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1. Introduction

The game theory literature reluctantly accepted the idea that players will some-

times use the outcome of a random device in order to determine their action. Aumann

(1987, page 15) writes that “Practically speaking, the idea that serious people would

base important decisions on the flip of a coin is difficult to accept”. But since in

many games pure-strategy Nash equilibrium fails to exist, mixed strategies are still

an inevitable part of the theory.

Recall that the reason for the need to randomize in equilibrium is to prevent

the possibility that other players can gain by deviating. In other words, players

use mixed strategies in order to ‘hide’ their action from other players and not in

order to improve their own utility. Thus, the assumption that players can perfectly

observe the strategies of their opponents underlies the necessity of randomization.

The contribution of the current paper is to show that when this assumption is relaxed

in a natural way the need to randomize in equilibrium is sometimes eliminated. This

intuition is best summarized in Pearce’s (1984, page 1034) paper on rationalizabilty:

“The need for players to randomize in many Nash equilibria has long

been considered somewhat puzzling. The incentive for randomization

seems to be the need to “evade” one’s opponents. But in the present

context, opponents are not always able to figure out a player’s strate-

gic choice; such a player can hide without randomizing, camouflaged

by the uncertainty of the other players.”

If players only partially observe their opponents’ strategies then one should define

what one means by equilibrium. The notion of equilibrium we employ here is in the

spirit of Fudenberg and Levine’s (1993A) Self-Confirming Equilibrium (SCE). That

is, equilibrium is viewed here as a steady state of a recurring interaction with no

strategic links among the repetitions. Perhaps the context which makes this solution

concept most plausible is the one in which a fixed game is being played repeatedly

but by different players in different periods1. In this context, a steady state is a

strategy tuple such that (i) every player’s strategy is a best response to some belief

about his opponents’ strategies and (ii) the belief of every player is not contradicted

by the information he obtains.

Unlike Fudenberg and Levine (1993A) our interest here is in normal form games.

Every player has an exogenously given information structure which maps action

profiles into signals. Since typically several action profiles induce the same signal,

each player will face uncertainty as to the actual profile that is being played. A

consistent conjecture for a player is any probability distribution over opponent’s

action profiles which induce the same signal as the one observed by this player. A

1This idea is the subject of Fudenberg and Levine’s (1993B) paper where players leave the pop-
ulation after a finite number of rounds.
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(pure) SCE with respect to a given information structure is any action profile in

which the action of every player is a best response to some consistent conjecture.

We differentiate between two versions of the consistency requirement. A conjecture

is strongly consistent if each action profile in its support induce the same signal

as the one that the player actually observed. This is the standard notion in the

literature. A weaker version of consistency, which we introduce here, only requires

that the expected signal2 according to the conjecture coincides with the observed

signal. In accordance, an action profile is Strong SCE (SSCE) if player’s actions are

best responses to strongly consistent conjectures and Weak SCE (WSCE) if player’s

actions are best responses to weakly consistent conjectures.

Of course, we are not the first to use imperfect monitoring of other players actions

as a way to achieve pure equilibrium3. The main difference between previous works

and the current one is that we restrict attention to particular information structures

and classes of games. Specifically, our results are limited to two kinds of information

structures: In the first the signal to every player is his own payoff, while in the second

the information available to every player is the distribution of his opponents among

the various actions. The implications for the existence of pure SCE of each of these

information structures are considered in several well-known classes of games.

The next section illustrates the main ideas of this paper by means of several

examples. The general model is described in Section 3. Section 4 deals with the case

where each player’s information is his own payoff while in Section 5 the information

consists of the number of players that chose each action. A discussion of related

literature is deferred to Section 6. We conclude in Section 7 with some remarks.

2. Motivating examples

2.1. Rock-Paper-Scissors. The following zero-sum game is well known as Rock-

Paper-Scissors.

R

P

S

R P S

0
∗

1

−1

−1

0

1

1

−1

0

Entries in the matrix are the payoffs paid by the column player (player 2) to the

row player (player 1). The only Nash equilibrium is the strategy pair in which every

player plays each strategy with equal probability of 1
3 . In particular, there is no pure

equilibrium in this game.

2This notion of consistency is suitable only in the case where the set of signals has a linear
structure so that expectations can be calculated (see Section 3).

3As can be seen in the above quotation, this idea goes back at least to Pearce (1984).
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In contrast to the Nash paradigm, assume that both players have only partial

information about the strategy of their opponent. Specifically, assume that every

player’s signal is the payoff he obtains when playing his chosen action.

Now, consider the case where the action profile (R, R) is being played (the cell

marked with an asterisk). Player 1’s exclusive information is that when he plays R

he gets a payoff of 0. Any conjecture of player 1 about the strategy of player 2 of

the form (1 − 2α, α, α), 0 ≤ α ≤ 1
2 is consistent with 1’s signal in the weak sense

that when 1 plays R and 2 plays such a strategy the average payoff to 1 is 0. In

particular, it is possible that player 1’s conjecture is that α = 1
3 which means that

player 2 is playing his equilibrium strategy. A best response for player 1 in this case

is playing R.

Similarly, player 2’s belief might be that player 1 is playing each of his 3 actions

with equal probabilities. A best response for player 2 in this case is to play R.

Therefore, in the action profile (R, R) every player is playing a best response to a

conjecture which is consistent with his information. Obviously, the same holds for

the action profiles (P, P ) and (S, S).

2.2. Location game. A unit measure of consumers is uniformly distributed in the

[0, 1] interval. Each of three sellers (the players of this game) should choose a location

from the set {a, b, c} (see picture). The payoff of a seller is equal to the measure of

the set of consumers to whom he is the closest one (sellers split equally the payoff

when located in the same place).

• • •
0 1

3
1
2

2
3

1

a b c

It is straightforward to verify that no pure equilibrium exists in this game. How-

ever, like in the previous example assume that every seller only knows his own payoff.

We claim that this partial information makes any action profile in which all three

sellers choose the same action a potentially steady state.

To see that this is indeed the case notice that there is a (completely mixed) Nash

equilibrium in which every player plays each of the three actions with probability 1
3 .

When this equilibrium profile is played the (expected) payoff to every player is 1
3 . In

particular this means that if one of the players (say player 1) chooses any pure action

while the other two players play the above equilibrium strategies then the payoff to

player 1 will also be 1
3 .

Now, if all three players choose the same action (say a) then the payoff to each

one of them is again 1
3 . Thus, when all three players are playing a player 1 might

conjecture that players 2 and 3 are actually playing their equilibrium strategies. Such

a conjecture is consistent in the sense that the actual payoff to player 1 (which is

the information he has) is equal to the expected payoff according to 1’s conjecture.
4



If this is the belief of player 1 then he is indifferent between the three actions. In

particular a is a best response to his belief. The same is true for players 2 and 3 and

for actions b and c.

2.3. Majority rule game. A society of three players should choose between 2 al-

ternatives, a or b. Each of the 3 players can cast a vote for one of the alternatives or

not to cast a vote at all. The winning alternative is chosen according to a majority

rule. In case of a tie, the winner is decided by some predefined and commonly known

tie-braking rule. Players’ preferences are defined over the set of alternatives, so that

the utility of every player depends only on the identity of the winner.

Fix some arbitrary preferences for the three players4. Existence of pure equilibria

is not a question in this case since if all three players choose the same alternative then

no player can change his payoff by deviating. Moreover, every player has a weakly

dominant strategy which is to vote for his favorite alternative. However, there are

also action profiles which are not equilibria. This is the case when a certain player

is pivotal and can change the outcome so that his utility increases.

Assume, however, that players can only observe the winning alternative (or, equiv-

alently, their own payoffs). In this case, every action profile is potentially stable since

each player might think that the other two voted for the winner so that his ballot

cannot make any difference.

2.4. Hawaii versus Caribbeans. Consider the case where each of three neighbors

should choose whether to go to a vacation at Hawaii (H) or at the Caribbeans (C).

Players are indifferent between the two locations but each of them would like to avoid

his ‘right’ neighbor. That is, player 1 would like to avoid player 2, player 2 would like

to avoid player 3 and player 3 would like to avoid player 1. Specifically, the payoffs

to the players are given in the following matrices where 1 chooses row, 2 column and

3 matrix.

C

H

H C

1, 0, 1∗

0, 0, 0

0, 1, 1∗

1, 1, 0∗

C

H

H C

1, 1, 0∗

0, 1, 1∗

0, 0, 0

1, 0, 1∗

H C

Clearly, there is no pure equilibrium in this game. But what happens if players are

unable to observe the identity of their opponents in each of the locations? That is,

if we assume that each player’s information is only the distribution of players among

the two locations, what action profiles can be stable?

4For simplicity we assume that no player is indifferent between the two alternatives.
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The answer is that every action profile in which not all players are in the same

location (the cells marked with asterisks) is potentially stable. This is so since the

(unique) unfortunate player who couldn’t avoid his ‘right’ neighbor might be thinking

that he actually succeeded in doing so, and that he matched the choice of his ‘left’

neighbor. If this is his conjecture then he believes that he will only lose utility by

deviating.

3. The model

3.1. Games and information structures. A normal form game G is a tuple G =

(N, {Ai}i∈N , {ui}i∈N ). N = {1, 2, . . . , n} is the set of players. For each i ∈ N , Ai

is a finite non-empty set of pure strategies (actions) of player i. Let A = ×i∈NAi

be the set of action profiles. For every i ∈ N , ui : A → IR is the payoff function of

player i.

The following notation will be used throughout the paper. If G is a game as above

and i ∈ N then A−i denotes the set of action profiles of players other than i, that is

A−i = ×j∈N\{i}Aj . A typical element of A−i will be denoted by a−i. We will often

write (ai; a−i) instead of a, where a is the action profile in which player i is playing

ai ∈ Ai and other players are playing according to a−i ∈ A−i. If X is a finite set

then ∆(X) is the set of probability measures over X. The set of mixed strategies of

player i is ∆(Ai). As usual, every ui is linearly extended to ∆(A). The extension

will also be denoted by ui.

To the standard description of a normal form game we now add a new ingredi-

ent. This is the information structure which determines the signal that every player

observes as a function of the chosen profile of actions. Formally,

Definition 1. Fix a game G.

(i) An information structure for player i is a pair Ii = (Si, si) where Si is a set

of signals and si : A → Si is an arbitrary signal function.

(ii) An information structure in G is a list of information structures I = {Ii}i∈N ,

one for every player in G.

In some cases it is possible to compare the informativeness of two information

structures in a game G. Intuitively, one information structure I is more informative

(in a weak sense) than another information structure I ′ if every player can deduce

from the signal he observes at I the signal that he would have seen had the structure

been I ′.

Definition 2. Let I = (Si, si)i∈N and I ′ = (S′
i, s

′
i)i∈N be two information structures

in G. I is more informative than I ′ if s′i is si-measurable for every i ∈ N .

Equivalently, I is more informative than I ′ if the partition of A induced by si is finer

than the partition induced by s′i, for every i ∈ N .
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3.2. Weakly and strongly consistent conjectures. The information available

to player i about the actions profile is determined by the signal function si. Since

typically many action profiles generate the same signal, player i will face uncertainty

as to the actual profile being played. According to the standard paradigm, player i’s

preferences in this case can be described by his expected payoff, where the expectation

is taken with respect to a certain probability distribution representing i’s belief. We

will refer to this belief as i’s conjecture. Formally, a conjecture of player i is any

probability distribution µ−i ∈ ∆(A−i).

Notice that Definition 1 does not explicitly require that a player is able to deduce

his own action from the signal. Thus, a priori it may be that, while playing ai,

player i believes that he actually plays a′i (or a mixture of a′i and a′′i ). But since we

define a conjecture of i to be an element of ∆(A−i) (and not of ∆(A)) such awkward

beliefs are being ruled out. Thus, it is an inherent property of our model that every

player knows the action he chooses.

Definition 3. Let I be an information structure in a game G and let a ∈ A. A con-

jecture µ−i ∈ ∆(A−i) of player i is strongly consistent at a if si(a) = si(ai; a
′
−i)

for every a′−i in the support of µ−i.

The conjecture of i is strongly consistent at a iff it gives probability 1 to the set

of action profiles a′−i such that, when combined with ai, generate the same signal as

a. We will also use a weaker version of consistency. This weaker version can only

be defined if additional assumptions on the structure of the signals set Si are made.

Namely, each Si is assumed to be a subset of some linear space. This allows to

compute the expectation of si with respect to some probability measure on A. Weak

consistency is defined as follows.

Definition 4. Let I be an information structure in a game G where, for every i ∈ N ,

Si is a subset of some linear space. A conjecture µ−i ∈ ∆(A−i) of player i is weakly

consistent at a if
∫
A−i

si(ai; a
′
−i)dµ−i(a

′
−i) = si(a) for every i ∈ N .

Thus, weak consistency at a only requires that the expected signal according to

the conjecture µ−i is equal to the signal of i at a. Since A−i is finite the integral

in the above definition is nothing but a finite convex combination of elements in Si.

Notice that every strongly consistent conjecture of some player i at a is also weakly

consistent for i at a.

3.3. Equilibrium. We now define two versions of SCE. The difference between the

two versions is only in the meaning of the consistency requirement. Since this paper

only deals with pure SCE we do not define here SCE in mixed strategies. Whenever

we write SCE we mean pure SCE.

Definition 5. Let G be a game and I an information structure in G.

(i) A profile of actions a ∈ A is a Strong Self-Confirming Equilibrium (SSCE)
7



if, for every i ∈ N , there is a strongly consistent conjecture µ−i ∈ ∆(A−i) such that

ui(ai; µ−i) ≥ ui(a
′
i; µ−i) for every a′i ∈ Ai.

(ii) A profile of actions a ∈ A is a Weak Self-Confirming Equilibrium (WSCE)

if, for every i ∈ N , there is a weakly consistent conjecture µ−i ∈ ∆(A−i) such that

ui(ai; µ−i) ≥ ui(a
′
i; µ−i) for every a′i ∈ Ai.

The following lemma lists several simple properties of SSCE and WSCE. Since

these properties are straightforward consequences of the definitions the proofs are

omitted.

Lemma 1. Fix a game G.

(1) Every SSCE in G is also a WSCE in G (with respect to the same information

structure).

(2) If I and I ′ are two information structures in G such that I is more infor-

mative than I ′ then every SSCE with respect to I is a SSCE with respect to

I ′.

(3) Every (pure) Nash equilibrium of G is a SSCE of G, no matter what is the

information structure.

(4) If ai ∈ Ai is a strictly dominant action of player i then there is no WSCE

(and by the first item of this lemma no SSCE) in which player i plays ai.

4. Observable payoffs

In the current section we restrict attention to the case where the signal to each

player is (only) his own payoff5. Notice that in many economic situations this is the

information available to agents. To give just one example, a firm may know it’s own

profits without knowing the production levels of other firms in the market.

The formal definition of the information structure is as follows. Fix a game G.

For every i ∈ N , the set of signals for player i is Si = IR. The signal function for i

is defined by si(a) = ui(a). When this is the information available to each player we

will say that G is a game with observable payoffs.

Every Si has a natural linear structure so expectations of signal functions can be

easily calculated. Notice that a weakly consistent conjecture for i at a in this case is

any probability distribution µ−i ∈ ∆(A−i) with the property that ui(ai;µ−i) = ui(a).

Therefore, a WSCE is an action profile a such that, for every player i, ai is a best

response to some µ−i satisfying ui(ai; µ−i) = ui(a).

4.1. Zero-sum games. We start with a characterization of WSCE in two-person

zero-sum games. Thus, we assume that N = {1, 2} and u1(a1, a2) = −u2(a1, a2) for

every a1 ∈ A1 and a2 ∈ A2. The value of the game (for player 1) is denoted by6 v.

5Lehrer (1992) considers a similar situation but in the context of a repeated game.
6Thus, if each player plays a maxmin strategy then player 2 pays v to player 1.
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Proposition 1. The pair a = (a1, a2) is a WSCE of a zero-sum game G with

observable payoffs iff the following two conditions hold:

(i) u1(a) = v ; and

(ii) ai is a best response to a maxmin strategy of player −i, i = 1, 2.

Proof. Assume first that (i) and (ii) hold. For i = 1, 2 let µ−i be the maxmin strategy

of player −i implied by (ii). Since ai is a best response to the maxmin strategy µ−i

it must be that ui(ai, µ−i) = v. Thus, by (i), µ−i is a weakly consistent conjecture

of player i at a. It follows from (ii) that a is a WSCE.

Conversely, assume that a is a WSCE. Then there are strategies µ−i, i = 1, 2 such

that for i = 1, 2

ui(ai; µ−i) = ui(ai; a−i)(1)

ui(ai; µ−i) ≥ ui(a
′
i;µ−i) ∀a′i ∈ Ai(2)

Combining (1) and (2) above, and not forgetting that u1 = −u2 we get that for every

(a′1, a
′
2) ∈ A1 × A2

u1(a
′
1, µ2) ≤ u1(a1, µ2) = u1(a1, a2) = u1(µ1, a2) ≤ u1(µ1, a

′
2)(3)

Since the inequality holds for every a′2 ∈ A2 it also holds for every mixed strategy

of player 2. In particular, one can replace a′2 with µ2. It follows that µ1 is a best

response of player 1 to µ2. Similarly, it is easy to see that µ2 is a best response

of player 2 to µ1. Thus, the pair of conjectures (µ1, µ2) is an equilibrium of G. In

particular, u1(µ1, µ2) = v and, for i = 1, 2, µi is a maxmin strategy for player i.

Therefore, (i) and (ii) are consequences of (3) and (2) respectively.

The Rock-Paper-Scissors example of Section 2 shows that there may be WSCE

which are not Nash equilibria of the game. Moreover, it is also possible that there

will be SSCE which are not Nash. For instance, consider the following zero-sum

game.

B

T

L R

0

0
∗

1

−1

The numbers in the matrix are the payoffs to the row player (player 1). The action

pair (T,L) (the cell marked with an asterisk) is not an equilibrium of the game since

player 2’s best response to T is R. However, it is a SSCE. Indeed, player 1 is playing

a best response to the actual strategy of player 2, while player 2 is playing a best

response to the strongly consistent conjecture (at (T, L)) that the action of player 1

is B.
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4.2. Constant-sum symmetric games. The next class of games we consider is

that of n-players constant-sum symmetric games. Thus, in this subsection we assume

that all the players in the game have the same set of actions, denoted B. That is,

A = Bn.

A game G is constant-sum if there is c ∈ IR such that
∑

i∈N ui(a) = c for every

a ∈ A. To define symmetry we first introduce the following notation. If a ∈ A and

π : N → N is a permutation of the players then π(a) ∈ A is defined by π(a)i = aπ(i).

A game G is symmetric if ui(a) = uj(π(a)) for every i, j ∈ N (possibly i = j), every

a ∈ A and every permutation π satisfying π(j) = i.

Proposition 2. Every symmetric constant-sum game with observable payoffs has a

symmetric WSCE.

Proof. It is well known that every symmetric game has a symmetric equilibrium,

possibly in mixed strategies. Let µ ∈ ∆(B) be one such equilibrium (that is, µ is

a best response of every player to everybody else playing µ). Let b ∈ B be in the

support of µ, and denote b ∈ A the action profile in which all the players choose b.

We show that b is a WSCE.

Fix i ∈ N . Since G is a symmetric and constant-sum it follows that ui(b) = c
n
.

Similarly, ui(µ) = c
n

where µ is the strategy profile in which everyone plays µ. Denote

(b;µ
−i

) the strategy profile in which player i plays b and any other player plays µ.

Since µ is an equilibrium with b in its support it must be that ui(b; µ−i
) = c

n
. This

implies that µ
−i

is a weakly consistent conjecture for player i at b and that b is a

best response to µ
−i

.

Remark 1. The location game of subsection 2.2 is an example of a constant-sum

symmetric game. Obviously, the example can be significantly generalized while main-

taining these two properties. Specifically, the [0, 1] interval with the uniform measure

may be replaced by any subset of an Euclidean space endowed with an arbitrary mea-

sure. The possible locations for the players can be any (finite) set of points.

4.3. Social choice games. The games considered in this subsection arise when a

society should choose among several possible outcomes. The action that each player

chooses can be seen as the massage that this player sends to some mechanism. The

mechanism specify the chosen outcome for each profile of massages. The character-

istic property of these games is that the preferences of every player are defined on

the set of outcomes and not on the set of action profiles. In other words, the payoff

of every player depends on the action profile only through the prevailing outcome.

Formally, let O be a set of outcomes. We say that G is a social choice game

associated with O if there is a mechanism f : A → O such that the utility of every

player i ∈ N satisfies ui(a) = ui(a
′) whenever f(a) = f(a′). If a mechanism f

satisfies this last property we say that f is sufficient for G.
10



Definition 6. Let G be a social choice game associated with outcomes set O and let

f be a sufficient mechanism for G. Player i ∈ N can prevent outcome o ∈ O if

for every a−i ∈ A−i there is ai ∈ Ai such that f(ai; a−i) 6= o.

Proposition 3. Let G be a social choice game with observable payoffs associated

with outcomes set O and let f be a sufficient mechanism for G. If o ∈ O is an

outcome which no player can prevent then every a ∈ f−1(o) is a SSCE.

Proof. By Lemma 1 (2) it is sufficient to prove the proposition when the signal

to every player is the outcome (since every player can deduce his payoff from the

outcome). Assume that a ∈ f−1(o) and that no player can prevent o. Fix i ∈ N .

Since i can’t prevent o there is a′−i ∈ A−i such that f(a′i; a
′
−i) = o for every a′i ∈ Ai.

In particular, f(ai; a
′
−i) = o which means that a′−i is a strongly consistent conjecture

for i at a. Moreover, ai is a best response to a′−i since player i cannot change his

payoff by deviating.

To illustrate the proposition consider the following example. There are 3 players

and 2 actions (c and d) for each player. The set of outcomes is O = {o, o′, o′′}. The

mechanism is given by the following matrices, where player 1 chooses row player 2

column and player 3 matrix.

d

c

c d

o∗

o∗

o∗
o′

d

c

c d

o′′

o∗

o′

o′′

c d

Recall that the utility of the players depend only on the outcome. Player 1’s

preferences satisfy u1(o
′) > u1(o) > u1(o

′′), player’s 2 preferences satisfy u2(o
′) >

u2(o
′′) > u2(o) and 3’s preferences satisfy u3(o

′′) > u3(o) > u3(o
′).

It is easy to check that no pure equilibrium exists in this game. However, if players

only observe their own payoff (which is equivalent to the case where players observe

only the outcome) then every profile that yields the outcome o (the cells marked with

asterisks) is a SSCE. Indeed, every pair of players can guarantee that o will be the

prevailing outcome. In other words, no player can prevent o. Proposition 3 implies

that any profile a ∈ f−1(o) is a SSCE.

An important family of social choice games is the class of ‘majority rule’ games. In

this class the action set of every player is equal to the outcome set7. The prevailing

outcome is the one that was chosen by the largest number of players. If there is

a tie the outcome is chosen according to some predefined and commonly known

tie-breaking rule. An immediate consequence of Proposition 3 is the following.

7It is possible to extend the set of actions by allowing the players not to vote at all.
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Corollary 1. If G is a social choice game with observable payoffs and with at least

3 players such that the outcome is chosen according to a majority rule then every

action profile is a SSCE.

5. Distributional information

In many cases the information available to agents is of anonymous nature. That

is, agents do not know the identity of the the players who chose each action but do

know the distribution of the players among the various actions. For instance, drivers

can hear on the radio the amount of traffic in each route but do not know the identity

of the drivers (and, therefore, the probability of an accident); And a client entering a

bank only sees the number of clients waiting in front of every clerk but do not know

the kind of service that each client requires.

Let B be a finite set of actions. In this section we consider games G such that8

Ai = B for every i ∈ N . Thus, A = Bn. For a ∈ A, we denote by dist(a) the

distribution of players among the actions in B. That is, dist(a) = (dist(a)b)b∈B

where dist(a)b = #{i ∈ N : ai = b} is the number of players who choose the

action b according to a. We say that G is a game with distributional information if

si(a) = dist(a) for every i ∈ N .

5.1. Large continuous games. The seminal work of Schmeidler (1973) demon-

strates that in large anonymous games one should expect pure equilibria to exist. In

Schmeidler’s model the set of players is approximated by a non-atomic measure space.

More recently, the results of Kalai (2004) imply that, with appropriate continuity

condition on the payoff functions, equilibria of finite anonymous games ‘self-purify’

as the number of players grows to infinity9.

In this subsection we use the results of Kalai to derive existence of approximate

SSCE in large continuous games with distributional information. The idea behind

this result is simple: On the one hand we drop the assumption of anonymous payoff

functions, thus considering a more general class of games. On the other hand, the

result we obtain is the existence of (approximate) SSCE and not of (approximate)

Nash equilibrium. The anonymous nature of the information available to the players

compensates for the lack of anonymity in the payoff functions.

For a given ǫ > 0, we define ǫ-SSCE similarly to the definition of ǫ-Nash equi-

librium. Namely, a profile of actions a ∈ A is an ǫ-SSCE (with respect to a given

information structure) if, for every i ∈ N , there is a strongly consistent conjecture

µ−i ∈ ∆(A−i) such that ui(ai; µ−i) ≥ ui(a
′
i;µ−i) − ǫ for every a′i ∈ Ai.

8Our results can easily be extended to the case where the actions available to a player are some
non-empty subset of B

9We do not wish to go into the exact meaning of this statement at the moment. It is only made
to point out that in large continuous and anonymous games pure approximate equilibria exist. For
details see Kalai (2004).
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Let Γ(B) be a family of normal form games such that Ai = B for every player

i ∈ N in every game G ∈ Γ(B). For the next definition we introduce the following

notation. If a−i and a′−i are two profiles of actions of players other than i ∈ N in

some normal form game G ∈ Γ(B) then d(a−i, a
′
−i) = #{j ∈ N \ {i} : aj 6= a′j} is

the number of players which play differently in a−i than in a′−i.

Definition 7. (i) The family Γ(B) is uniformly bounded if there is M > 0 such

that |ui| ≤ M for every i ∈ N and for every G ∈ Γ(B).

(ii) The family Γ(B) exhibits a diminishing effect of a single player if there

is M > 0 such that |ui(ai; a−i)− ui(ai; a
′
−i)| < M

|N | for every G ∈ Γ(B), every i ∈ N ,

every ai ∈ B and every a−i, a
′
−i satisfying d(a−i, a

′
−i) = 1.

Proposition 4. Let Γ(B) be a family of normal form games which is uniformly

bounded and exhibits a diminishing effect of a single player. Then for every ǫ > 0

there is n0 = n0(ǫ) such that in any game G ∈ Γ(B) with at least n0 players and

with distributional information there is an ǫ − SSCE.

Proof. The proof is divided into 3 steps.

Step 1: To any game G ∈ Γ(B) we associate another game G̃ = (N, {Ai}i∈N , {ũi}i∈N )

with the same sets of players and actions. For every i ∈ N , the payoff function ũi is

defined by

ũi(ai; a−i) = max{ui(ai; ā−i) : dist(ai; ā−i) = dist(ai; a−i), ā−i ∈ A−i}.(4)

Thus, the payoff to i when he plays ai and his opponents play a−i is the maximal

payoff he may get when he plays ai and the distribution of his opponents’ choices

induce the same distribution as a−i.

Define Γ̃(B) = {G̃ : G ∈ Γ(B)}. It is easy to check that if Γ(B) is uniformly

bounded and exhibits a diminishing effect of a single player then so is Γ̃(B).

Step 2: We claim that the family Γ̃(B) satisfies the conditions of semi-anonymity

and uniform equicontinuity of Kalai (2004, Definitions 2,3 in page 1637). Semi-

anonymity (full anonymity actually) is a straightforward consequence of the definition

of ũi. Uniform equicontinuity follows from the diminishing effect property when

combined with anonymity. Indeed, for a given ǫ > 0, let δ = ǫ
M |B| where M is the

constant in Definition 7 (ii). It should be shown that if a and a′ are two action

profiles satisfying ai = a′i and |dist(a)b − dist(a′)b| < δ|N | for every b ∈ B then

|ũi(a) − ũi(a
′)| < ǫ.

Fix a player i and two action profiles a, a′ as above. By permuting the players other

than i one can find another action profile a′′ satisfying ai = a′′i , dist(a′′) = dist(a′)

and d(a−i, a
′′
−i) < δ|N ||B|. By anonymity, ũi(a

′) = ũi(a
′′). Repeated use of the

diminishing effect property gives |ũi(a) − ũi(a
′′)| < M

|N | · δ|N ||B| = ǫ. it follows that

|ũi(a) − ũi(a
′)| < ǫ as required.
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Step 3: By Theorem 1 of Kalai (2004, see also subsection 3.2 in page 1642 there),

for every ǫ > 0 there is n0 = n0(ǫ) such that, if G̃ ∈ Γ̃(B) has at least n0 players,

then there is a pure ǫ-Nash equilibrium in G̃. Let a be a pure ǫ-Nash equilibrium in

G̃. To complete the proof, we will show that a is an ǫ-SSCE in G.

Fix a player i ∈ N . Since a is an ǫ-Nash equilibrium in G̃ it follows that

ũi(ai; a−i) ≥ ũi(a
′
i; a−i)−ǫ for every a′i ∈ B. Let ā−i be a maximizer of the righthand

side of (4). Since always ũi ≥ ui we get

ui(ai; ā−i) = ũi(ai; a−i) ≥ ũi(a
′
i; a−i) − ǫ = ũi(a

′
i; ā−i) − ǫ ≥ ui(a

′
i; ā−i) − ǫ.

Finally, since ā−i is a strongly consistent conjecture for i at a, it follows that a is an

ǫ-SSCE in G.

5.2. Congestion games. Congestion games were first introduced by Rosenthal

(1973). Here, however, we use a slightly different model than that of Rosenthal

which is a generalization of the model used by Milchtaich (1996). A game G will be

called congestion game if it has the following two properties10:

(i) The payoff to a player depends only on the action he chooses and on the set of

players who choose the same action as he did. That is, ui(a) = ui(a
′) whenever

ai = a′i and {j ∈ N \ {i} : aj = ai} = {j ∈ N \ {i} : a′j = a′i}.

(ii) For every i ∈ N , every ai ∈ B and every a−i, a
′
−i, if {j ∈ N \ {i} : aj = ai} ⊆

{j ∈ N \{i} : a′j = ai} then ui(ai; a−i) ≥ ui(ai; a
′
−i). In words, the utility of player i

is decreasing (with respect to the inclusion relation) in the set of players that choose

the same action as him.

Notice that we impose no symmetry assumption on the players nor on the ac-

tions. It was shown in Milchtaich (1996, Section 8) that games satisfying (i) and (ii)

above need not have a pure Nash equilibrium11. Also, notice that the Hawaii ver-

sus Caribbeans game of subsection 2.4 is a congestion game with no pure equilibria.

However, when players only have distributional information SSCE do exist, as stated

in the following proposition.

Proposition 5. Every congestion game with distributional information has a SSCE.

Proof. Let G be a congestion game. Define the game G̃ (with the same sets of players

and actions as G) as in the proof of Proposition 4. That is,

ũi(ai; a−i) = max{ui(ai; ā−i) : dist(ai; ā−i) = dist(ai; a−i), ā−i ∈ A−i}.(5)

Claim 1. For every i ∈ N , every ai ∈ B and every a−i, a
′
−i ∈ A−i, if #{j ∈

N \ {i} : aj = ai} = #{j ∈ N \ {i} : a′j = ai} then ũi(ai; a−i) = ũi(ai; a
′
−i).

10Recall that the setup of this section is that all players have the same action set B.
11The class of ‘weighted congestion games’ considered by Milchtaich (1996, Section 8) is narrower

than the class of games considered here. Milchtaich shows that, even in this restricted class, pure
equilibrium may fail to exist. This is in contrast to the class of games considered by Rosenthal
(1973) in which every game has a pure equilibrim.
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That is, the payoff to every player only depends on the action he chooses and on the

number of players playing the same action.

Proof. Let ā−i satisfy dist(ai; ā−i) = dist(ai; a−i) and ũi(ai; a−i) = ui(ai; ā−i). That

is, ā−i is a maximizer of (5) above for (ai; a−i). Denote D = {j ∈ N \{i} : aj = ai},

E = {j ∈ N \ {i} : a′j = ai} and F = {j ∈ N \ {i} : āj = ai}. By assumption

|D| = |E| and by the choice of ā−i, |D| = |F |. It follows that there is ā′−i such that

dist(ai; ā
′
−i) = dist(ai; a

′
−i) and {j ∈ N \ {i} : ā′j = ai} = F . By property (i) of

congestion games and since always ui ≤ ũi we get

ũi(ai; a−i) = ui(ai; ā−i) = ui(ai; ā
′
−i) ≤ ũi(ai; ā

′
−i) = ũi(ai; a

′
−i)

Due to symmetry we have the other inequality. This completes the proof of the

claim.

Claim 2. For every i ∈ N , every ai ∈ B and every a−i, a
′
−i ∈ A−i, if #{j ∈

N \ {i} : aj = ai} ≥ #{j ∈ N \ {i} : a′j = ai} then ũi(ai; a−i) ≤ ũi(ai; a
′
−i).

Proof. Let ā−i, D, E, and F be as in the previous proof. This time we have |F | =

|D| ≥ |E|. Thus, there is ā′−i such that dist(ai; ā
′
−i) = dist(ai; a

′
−i) and {j ∈ N \

{i} : ā′j = ai} ⊆ F . By property (ii) of congestion games we obtain

ũi(ai; a−i) = ui(ai; ā−i) ≤ ui(ai; ā
′
−i) ≤ ũi(ai; ā

′
−i) = ũi(ai; a

′
−i),

which proves the claim.

Claim 3. The game G̃ has a pure Nash equilibrium.

Proof. This follows from the two previous claims and from Theorem 2 in Milchtaich

(1996).

To complete the proof of the proposition it is sufficient to show that every pure

Nash equilibrium in G̃ is a SSCE in G. This can be done by repeating the argument

in step 3 of the proof of Proposition 4 with ǫ = 0.

6. Related literature

The notion of Self-Confirming Equilibrium originates in a paper of Fudenberg and

Levine (1993A). Their solution concept is appropriate only for extensive form games

since they assume that players observe the actions of their opponents (only) on the

equilibrium path. In another paper, Fudenberg and Levine (1993B) show that SCE

correspond to steady states of a particular learning process. SCE and learning in

games with incomplete information are studied by Dekel et al. (2004).

A similar solution concept which is suitable for normal form games is Battigalli

and Guaitoli’s (1988) Conjectural Equilibrium (CE). In fact, SSCE which we used in
15



this work is the same as CE12. Rubinstein and Wolinsky (1994) defined and analyzed

the notion of Rationalizable Conjectural Equilibrium (RCE) which is a refinement of

CE. In RCE players take into account the signal functions of the other players and the

fact that all the participants are rational, which further restrict the set of consistent

conjectures. Thus, RCE takes an intermediate position between Nash equilibrium

and Rationalizability (Bernheim, 1984 and Pearce, 1984). The same idea is used by

Dekel et al. (1999) to refine SCE. Subjective Equilibrium of Kalai and Lehrer (1993)

is in the same spirit but in the context of a repeated game.

There were several attempts to break away from the idea that agents spin roulettes

before making decisions. Notably, Harsanyi (1973) shows that adding small random

perturbations to the payoff functions eliminates the need to randomize in the result-

ing incomplete information game. Aumann (1987) suggests that a mixed strategy

should be seen as a ‘plan of action’ which specify the (pure) action to be taken after

each possible private signal. In this way no player explicitly randomizes, and a mixed

strategy of a certain player reflects the uncertainty of other players about his choice.

A discussion of these two approaches can be found in Rubinstein (1991).

More recently, several papers refine SCE by requiring that players will play a best

response to a particular consistent conjecture. In Lehrer’s (2007) Partially Specified

Equilibrium each player maximizes his payoff against the worst possible consistent

conjecture. Jehiel (2005) introduced the notion of Analogy-Based Expectation Equi-

librium in which players’ information is the average strategy of their opponents in

groups of nodes of a game tree. Each player’s conjecture is that the strategy in each

node is the same as the average strategy of the group containing this node.

7. Final remarks

7.1. Independent conjectures. A conjecture for player i is any element of ∆(A−i),

not necessarily a product measure. That is, a player is allowed to believe that

his opponents are using a correlated strategy. Restricting players to independent

conjectures will sometimes shrink the set of SCE13. As a consequence, it is possible

that no pure SCE will survive. However, all the results of this paper will not be

affected by such restriction since the conjectures we use in the proofs are always

independent.

7.2. WSCE and stochastic signals. One may argue that if a certain game is

played repeatedly and some of the players are using mixed strategies then what a

player will know is the distribution of signals and not just the expected signal. If

12We preferred the notion of self-confirming equilibrium over conjectural equilibrium since the
former is much more known and frequently used in the literature. Also, we feel that the name
‘self-confirming’ catches the essence of this solution concept.

13In Azrieli (2007) it is essential that players think that their opponents play independently of
each other.
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this is the case then some weakly consistent conjectures (as defined in this paper)

are no longer consistent with that player’s information. For instance, in the Rock-

Paper-Scissors example of subsection 2.1 the conjecture of player 1 that player 2 is

playing (1
3 , 1

3 , 1
3) is not consistent at (R, R) since it induces different distribution on

1’s signals than what the actual strategy of player 2 induces.

A possible way out of this difficulty14 is to assume that the signals themselves are

stochastic and depend non-deterministically on the action profile. To illustrate this

idea consider the observable payoffs case. The numbers in the payoff matrices can

be thought of as the expected payoff to each player in every action profile. So in

the Rock-Paper-Scissors example, when the action profile (R, R) is played, player 1’s

payoff is drawn from a certain distribution whose expectation is 0. If one assumes

that the (random) payoff to player 1 in this case is 1 or -1 with equal probabilities

then player 1 will not be able to distinguish between the true strategy of player 2

and player 2 playing (1
3 , 1

3 , 1
3).

7.3. Other signal functions and other classes of games. Our results are re-

stricted to two kinds of information structures and to several classes of non-cooperative

games. It will be interesting to identify more classes of games which admit pure SSCE

or WSCE with respect to these information structures or with respect to other natu-

ral information structures. It may also be of interest to study the case of asymmetric

information, where different players have different kinds of information structures.

8. References

R.J. Aumann, Correlated equilibrium as an expression of Bayesian rationality, Econo-

metrica 55 (1987) 1-18.

Y. Azrieli, Thinking categorically about others: A conjectural equilibrium approach,

mimeo (2007)

P. Battigalli and D. Guaitoli, Conjectural equilibrium, mimeo (1988).

B.D. Bernheim, Rationalizable strategic behvior, Econometrica 52 (1984) 1007-1028.

E. Dekel, D. Fudenberg and D.K. Levine, Payoff information and self-confirming

equilibrium, Journal of Economic Theory 89 (1999) 165-185.

E. Dekel, D. Fudenberg and D.K. Levine, Learning to play Bayesian games, Games

and Economic Behavior 46 (2004) 282-303.

D. Fudenberg and D.K. Levine, Self-confirming equilibrium, Econometrica 61 (1993A)

523-545.

D. Fudenberg and D.K. Levine, Steady state learning and Nash equilibrium, Econo-

metrica 61 (1993B) 547-573.

J. Harsanyi, Games with randomly distributed payoffs: A new rationale for mixed

strategy equilibrium points, International Journal of Game Theory 3 (1973) 211-225.

14I’m grateful to Ehud Lehrer for this suggestion.

17



P. Jehiel, Analogy-based expectation equilibrium, J. Economic Theory 123 (2005)

81-104.

E. Kalai, Large robust games, Econometrica 72 (2004) 1631-1665.

E. Kalai and E. Lehrer, Subjective equilibrium in repeated games, Econometrica 61

(1993) 1231-1240.

E. Lehrer, Two-player repeated games with non-observable actions and observable

payoffs, Mathematics of Operations Research 17 (1992) 200-224.

E. Lehrer, Partially-specified probabilities: decisions and games, mimeo (2007).

I. Milchtaich, Congestion games with players-specific payoff functions, Games and

Economic Behavior 13 (1996) 111-124.

D.G. Pearce, Rationalizable strategic behavior and the problem of perfection, Econo-

metrica 52 (1984) 1029-1050.

R. W. Rosenthal, A class of games possessing pure-strategy Nash equilibrium, Inter-

national Journal of Game Theory 2 (1973) 65-67.

A. Rubinstein, Comments on the interpretation of game theory, Econometrica 59

(1991) 909-924.

A. Rubinstein and A. Wolinsky, Rationalizable conjectural equilibrium: Between

Nash and rationalizability, Games and Economic Behavior 6 (1994) 299-311.

D. Schmeidler, Equilibrium points of non-atomic games, Journal of Statistical Physics

7 (1973) 295-300.

18


