,
2002, Bai, 2003). The other two lines show the same pattern given a time dimension
of either T = 50 or 100. In each graph, all three lines are very close to each other,
especially when N is large. This implies that for the given data generating process,
the estimated factors reasonably well approximate the true factors and the overall
estimation precision mainly comes from the cross-section dimension N .

For the sample of size N = 10, T = 200, Figure 2 and Figure 3 compare the
Bayesian posterior mean of the factors with the true factors, as well as providing
the two SE error bands of the posterior mean. Figure 4 and Figure 5 conduct the
same exercise for N = 100, T = 200. The factors are more precisely estimated when
the sample has a larger N . This is best seen as the much tighter two SE bands
around the true factors. This is also in line with the theory on large dimensional
factor models. We then compare the two SE error bands of the impulse responses of
each dynamic factor given one standard deviation change of each shock in the state
equation. The SE is calculated as the sample standard deviation of the posterior
draws of the impulse response function. It is worth mentioning that other methods
such as Sims and Zha (1999) can be applied as well, which we do not explore here.
Figures 6 and 7 show that with a larger N the error bands tend to be narrower.

8.2 Serially correlated measurement errors

This section explores implications of serially correlated error terms for the analysis
of the dynamic factors. We use the same data generating process as the previous
section, except that the error terms in (1) follow an AR(1) process:

eit = ρiei,t−1 + uit, uit ∼ i.i.d.N(0, σ2
i ).

The number of dynamic factors is still set at two. We fix N = 50, T = 200, s =
1, h = 2. We compare the estimation results from two methods, one with ρi being

5We found that our Bayesian algorithm converges very fast. The chain size of 100 thousand
offers basically the same results. In addition, for the model with N = 200, T = 200, the CPU time
for ten thousand chain size is less than 1200 seconds using an Intel Core i7 laptop with 2GB DDR3
memory.
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Figure 1: Adjusted R-squared from regressing the true factors on the estimates
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Table 1: Fit of dynamic factors: R̄2
j

For j = 1, 2, regress fj on

f̂j

{

f̂1, f̂2

}

ρi Fix ρi = 0 Free ρi Fix ρi = 0 Free ρi

0.99 N.A. (0.8329, 0.7929) N.A. (0.8345, 0.7950)
0.9 (0.6211, 0.0010) (0.8998, 0.8659) (0.6489, 0.3718) (0.9007, 0.8714)
0.8 (0.7160, 0.1693) (0.8948, 0.8127) (0.7353, 0.4806) (0.8958, 0.8172)
0.5 (0.9220, 0.9106) (0.9350, 0.9277) (0.9218, 0.9132) (0.9353, 0.9274)
0.0 (0.9557, 0.9319) (0.9542, 0.9293) (0.9555, 0.9316) (0.9540, 0.9291)

Remark: The two numbers within each pair of parentheses are the adjusted R2 of regressing the

true f1 and f2, respectively, on the corresponding estimated factors (the left pane) or the entire

factor space (the right pane). N.A. means the MCMC chain fails to converge.

free parameters to be estimated, the other being under the assumption that ρi = 0 for
all i. Thus the first estimation is conducted under the true model, while the second
one is under the assumption of serially uncorrelated error terms and thus is using a
misspecified model. This exercise helps us to understand how serial correlation in
the error terms affects the estimation of the dynamic factors.

We use the adjusted R-squared to measure the overall fit of estimated factors. We
project the true factors on the corresponding estimated factors to obtain one set of R̄2.
We also project the true factors on the entire estimated factor space to obtain another
set of R̄2. Table 1 reports the results. To fix idea, we choose ρi = ρ for all i = 1, ..., N
and examine the adjusted R̄2 for different values of ρ ∈ {0.99, 0.9, 0.8, 0.5, 0.0}.

From the table, we notice that for not so persistent measurement errors, say
ρ ≤ 0.5, both estimation methods provide reasonably well fit. That is, ignoring the
serial correlation still gives good fit. However, as the persistence increases, the fit of
factors deteriorates when ignoring the serial correlation. For example, when ρ ≥ 0.8,
the fit becomes rather poor when ρi is set to zero. On the other hand, across all
cases, the estimation taking into account serial correlation of error terms performs
uniformly well in terms of fit, even in the near unit root case.

8.3 Model comparison

This section considers the fractional Bayes factors to calculate the marginal likelihood
of data under different model specifications. We use the same data generating process
as in Section 8.1. The true model is specified as N = 100, T = 200, q = 2, s = 1, h =
2. We use T0 = 20 to obtain the prior from the training sample, and then use the
prior to obtain the marginal likelihood for the sample T = 21, ..., 200. To fix idea, we
fix s = 1, h = 2 and only vary the number of factors. Table 2 reports the associated
marginal likelihood of the data. The marginal likelihood achieves maximum when
the number of factors is the same as the true value q = 2.
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Table 2: Model comparison: logarithm of marginal likelihood.
q 1 2 3

log(marginal likelihood) -13659 -13473 -13708

9 Comovement in international bond yields: an

application

In this section, we apply the dynamic factor models to the analysis of international
bond yields. We adopt the monthly nominal zero-coupon bond yields data con-
structed by Wright (2011), which covers nine countries from 1971 January to 2009
May. We will use a balanced panel from December 1992 to May 2009. The nine
countries are US, Canada, UK, Germany, Sweden, Switzerland, Japan, Australia,
and New Zealand. For each country, the data are constructed at 60 maturities from
3 months to 180 months, except for Sweden with 40 maturities. Let Xc

t (τ) be the
time t bond yield of country c at maturity τ . For c = 1, ..., C, assume that a global
factor gt and a country specific factor f c

t combine to affect the bond yield:

Xc
t (τ) = µc (τ) + γc (τ) gt + λc (τ) f c

t + ec
t (τ) , ec

t (τ) ∼ iid.N
(

0, σ2
c (τ)

)

. (24)

We further assume that the factors follow a VAR(1) process. In particular, let

Ft =
[

gt, f1
t , ..., fC

t

]′
, then

Ft = ΦFt−1 + εt, εt ∼ N (0, Q) . (25)

Assuming that Q = IC+1, both γc (τ) and λc (τ) being strictly positive for τ =3
months, then the multi-level factor model is identified. Using a similar but different
model, Diebold, Li, and Yue (2008) found an economically significant global yield
factor for Germany, Japan, UK and US. Our empirical exercise differs from theirs in
two important ways. Firstly, we adopt a much larger data set with nine countries and
more maturities, which expects to better represent the global bond yield. Secondly,
we treat the AR coefficient matrix Φ as unrestricted, which allows us to study the
spill-over effects of one country to another. On the other hand, almost all existing
literature on multi-level factor models assumes that different factors are independent
of each other. We think this is restrictive, because the country factors could be
correlated with each other due to regional interactions or other economic linkages
such as cross-border capital flows. Model (24) and (25) are estimated using the
Bayesian method described in the previous sections. The posterior mean of the
global factor gt along with two standard deviation error bands is reported in Figure
8. The large cross-section size N leads to very narrow error bands for both the global
factor and the country factors. To save space, we do not report results for country
factors. We also reports the variance decomposition results for each country in Table
3.6 The result is similar to Diebold, Li, and Yue (2008) in that the global factor

6We calculate the variances due to the global factor, the country factors, and the idiosyncratic
errors respectively. And then use the variance ratio to measure the variance contribution due to
each component.

31



Table 3: Variance decomposition for nine countries.
US Canada UK Germany Sweden

Global factor 52.07% 74.08% 77.11% 75.25% 83.40%
Country factor 44.16% 23.97% 20.96% 23.76% 15.84%

Idiosyncratic error 3.77% 1.94% 1.93% 0.99% 0.76%

Switzerland Japan Australia New Zealand
Global factor 63.17% 62.61% 69.69% 50.97%

Country factor 35.07% 36.48% 28.72% 44.04%
Idiosyncratic error 1.76% 0.91% 1.59% 4.99%

explains a large proportion of variance in country bond yields, and compared with
most other markets the US has a stronger country factor.

We conduct a further variance decomposition exercise of country yields at four
representative maturities of 3, 12, 60, and 120 months. Figure 9 shows the results for
all nine countries in our sample. For all countries considered, the global factor tends
to explain more variation at longer maturities, while the country factor shows the
opposite pattern. For Sweden, the majority of variation is explained by the global
factor.

Given the multi-level factor structure, we are particularly interested in how dif-
ferent factors interact with each other. To estimate the impulse response functions,
we use the median to denote the point estimate, and lower and upper five percentile
to denote the error bands around the point estimate. Figure 10 shows the impulse
responses of the global factor gt up to 24 months to one standard deviation shock of
each one of the nine country factors. We report the impulse responses of the country
factors f c

t in Figures 11 to 19.
To briefly summarize, the global factor does not seems to response much to coun-

try factors, except for some mild responses to several countries as can be seen from
Figure 10. On the other hand, there are significant interactions between country fac-
tors based on evidence from Figures 11 to 19. For example, the shock originated from
the US factor seems to significantly affect most other countries, especially Canada
and the European countries. The Canada factor, however, only has notable impact
on the Sweden factor, which might be due to their close economic relations. In the
meantime, the Sweden factor affects the Canada factor among several other coun-
tries. Such rich evidence in the impulse response functions points to complicated
interstate relations, which could not be simply accounted for by the geographic re-
lations. Canada, usually treated as a member of the North America region only,
are closely related to both US and Sweden. To see another example, there is strong
relation between the New Zealand factor and the Australia factor. Both factors also
strongly affect the Sweden factor but are only mildly affected by the latter. Our
modelling strategy naturally allows the study of such complicated pairwise relations
between countries, which are not strong enough to be summarized by global fac-
tors or by geographically defined regional factors. Most literature on dynamic factor
models assumes that factors are independent of each other, and thus is not able to
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Figure 2: N=10, T=200. Point estimates of the factors: Posterior mean
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study such rich interstate relations.

10 Conclusion

In this paper, we discuss the minimal requirement of identifying the dynamic factor
models. Our identification scheme allows the interaction among different factors,
which provides a useful framework to study the structural implications of the factor
model. In addition, a more general class of impulse response functions can be derived
under our framework, the confidence bands of which are readily constructed from the
Bayesian estimation results. The proposed identification scheme naturally combines
the structural VAR analysis as well. We also derive the Bayes factors that help
determine the number of dynamic factors as well as the order of lags in the dynamic
factor model.
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Figure 3: N=10, T=200. Interval estimates of the factors: two SE error bands
f1

Two sigma bands (shaded area) V.S. true factors, (N=10, s=1, h=2)
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Figure 4: N=100,T=200. Point estimates of the factors: Posterior mean

0 50 100 150 200
−4

−2

0

2

4

f1

 

 

true

estimates

0 50 100 150 200
−4

−2

0

2

4

Time

f2

 

 

true

estimates

34



Figure 5: N=100,T=200. Interval estimates of the factors: two SE error bands
f1

Two sigma bands (shaded area) V.S. true factors, (N=100, s=1, h=2)
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Figure 6: Interval estimates of the impulse response function given one std change
of f1’s innovation.
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Remark: the blue line represents the true impulse response function.
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Figure 7: Interval estimates of the impulse response function given one std change
of f2’s innovation.

N=10

d
(f

1
)

0 5 10
−0.5

0

0.5

1
N=100

d
(f

1
)

0 5 10
−0.5

0

0.5

1

N=10

d
(f

2
)

0 5 10
−0.5

0

0.5

1
N=100

d
(f

2
)

0 5 10
−0.5

0

0.5

1

Figure 8: The global yield factor: posterior median and 90% confidence bands.
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Figure 9: Variance decomposition of country yields at maturities of 3, 12, 60, 120
months.
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Remark: the blue line with squares represents the variance explained by the global factor, and the

red line with crosses by the country factors.
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Figure 10: Impulse responses of global factor to shocks of country factors.
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Figure 11: Impulse responses of country factors given one unit shock to US factor.
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Figure 12: Impulse responses of country factors given one unit shock to Canada
factor.
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Figure 13: Impulse responses of country factors given one unit shock to UK factor.
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Figure 14: Impulse responses of country factors given one unit shock to Germany
factor.
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Figure 15: Impulse responses of country factors given one unit shock to Sweden
factor.
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Figure 16: Impulse responses of country factors given one unit shock to Switzerland
factor.
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Figure 17: Impulse responses of country factors given one unit shock to Japan factor.
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Figure 18: Impulse responses of country factors given one unit shock to Australia
factor.

US  to d(Aus)

0 10 20
−1

0

1
Can to d(Aus)

0 10 20
−1

0

1
UK  to d(Aus)

0 10 20
−1

0

1

Ger to d(Aus)

0 10 20
−1

0

1
Swe to d(Aus)

0 10 20
−1

0

1
Swi to d(Aus)

0 10 20
−1

0

1

Jap to d(Aus)

0 10 20
−1

0

1
Aus to d(Aus)

0 10 20
−1

0

1
New to d(Aus)

0 10 20
−1

0

1

Figure 19: Impulse responses of country factors given one unit shock to New Zealand
factor.
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11 Appendix A: Proof of Propositions

Proof of Proposition 1: Let A be a full rank q × q rotation matrix. Left-multiply
the dynamic factors ft by A and right-multiply the loading matrix Λj by A−1,
j ∈ {0, 1, ..., s}. After the rotation, the new factors f̃t = Aft have a V AR (h)
representation given below

f̃t = AΦ1A
−1f̃t−1 + · · · + AΦhA−1f̃t−h + Aεt.

The observation equation (1) after the rotation becomes

Xt = Λ0A
−1f̃t + Λ1A

−1f̃ t−1 + · · · + ΛsA
−1f̃t−s + et.

If under the current normalization, the only admissible A is a diagonal matrix with
either 1 or -1 on the diagonal, then both the factors and factor loadings are identified
up to a sign change. The normalization var (Aεt) = Iq implies that

AA′ = Iq (26)

or A is an orthonormal matrix. Next, let

Λ0 =



























λ11 0 · · · 0

λ21 λ22
. . .

...
...

...
. . . 0

λq1 · · · · · · λqq
... · · · · · ·

...
λN1 · · · · · · λNq



























, A−1 =









a11 · · · a1q
...

. . .
...

aq1 · · · aqq









.

Then the normalization of factor loadings requires Λ0A
−1 to be a lower triangular

matrix, i.e.,


























λ11 0 · · · 0

λ21 λ22
. . .

...
...

...
. . . 0

λq1 · · · · · · λqq
... · · · · · ·

...
λN1 · · · · · · λNq



































a11 · · · a1q
...

. . .
...

aq1 · · · aqq









=



























λ∗
11 0 · · · 0

λ∗
2 λ∗

22
. . .

...
...

...
. . . 0

λ∗
q1 · · · · · · λ∗

qq
... · · · · · ·

...
λ∗

N1 · · · · · · λ∗
Nq



























, (27)

from which we obtain aij = 0 for any i, j such that i < j, or A−1 is lower triangular
given the assumption that λii 6= 0, λ∗

ii 6= 0, i = 1, ..., q. Also note that equation (26)
implies A−1 · (A−1)

′
= Iq. Use (A−1)

′
to right multiply both sides of equation (27)

to obtain

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=
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from which we obtain aij = 0 for any i, j such that i > j. In sum we have proved
that

A−1 = diag {a11, ..., aqq} .

Given that A−1 · (A−1)
′

= Iq, we obtain aii = 1 or −1 for all i = 1, ..., q. So the
rotation matrix A is also a diagonal matrix with either 1 or -1 on the diagonal.

This proves that the proposed normalization DFM1 identifies both the dynamic
factors and the corresponding dynamic factor loadings up to a sign change.

As a normalization, we may assume λii > 0 so that both the dynamic factors and
the associated dynamic factor loadings are fully identified. Q.E.D.

Proof of Proposition 2: Let A be a full rank q × q rotation matrix A. Left-
multiply the dynamic factors ft by A and right-multiply the loading matrix Λj by
A−1, j ∈ {0, 1, ..., s}. If under DFM2, the only admissible A is Iq, then both the
factors and factor loadings are uniquely identified. DFM2 implies that both Λ0 and
the new dynamic factor loading Λ̃0 must have Iq as its upper q×q block. This implies
IqA

−1 = Iq, or A−1 = Iq, or A = Iq. Q.E.D.

Proof of Proposition 3: By equation (8),









X1
t

...
XC

t









=






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W Λ1

C
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. . .
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C










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




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f 1
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...
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











+









e1
t
...

eC
t









. (28)

Let R be a rotation matrix. Left-multiply the factors by R and right-multiply the
loading matrix by R−1. If under the current normalization, the only admissible R
is a diagonal matrix with either 1 or -1 on the diagonal, then both the factors and
factor loadings are identified up to a sign change. From Wang (2010), the multi-
level factor structure implies that the only admissible rotation matrix R takes the
following form,

R =













A 0 · · · 0
B1 A1 · · · 0
...

...
. . .

...
BC 0 · · · AC













.

Denote

Ht =













fW
t

f 1
t
...

fC
t













.

Then the DGP for the factors implies that Ht follows a VAR(1) process with the
innovation being i.i.d. N (0, I),

Ht = ρHt−1 + Ut, Ut ∼ N(0, I).
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After the rotation, we obtain H̃t = RHt. And H̃t follows a VAR(1) process given
below,

H̃t = RρR−1H̃t−1 + Ũt, Ũt = RUt ∼ N(0, RR′).

where the normalization on the innovation of factors implies that

RR′ =













A 0 · · · 0
B1 A1 · · · 0
...

...
. . .

...
BC 0 · · · AC

























A′ B′
1 · · · B′

C

0 A′
1 · · · 0

...
...

. . .
...

0 0 · · · A′
C













= I.

This in term implies that

B1 = · · · = BC = 0, and

AA′ = I, AcA
′
c = I, c = 1, ..., C. (29)

In sum we have

R =













A 0 · · · 0
0 A1 · · · 0
...

...
. . .

...
0 0 · · · AC













.

We then show that the assumption that Λ1
W is lower triangular implies A is a diagonal

matrix with either 1 or -1 on the diagonal. Notice that the inverse of R has the
following form

R−1 =













A∗ 0 · · · 0
0 A∗

1 · · · 0
...

...
. . .

...
0 0 · · · A∗

C













,

where A∗ = A−1, A∗
c = A−1

c . Then after the rotation the factor loading matrix in
(28) becomes









Λ1
W Λ1

C
...

. . .

ΛC
W ΛC

C





















A∗ 0 · · · 0
0 A∗

1 · · · 0
...

...
. . .

...
0 0 · · · A∗

C













=









Λ1
W A∗ Λ1

CA∗
1

...
. . .

ΛC
W A∗ ΛC

CA∗
C









Let

Λ1
W =



























λ11 0 · · · 0

λ21 λ22
. . .

...
...

...
. . . 0

λk1 · · · · · · λkk
... · · · · · ·

...
λn11 · · · · · · λn1k



























, A∗ =









a11 · · · a1k
...

. . .
...

ak1 · · · akk









.
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Then the normalization of factor loadings implies Λ1
W A∗ is a lower triangular matrix,

i.e.,



























λ11 0 · · · 0

λ21 λ22
. . .

...
...

...
. . . 0

λk1 · · · · · · λkk
... · · · · · ·

...
λn11 · · · · · · λn1k



































a11 · · · a1k
...

. . .
...

ak1 · · · akk









=



























λ∗
11 0 · · · 0

λ∗
2 λ∗

22
. . .

...
...

...
. . . 0

λ∗
k1 · · · · · · λ∗

kk
... · · · · · ·

...
λ∗

n11 · · · · · · λ∗
n1k



























, (30)

from which we obtain aij = 0 for any i, j such that i < j, or A∗ is lower triangular.
Also note that equation (29) implies A∗ · (A∗)′ = I. Use (A∗)′ to right multiply both
sides of equation (30) to obtain



























λ11 0 · · · 0

λ21 λ22
. . .

...
...

...
. . . 0

λk1 · · · · · · λkk
... · · · · · ·

...
λn11 · · · · · · λn1k



























=



























λ∗
11 0 · · · 0

λ∗
2 λ∗

22
. . .

...
...

...
. . . 0

λ∗
k1 · · · · · · λ∗

kk
... · · · · · ·

...
λ∗

n11 · · · · · · λ∗
n1k



































a11 · · · ak1
...

. . .
...

a1k · · · akk









,

from which we obtain aij = 0 for any i, j such that i > j. In sum we have proved
that

A∗ = diag {a11, ..., akk} .

Again, from A∗ · (A∗)′ = I we obtain aii = 1 or −1 for all i = 1, ..., k. Since A
is the inverse of A∗, A is also a diagonal matrix with either 1 or -1 on diagonal
terms. Similarly, we may prove that the assumption Λc

C being lower triangular
implies Ac is a diagonal matrix with either 1 or -1 on the diagonal. In sum, the
rotation matrix R is a diagonal matrix with either 1 or -1 on the diagonal. With
the extra condition that the diagonal terms of factor loadings are strictly positive,
the rotation matrix R becomes an identify matrix. This proves that the proposed
normalization separately identifies both the world factor and the country factors and
the corresponding loadings. Q.E.D.

12 Appendix B: Positive-definite conditional co-

variance matrix

In real applications, numerical round-off errors could result in an indefinite covariance
matrix although the matrix should be positive definite. This situation arises more
frequently for high dimensional covariance matrices. We provide an algorithm to
calculate the variance of a conditional normal distribution such that it is always
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positive-definite7. Let
[

Xp×1

Yq×1

]

∼ N

([

µX

µY

]

,

[

P11 P12

P21 P22

])

.

Then for the conditional distribution of Y |X

var (Y |X) = P22 − P21P
−1
11 P12

which is assumed to be positive definite. However, numerical round-off errors might
produce an indefinite var (Y |X). To handle this, we propose a numerically sta-
ble algorithm to calculate var (Y |X) which is always positive definite as long as
var ([X; Y ]) is positive definite.

Let P = [P11, P12; P21, P22]. Then

P −1 =





∗ ∗

∗
(

P22 − P21P
−1
11 P12

)−1



 .

So var (Y |X) = P22 − P21P
−1
11 P12 = ((P −1)22)

−1
. We first conduct singular-value-

decomposition (SVD) of P to obtain

P = USV ′

then
P −1 = US−1V ′.

Because P is positive definite, S is diagonal with positive diagonal elements, and
U = V , UU ′ = Ip+q. Write U and S as block matrices conformable to the blocks of
P

U =

[

U11 U12

U21 U22

]

, S =

[

S11 0
0 S22

]

.

Define a q × (p + q) matrix

M =
[

U21S
− 1

2

11 , U22S
− 1

2

22

]

then
(

P −1
)

22
= MM ′.

Perform singular value decomposition for M ′ to obtain

M ′ = UmSmV ′
m

where Um is (p + q) × (p + q), Sm is (p + q) × q, Vm is q × q. This admits a VmDV ′
m

representation of (P −1)22 given below
(

P −1
)

22
= VmS ′

mSmV ′
m = VmDV ′

m

7The algorithm is implemented in the Matlab function “schur_pos.m” in the accompanying
computer program files.
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where D = S ′
mSm is q × q. This shows that

((

P −1
)

22

)−1
= VmD−1V ′

m

whose numerical outcome is always positive definite. In computationally efficient
Matlab implementation, D = diag(diag(Sm)2).

13 Appendix C: Square-root form of the Kalman

filter

We write the square-root form of Kalman filter Matlab program, “k_filter_srf.m”,
based on Bierman (1977), Evenson (2009), and Tippett et al. (2003).

Consider a state space parametrized by {A, C, Q, R}. The Kalman filter covari-
ance evolution equations are given by

Pt|t−1 = APt−1|t−1A
′ + Q

Pt|t = (I − KtC) Pt|t−1

Kt = Pt|t−1C
′
(

CPt|t−1C
′ + R

)−1
= Pt|tC

′R−1 (31)

Let the matrix square root representation of Pt|t−1 and Pt|t be (not unique)

Pt|t−1 = Zf
t

(

Zf
t

)′
, Pt|t = Za

t (Za
t )′ . (32)

The Potter method for the square-root form Kalman update (Bierman, 1977) is

Pt|t = Za
t (Za

t )′ =
(

I − Pt|t−1C
′
(

CPt|t−1C
′ + R

)−1
C
)

Pt|t−1

= Zf
t

(

I −
(

Zf
t

)′
C ′
(

CZf
t

(

Zf
t

)′
C ′ + R

)−1

CZf
t

)

(

Zf
t

)′

= Zf
t

(

I − VtD
−1
t V ′

t

) (

Zf
t

)′

where Vt =
(

CZf
t

)′
, Dt = V ′

t Vt + R. Then update Za
t as

Za
t = Zf

t Mt

where Mt is a square-root of I − VtD
−1
t V ′

t , i.e., MtM
′
t = I − VtD

−1
t V ′

t ( notice that
this decomposition is not unique, subject to any full rank orthogonal transformation).
The technical issue would be the numerical stable calculation of Mt.

To obtain Mt, we use

I − VtD
−1
t V ′

t =
(

I +
(

Zf
t

)′
C ′R−1CZf

t

)−1

.

In fact, by the Sherman-Morrison-Woodbury identity

(A + UCV )−1 = A−1 − A−1U
(

C−1 + V A−1U
)

V A−1.
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It follows that

(

I +
(

Zf
t

)′
C ′R−1CZf

t

)−1

= I −
(

Zf
t

)′
C ′
(

R + CZf
t

(

Zf
t

)′
C ′
)−1

CZf
t

= I − VtD
−1
t V ′

t

Then we may proceed to use the ensemble transform Kalman filter (ETKF) (Tippett
et al. (2003))

Za
t = Zf

t Ht (Γt + I)−1/2 (33)

where HtΓtH
′
t is the eigenvalue decomposition of

(

Zf
t

)′
C ′R−1CZf

t . Note that the

eigenvalue decomposition of I−VtD
−1
t V ′

t is Ht (Γt + I)−1 H ′
t and thus Mt = Ht (Γt + I)−1/2

is a square root of I − VtD
−1
t V ′

t .
For a model with N = T = 100, q = 2, h = 2, s = 1, it takes less than 400 seconds

to obtain a Gibbs-sampling chain size of ten thousand using a standard Intel Core
i7 2GB RAM computer.
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