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Abstract

This paper uses a unique U.S. airlines panel data set to empirically study the dy-

namic pricing of inventories with uncertain demand over a finite horizon. I estimate

a dynamic pricing equation and a dynamic demand equation that jointly characterize

the adjustment process between prices and sales as the flight date nears. I find that

the price increases as the inventory decreases, and decreases as there is less time to

sell. Consistent with aggregate demand learning and price adjustment, demand shocks

have a positive and much larger effect on prices than the positive effect of anticipated

sales.
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1 Introduction

Despite the large theoretical literature on airline pricing in economics, management, mar-

keting, and operations research, there exists little empirical understanding of the dynamics

of prices as the flight date nears. The goal in this paper is to empirically investigate three

closely related questions about the dynamics of prices and advance sales. First, for a given

inventory of seats, do fares rise as the departure date nears? Second, at a given point prior

to the departure date, do fares increase as inventory decreases? Finally, do airlines learn

about the aggregate demand and adjust their prices as new information about the pattern

of sales is revealed? Most neoclassical economists might argue that this learning and price

adjustment is an inherent feature of all markets. However, this learning is about advance

sales dynamics, not spot market dynamics. The importance of this question arises due

to the large theoretical work (e.g., Prescott (1975), Eden (1990), Deneckere et al. (1996),

Dana (1999b), to most recently Deneckere and Peck (2010, section 3)) that shows how

prices can respond to aggregate demand uncertainty without exploiting learning. In addi-

tion, by controlling for price dispersion across flights, this paper contributes to the growing

literature on price dispersion in the airline industry (e.g., Gerardi and Shapiro (2009)) by

showing the importance of aggregate demand uncertainty and advance sales as a source of

price dispersion within flights.

There are three features that make the dynamics of prices and inventories as the flight

date nears particularly interesting. First, airlines offer tickets in advance, and unsold tick-

ets expire at departure. Second, capacity is also set in advance and can only be modified at

a relatively large marginal cost. Finally, there is uncertainty about the aggregate demand.

Hence, airline ticket sales represent an example of dynamic pricing of inventories with un-

certain demand over a finite horizon. This problem arises in a variety of good and services,

such as hotel rooms, cabins on cruise liners, car rentals, and entertainment and sporting

events. To some extent, it is also present in goods that are not necessarily perishable, but

where production decisions are made in advance and demand is uncertain and concentrated

during a selling season (e.g., the Christmas shopping season).

The paper takes advantage of a unique panel data set collected from the online travel

agency Expedia.com, which contains prices and seat inventories at the ticket level for 103
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days prior to the departure of 228 U.S. domestic flights. This is different from most of

the empirical research on airlines that uses aggregate data from the Bureau of Transporta-

tion and Statistics (e.g., Borenstein and Rose (1994), and Gerardi and Shapiro (2009))

and research with posted prices without inventories. Stavins (2001) uses prices from the

Official Airline Guide, and more recently Bilotkach (2006), McAfee and te Velde (2007),

and Bilotkack and Rupp (2011) use posted prices from online travel agencies. To focus

on the dynamics of prices as the flight date nears, the construction of the data set con-

trols for product heterogeneities and “fences” that segment consumers (e.g., Saturday-night

stayover, different connections/legs, refundability, and fare class).

To answer how prices depend on days to departure and inventories, I estimate a pricing

equation that is consistent with the theoretical models in Gallego and van Ryzin (1994),

Zhao and Zheng (2000), and Deneckere and Peck (2010). The estimation controls for

time-invariant flight-, carrier-, and route-specific characteristics and takes into account the

dynamic feedback between sales and prices. This means that sellers and buyers can be-

have dynamically: The decisions to price and to buy today can be affected by previous

realizations of fares and sales. Moreover, sellers and buyers can adopt a forward-looking

perspective and form beliefs about the future evolution of prices and inventories. Support-

ing the theoretical prediction in Gallego and van Ryzin (1994), the results show that the

price is lower if there is less time to sell: For every day that passes without sales, the price

falls 57.1 cents. Furthermore, prices increase 7 and 14 days before departure, consistent

with the arrival of higher valuation travelers (see Zhao and Zheng (2000) and Su (2007)).

Finally, consistent with Gallego and van Ryzin (1994), Zhao and Zheng (2000), and models

where price dispersion arises from the combination of costly capacity and aggregate de-

mand uncertainty (e.g., Prescott (1975)), the estimates indicate that one fewer available

seat increases fares by 1.53 dollars.

I follow a two-step approach to answer whether carriers learn about the aggregate

demand. In the first step I estimate a dynamic demand equation that formalizes the feed-

back from prices to cumulative bookings, and use the estimates to separate bookings into

expected bookings (booking curve) and unexpected bookings (demand shocks). In the sec-

ond step I estimate a dynamic pricing equation that differentiates the effects of these two

booking components on pricing decisions. The results show that prices respond to new

3



information about the pattern of sales (demand shocks). Moreover, the estimates indicate

that the positive response of prices to unexpected sales (demand shocks) is statistically and

economically greater than the positive response of prices to anticipated sales. This pat-

tern is consistent with aggregate demand learning and price adjustment, as opposed to the

hypothesis that prices adjust mechanically to sales, whether or not they are expected. Ag-

gregate demand learning combined with the estimated downward sloping dynamic demand

means that airlines can partially control the evolution of bookings via prices.

The paper is related to the literature on peak-load pricing.1 Borenstein and Rose

(1994) provide a distinction between two types of peak-load pricing in airlines. The first

is systematic peak-load pricing, which reflects variation in the shadow cost of capacity due

to demand fluctuations known at the time the flight is scheduled. The second is stochastic

peak-load pricing, which reflects demand uncertainty resolved only as sales progress.2 In

this paper, I control for systematic peak-load pricing and find empirical support to specific

predictions from some stochastic peak-load pricing models. When prices are set before

sales begin Prescott’s (1975) static stochastic peak-load pricing model predicts an upward

schedule of fares. Eden (1990) formalizes Prescott’s model and Dana (1999b) extends it

to monopoly and imperfect competition.3 Eden (1990) and Lucas and Woodford (1993)

point out that Prescott’s static model has an interesting time-consistency property. Even

if prices are allowed to change during the selling season, learning about the final state of

the demand is needed to deviate from the original price schedule. Deneckere and Peck

(2010) present a generalized multiple period version of Prescott’s model, where demand is

gradually learned over time and prices are allowed to change each period. While advance-

purchase sales are important for learning, they can serve other purposes as well. Gale and

Holmes (1993) show that advance-purchase discounts can be used to divide uncertain peak

demand more evenly between two departures, while Dana (1998) shows that they can be

used to screen consumers and price discriminate.4

1For peak-load pricing under certainty, see Boiteaux (1980) and Williamson (1966), and under uncer-

tainty, see Visscher (1973) and Carlton (1977).
2Using ex-ante known demand intensities, Escobari (2009) estimates a congestion premia associated with

systematic peak-load pricing.
3Escobari and Gan (2007) find empirical support for these models.
4Escobari (2009) provides empirical support for the main empirical prediction in Gale and Holmes (1993)
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The paper is also related to a strand of literature that comes from operations research.

A number of papers consider the problem of dynamically pricing a stock of perishable

product over a finite time horizon (e.g., Gallego and van Ryzin (1994), Zhao and Zheng

(2000), and Su (2007)).5 The closest to my paper is Lin (2006), who presents a model

where the seller uses realized demand to infer about the arrival rate, update the future

demand distribution, and set the price. Consistent with my results, Lin finds that higher

prices should be set when demand is expected to be larger.

The organization of the paper is as follows. Section 2 explains the data, provides prelim-

inary evidence of learning, and presents an overview of the estimation. The motivation and

estimation of the dynamic pricing equation is presented in Section 3. Section 4 deals with

the motivation and estimation of the dynamic demand and discusses the beliefs. Section 5

separates the evolution of bookings into booking curve and demand shocks, and presents

the dynamic pricing with learning. Section 6 concludes.

2 Data, Preliminary Evidence, and Overview of the Estima-

tion

2.1 Data

The data for this paper were collected between March and June 2006 from the online travel

agency Expedia.com. It is a panel with 228 cross-sectional observations and 35 observations

over time. Each cross-sectional unit is a specific non-stop one-way flight from a carrier on

a route. There are 81 routes in the sample, and each route is defined as a pair of departure

and destination airports. The observations in time start 103 days prior to the departure

date and were collected every three days until the day before departure. All flights depart

on Thursday, June 22, 2006. The carriers considered are American, Alaska, Continental,

Delta, United, and US Airways, with the proportion of flights of each carrier chosen to be

close to its share in the U.S. market. This data set is similar to the one used in Stavins

— less discount seats on ex-ante known peak flights. Puller et al. (2008) find modest support for Dana

(1999b) and Gale and Holmes (1993), and strong support for models of second-degree price discrimination.
5See McGill and van Ryzin (1999) and Elmaghraby and Keskinocak (2003) for references to and descrip-

tions of various theoretical models.
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(2001), but with two important improvements. First, it is a panel, which allows to control

for unobserved time-invariant flight-, carrier-, and route-specific characteristics. Second,

it has information about seat availability at each fare, obtained from the seat-availability

map, where the available preferred or prime seats are counted as available seats.

The construction of the data set controls for important sources of price dispersion in

the industry. By picking one-way flights, the paper controls for fare differences associ-

ated with round-trip tickets (e.g., Saturday-night stayover, minimum stay and maximum

stay). Selecting non-stop flights controls for price variation that arises in more sophisti-

cated itineraries (e.g., different connections/legs). Economy-class tickets control for the

fare class, and by selecting the least expensive price, I control for the existence of more

expensive refundable tickets. Moreover, tickets obtained through frequent-flyer programs

are excluded from the sample. Additionally, having only one-way non-stop flights is help-

ful to define a single inventory level at each posted price. Including complex itineraries,

additional fare classes, round-trip tickets, or international destinations would impose an

important burden on the empirical section. For the inventory levels, it would mean having

more than one inventory at each posted fare. For the fares, it would involve including ticket

characteristics that the carrier can use to screen consumers and price discriminate.

[Table 1, here.]

Table 1 displays the summary statistics of the variables used in the analysis. Fare

is the one reported by Expedia.com and corresponds to the least expensive economy-class

fare for a particular flight. DayAdv is the number of days in advance, and Load ∈ [0, 1]

is the ratio of unavailable seats to total seats in the aircraft. I refer to this ratio as the

load factor, which is a ticket-level load factor that can change at each posted fare, ranging

from zero if the plane is empty to one if it is full.6 Figure 1 displays the average and the

standard deviation of fares across the 228 flights at different days prior to the departure

date. Two things are worth noting in this figure. First, average fares appear to increase

over time. Second, the dispersion of fares across flights is fairly constant, with only a slight

increase close to the departure date.

6The literature on airlines defines load factor only once the plane has departed, and it is the percentage

of seats filled with paying passengers.
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[Figure 1, here.]

2.2 Preliminary Evidence of Demand Learning

Preliminary evidence and the intuition behind aggregate demand learning and price ad-

justment is illustrated in Figure 2 for Delta flight 1588, which goes from from Atlanta,

GA (ATL) to San Jose, CA (SJC). The figure plots the dynamics of fares, load factors

(actual bookings), and demand shocks, defined as the deviations of actual bookings from

the expected evolution of bookings. The key point in this figure is that it illustrates the

different responses of fares to expected and unexpected changes in load factors. Between 85

and 82 days in advance, the load factor increased by 0.14 (14% of the aircraft’s capacity).

It is reasonable to believe that this jump in sales came as a surprise to Delta, meaning

actual bookings 82 days in advance were above expected bookings. Demand learning and

price adjustment means that Delta is able to find out about this new information regarding

the pattern of bookings (demand shock) and respond by increasing fares. That appears to

have happened 82 days in advance, when the price increased from $469 to $664.7 Fares

are nearly unresponsive to the 0.22 increase in load factor between 58 and 19 days before

departure, because this increase appears to be within the expected evolution of cumulative

bookings.

[Figure 2, here.]

2.3 Overview of the Estimation

To answer how fares respond to days to departure and inventories, I estimate a dynamic

pricing equation. I follow a two-step procedure to answer whether airlines learn about

the aggregate demand and adjust their fares in response to new information. In the first

step I estimate a dynamic demand to characterize the evolution of bookings and to separate

bookings into the booking curve and demand shocks. The second step consists of estimating

a dynamic pricing equation with learning, where anticipated and unanticipated bookings

are allowed to have a different effect on fares.

7A similar (negative) demand shock appears to have occurred at 64 days in advance. The decrease in

the load factor may reflect reserved tickets that were never bought, or tickets that were canceled/returned.
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3 Dynamic Pricing

3.1 Dynamic Pricing Equation

I estimate the following dynamic specification to answer whether fares rise as the departure

date nears and whether fares increase as inventory decreases:

ln(Fare)ijt = α ln(Fare)ij,t−1 + γDayAdvt + βLoadij,t−1 + νij + εijt. (1)

The subscript i refers to the flight, j to the route, and t to time. The variable ln(Fare)ijt

is the logarithm of fare and DayAdvt is the number of days prior to the departure date,

both measured at time t.8 Loadijt is the load factor at the end of period t; therefore,

Equation 1 is consistent with the price posting theoretical model in Deneckere and Peck

(2010), where carriers post prices based on the beginning-of-period cumulative bookings,

Loadij,t−1. This specification is also consistent with Gallego and van Ryzin (1994) and

Zhao and Zheng (2000), where prices depend on inventories and on time to departure.

νij captures the time-invariant flight-, carrier-, and route-specific effects, and εijt denotes

the remaining disturbance. Notice that νij captures the time-invariant carrier- and route-

specific characteristics in a flexible way, allowing them to vary across flights within the same

carrier and across flights within the same route. Time-invariant characteristics comprise

most of the controls included in Stavins (2001) (e.g., Herfindahl index, distance, and hub)

and unobservables, such as managerial capacity and systematic peak-load pricing, which

arises due to congestion known at the time the flight is scheduled.9

Even though the coefficient on the lagged dependent variable is not of direct interest,

allowing for dynamics in the underlying process may be crucial for recovering consistent

estimates of the effect of DayAdv and Load on fares. The correlation between prices

and cumulative bookings may reflect a common driving force that arises from a dynamic

adjustment process. Because cumulative bookings at time t come from the aggregation

of previous single-period demands that depend on their contemporaneous posted prices,

8DayAdvt can be calculated as 1 + 3× (35− t) for t = 1, 2, . . . , 35.
9Borenstein and Rose (1994) control for systematic peak-load pricing under the assumption that it is

correlated with airlines’ fleet utilization rates and airports’ operation rates, both being time-invariant and

part of νij in Equation 1. Flights at more congested departure times that are associated with a larger

shadow cost of capacity will have a larger νij , all else equal.
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Loadij,t−1 will be treated as weakly exogenous. Maintaining that the disturbances are

serially uncorrelated, Loadij,t−1 is predetermined in the sense that it is uncorrelated with

εijt, but Loadij,t−1 may be correlated with εij,t−1 and earlier shocks,

E(Loadij,s−1εijt) = 0, s ≤ t

E(Loadij,s−1εijt) 6= 0, s > t

}

, ∀ij. (2)

Serially uncorrelated disturbances mean that εijt corresponds to an unexpected change in

prices, and that previous unexpected changes cannot be used to predict future unexpected

changes. εijt represents the random part of prices that may include a “last-minute deal”

that consumers cannot predict from past variables or the state of sales. Moreover, weak ex-

ogeneity does not restrict consumers or sellers from adopting a forward-looking perspective,

and it is consistent with rational expectations models.

To allow for this dynamic feedback between Load and fares and to obtain consistent

estimates of the coefficients of interest γ and β, I will initially use the difference GMM

estimator for dynamic panel data models proposed by Holtz-Eakin et al. (1988) and Arel-

lano and Bond (1991). They suggest estimating Equation 1 by taking first differences to

eliminate the unobserved time-invariant flight-, route-, and carrier-specific characteristics

νij to obtain

∆ ln(Fare)ijt = α∆ ln(Fare)ij,t−1 + γ∆DayAdvt + β∆Loadij,t−1 +∆εijt. (3)

Then there is the need of a vector Z of instruments to construct the moments E(∆εijtZ)

and to estimate Equation 3 via GMM. Under the assumptions that the error term εijt is not

serially correlated and that Loadij,t−1 is weakly exogenous, lagged values of Loadij,t−1 are

valid instruments for ∆Loadij,t−1. By construction the new error term ∆εijt is correlated

with the lagged dependent variable; hence, ln(Fare)ij,t−2 and earlier lags are used as

instruments for ∆ ln(Fare)ij,t−1. Because DayAdvt is treated as strictly exogenous, I

simply use ∆DayAdvt as its own instrument in the difference equation.

Blundell and Bond (1998) point out a statistical shortcoming with this difference GMM

estimator. If ln(Fare) and Load are persistent over time, lagged levels of these variables

are weak instruments for the regression equation in differences. Hence, I combine Equa-

tions 1 and 3 and use the system GMM estimator that Blundell and Bond proposed. The
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additional moments for the equation in levels are E[(νij + εijt)W] = 0. Then the instru-

ments for the regression in differences are the same as above and the instruments W for the

regression in levels are the lagged differences of ln(Fare)ijt and Loadijt. While the levels

of ln(Fare)ij,t−1 and Loadij,t−1 may be correlated with νij , for the instruments W to be

valid, W is assumed to be uncorrelated with νij . The assumption is realistic because Load

measures sold inventories relative to the aircraft size. Thus, Load will not be affected

by any νij that impact the total number of seats sold, but leave the ratio of seats sold to

total seats unchanged. Moreover, because νij does not change during the selling season, if

observed by the carrier it will be before sales begin and when the aircraft size can still be

modified at a relatively low marginal cost. Even if scheduling a different-sized aircraft is

not possible, the carrier will likely absorb any (observed) νij by setting higher/lower prices

across all tickets. The idea is that the carrier will not want any (observed) νij to affect

Loadijt − Loadij,t−1 throughout the selling season because Load should evolve between

zero and one on every flight, regardless of νij . This means that νij is almost certainly

correlated with the levels of ln(Fare)ij,t−1. Finally, there may be reasons to believe that

νij may be correlated with Fareijt−Fareij,t−1 (no logs) if the change in the dollar amount

of fares is greater in more expensive flights; however, that is less likely to be the case for

the first differences of ln(Fare)ijt, ln(Fareijt/Fareij,t−1).

3.2 Dynamic Pricing Estimates

The results from the estimation of the pricing equation are reported in Table 2. For

comparison purposes, the first four columns report four sets of estimates that assume

strict exogeneity of ln(Fare)ij,t−1 and Loadij,t−1, while the GMM estimates that relax

this assumption are reported in the last four columns. In column 1, the negative coeffi-

cient on the DayAdv variable indicates that fares are higher closer to the departure date,

but this estimate appears to be downwards-biased mainly because of the omitted variable

Loadij,t−1. A negative omitted-variable bias is consistent with the negative correlation

between Loadij,t−1 and DayAdvt (fewer available seats closer to the departure date) and

the positive correlation between ln(Fare)ijt and Loadij,t−1 (higher fares with fewer avail-

able seats). The second column presents a (misspecified) static pricing equation, where

the estimate on the DayAdv variable appears downwards-biased largely because of the
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omitted variable ln(Fare)ij,t−1 (when compared to column 4) and because it ignores the

dynamic feedback between current inventories and previous prices (when compared to the

GMM specifications).10

The estimates in columns 3 and 4 behave as expected in the presence of flight-specific

effects. Consistent with the Monte Carlo simulation results in Blundell et al. (2000), the

Pooled OLS appears to give an upwards-biased estimate of the coefficient on the lagged

dependent variable, while the Within appears to give a downwards-biased estimate of this

coefficient. Also consistent with Blundell et al. (2000), the estimates on DayAdv and

Load appear to have a large negative bias in the Pooled OLS and a smaller negative bias

in the Within specification. Blundell et al. (2000) find that the bias is larger when the

regressor is persistent, which is the case with DayAdv and to a lesser extent with Load.

What is puzzling is the difference in the estimated DayAdv coefficient between the Within

specification in column 4 and the GMM specifications, especially because DayAdvt is

always treated as strictly exogenous and the GMM are specifically utilized to deal with the

weakly exogeneity and the endogeneity of Loadij,t−1 and ln(Fare)ij,t−1 respectively. This

difference is consistent with the asymptotic (N → ∞) bias of strictly exogenous variables

for the Within estimator derived in Nickell (1981, p. 1424). He finds that the Within

estimator of γ is downwards biased if the time-demeaned exogenous variable is negatively

related (in the regression sense) with the lagged time-demeaned dependent variable, which

is the case here.11

[Table 2, here.]

Columns 5 and 6 present the two-step first-differenced GMM panel estimates.12 Column

10A negative omitted-variable bias would be consistent with the negative correlation between DayAdvt

and ln(Fare)ij,t−1, and the positive correlation between ln(Fare)ijt and ln(Fare)ij,t−1. The dynamic

demand estimates will show why Loadij,t−1 needs to be treated as weakly exogenous in Equation 1.
11Specifically, the asymptotic bias derived in Nickell (1981) is

plim
N→∞

(θ̂ − θ) = − plim
N→∞

[

(Ẍ
′
Ẍ)−1Ẍ

′
ÿ−1

]

plim
N→∞

(α̂− α),

where θ′ = (γ, β), θ̂ and α̂ are from the Within estimator of Equation 1, y−1 is ln(Fare) lagged once,

X = [DayAdv
...Load], and ÿ and Ẍ are time-demeaned transformations. For γ, both of the terms on the

right-hand side are negative, making its Within estimator downwards biased.
12Given the apparent persistence of fares and load, I follow Blundell and Bond (2000) by estimating simple
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5 uses ln(Fare)ij,t−2 and the second lag of Load as instruments, while column 6 uses

ln(Fare)ij,t−2 and the second and third lags of Load as instruments. The validity of these

specifications is addressed with two tests. To assess the assumption that the error term εijt

is not serially correlated, I test whether the differenced error term is second-order serially

correlated. The large p-values provide strong support for a valid specification. The Sargan

test of over-identifying restrictions to test the overall validity of the instruments shows that

the null hypothesis — that the lagged levels dated t− 2 (column 5) as instruments are not

correlated with the residuals — is rejected. However, at a 5% significance level, the null in

the Sargan test for the lagged levels dated t− 3 (and earlier) as instruments in column 6 is

not rejected. The two-step GMM system estimates are reported in columns 7 and 8. The

additional instruments for the levels equations are ∆ ln(Fare)ij,t−1 and ∆Loadij,t−1. The

second-order serial correlation test strongly supports the assumption of no serial correlation.

Furthermore, the Sargan test of over-identifying restrictions, which analyzes the sample

analogs of the moment conditions used in the GMM estimation, validates the instrument

list. The Difference Sargan test validates the additional instruments used in the levels

equations.

The positive and highly significant effect of cumulative bookings on fares across all spec-

ifications of Table 2 indicate that, all else equal, fares increase as the aircraft’s remaining

capacity becomes scarcer. This positive sign is consistent with the theoretical models in

Gallego and van Ryzin (1994) and Zhao and Zheng (2000). This is also consistent with

models where price dispersion arises from the combination of costly capacity and aggregate

demand uncertainty (e.g., Prescott (1975), Eden (1990), Dana (1999a), and Dana (1999b)).

The estimated coefficient in column 8 indicates that in a 100-seat aircraft, fares increase

by $1.53 ($291.1×0.527/100) for each fewer available seat. A standard deviation increase

in utilized capacity increases fares by $38.65, which corresponds to a 49.09% within flight

standard deviations of fares.

The positive and significant coefficients on DayAdv indicate that, holding invento-

ries constant, fares decrease as there is less time to sell. The point estimate in col-

umn 8 reads that on average when a day passes without sales, the price falls 57.1 cents

AR(1) specifications for ln(Fare) and Load. The results confirm Load to be persistent, but the estimates

of the autoregressive terms were smaller and more precise than those in Blundell and Bond (2000).
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($291.1×1.961/103). In their review of airline pricing, McAfee and te Velde (2007) explain

that falling prices as takeoff approaches is a remarkably robust prediction of theories. This

includes the theoretical predictions in Kincaid and Darling (1963) and Gallego and van

Ryzin (1994), where the intuitive explanation of falling prices follows from the perishable

nature of airline seats. A given inventory of seats will be more difficult to sell if there is

less time; hence, there is the incentive to lower the price.13

[Table 3, here.]

The key assumption behind decreasing prices over time in Gallego and van Ryzin (1994)

is that the reservation price distribution is the same across all consumers. This assumption

is unlikely to hold in airlines because consumers who purchase closer to the departure date

tend to have higher valuations. Zhao and Zheng (2000) find that prices can increase as

time to expire decreases if the reservation price distribution shifts to the right. Moreover,

Su (2007, p. 735) shows that higher prices closer to departure can exist because business

travelers who have lower waiting costs do not mind committing to travel schedules later.

The predictions in these two papers are in line with the common observation of higher prices

closer to the departure date, as Figure 1 suggests. While lower inventories and the positive

Load coefficient can explain higher prices closer to takeoff, Figure 1 shows that prices

increase much faster in the last two weeks. To capture potential non-linearities, Table 3

offers additional results that include the indicator variables 1[DayAdv<k] for k = 7, 14, which

equal one if DayAdv is less than k, zero otherwise. The main findings from Table 2

hold; moreover, the indicator variables capture jumps in prices. The point estimates in

column 6 indicate that there are jumps of $21.25 and $10.19 at 7 and 14 days to departure,

respectively. The results from this table indicate that for a given inventory, prices decrease

as time to departure decreases, but increase 7 and 14 days before departure, consistent

with the time where most business travelers decide to buy.

13Lazear (1986) also finds decreasing prices over time in a simple two-period model. Moreover, Sweeting

(2010) documents the existence of decreasing prices in online resale markets for Major League Baseball

tickets.
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4 Dynamic Demand and the Evolution of Sales

While the dynamic pricing equation did not require models for Load to be specified to

estimate the parameters (α, γ, β), modeling Load and formalizing the feedback mechanism

from prices to cumulative bookings serves two purposes. First, the feedback mechanism

has a dynamic demand interpretation and shows how bookings depend on previous prices.

Second, the feedback mechanism can be used to characterize the evolution of cumulative

bookings and to separate bookings into expected and unexpected bookings. This section

focuses on the estimation and discussion of the dynamic demand, whereas the next section

discusses how to separate bookings into these two components.

The demand is dynamic because at each point prior to departure newly arrived and

existing consumers form expectations about future prices and future product availability,

which affect their decision to buy a ticket at the going price, wait to purchase later, or exit

(see, for example, Su 2007). Moreover, the current decision affects future utility because,

even though consumers buy a ticket today, the good is consumed in the future. Demand

dynamics in airlines is related to demand dynamics for storable and durable products

because in all these cases demand anticipation is important.14

4.1 Dynamic Demand Equation

The stock variable Load comes from the aggregation of sales that occurred during previous

periods. Sales during period t can be obtained as the difference between beginning-of-period

and end-of-period cumulative bookings, ∆Loadijt = Loadijt−Loadij,t−1. I model period

t demand, ∆Loadijt, to depend on the demand last period (which brings on the dynamics),

contemporaneous posted fares, and the number of days to departure:

∆Loadijt = ρ∆Loadij,t−1 + φ ln(Fare)ijt + δDayAdvt + ηij + uijt. (4)

ηij captures the time-invariant fight-, carrier-, and route-specific effects, and uijt are ran-

dom error terms independent of all random variables introduced earlier. This feedback

mechanism between prices and sales is consistent with the theoretical model in Deneckere

14Pesendorfer (2002) and Hendel and Nevo (2006) show that consumers anticipate their demand for

storable products. When prices are low consumers increase their purchases to store for future consumption.
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and Peck (2010), where within each period firms start posting prices for that period (Equa-

tion 1), then consumers arrive in random order, observe posted prices, and decide whether

to purchase (Equation 4). A downward-sloping demand curve, φ < 0, will let sellers control

the intensity of the demand via prices, as in Gallego and van Ryzin (1994).

An issue in the estimation of Equation 4 is the potential endogeneity of fare. Endo-

geneity arises if there is correlation between ln(Fare)ijt and the unobserved ηij +uijt. The

most common cause of this correlation is if the carrier sets prices knowing more about the

error term than the econometrician. Taking first differences eliminates the time-invariant

effect ηij :

∆2Loadijt = ρ∆2Loadij,t−1 + φ∆ ln(Fare)ijt + δ∆DayAdvt +∆uijt. (5)

Then the GMM dynamic panel estimators allow for different assumptions on the contem-

poraneous correlation between ln(Fare)ijt and uijt. Notice that under the assumption of

serially uncorrelated uijt, these errors can be interpreted as the random part of sales (de-

mand shocks) that cannot be predicted based on previous realizations of the variables or

previous realizations of the error term.

A first approach will assume ln(Fare)ijt is predetermined; hence, uijt represents a

true demand shock for both the carrier and the econometrician. This means that the

carrier sets prices after observing previous realizations of the demand shocks but does

not observe the contemporaneous or future demand shocks. Arellano and Bond (1991)

propose estimating the equation in differences using the moments E(∆uijtM) = 0, where

M is the vector of instruments that contains the lags of ln(Fare)ijt, and because ∆uijt is

correlated with ∆2Loadij,t−1, M also includes the lags of Loadij,t−1. For the system GMM

estimator — which combines Equations 4 and 5 — the additional moment conditions for

the equation in levels are E[(ηij + uijt)H] = 0. The vector of valid instruments H includes

∆2Loadij,t−1, ∆ ln(Fare)ijt, and the lags of both. The assumption for the validity of

these additional instruments is that they should be uncorrelated with ηij ; however, there

could still be correlation between ∆Loadij,t−1 or ln(Fare)ijt and ηij . To see why this is

a reasonable assumption, keep in mind that ηij captures the time-invariant characteristics

that affect sales relative to capacity (∆Loadijt) on every period t prior to departure.

Correlation between ∆2Loadij,t−1 and ηij can be interpreted as flight-, carrier-, or route-
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specific characteristics that affect the rate at which sales increase (or decrease) throughout

the selling period. This kind of correlation is very unlikely because Load ∈ [0, 1] and

airlines will adjust capacity before sales begin to take into account any observed ηij that can

affect the demand for a flight. For example, a flight with a particularly large demand will

be assigned larger capacity, making the correlation between ∆Loadij,t−1 and ηij unlikely

(while still allowed) and the correlation between ∆2Loadij,t−1 and ηij even less likely.

Similar to the discussion of the instruments for Equation 1, it is also unlikely to have

time-invariant characteristics that affect sales to also change with ∆ ln(Fare)ijt. Treating

ln(Fare)ijt as predetermined when it is endogenous will yield a biased estimate of φ. In

particular, if uijt is positively correlated with price, the estimate of φ will be upwards-

biased.

A second approach treats ln(Fare)ijt as endogenous by allowing for contemporaneous

correlation between uijt and ln(Fare)ijt. Treating ln(Fare)ijt as potentially endogenous

invalidates ln(Fare)ij,t−1 and ∆ ln(Fare)ijt as instruments. Hence, the vector M of in-

struments for the difference equation can only include ln(Fare)ij,t−2 and its lags, while the

vector H of instruments for the levels equation can only include ∆ ln(Fare)ij,t−1 and its

lags. Modeling ln(Fare)ijt as endogenous when it is predetermined still yields consistent

estimates; however, it does not use all the available instruments. Treating ln(Fare)ijt as

endogenous affects the interpretation of uijt; while it is still a shock for the econometrician,

it may not be an unobserved demand shock for the carrier.

The dynamic adjustment process between prices and sales, as characterized by Equa-

tions 1 and 4, imply that consumers and sellers can behave dynamically. Equation 1

suggests that previous sales affect the current posted price, while Equation 4 suggests

the decision to buy a ticket today at the current posted price can be affected by previ-

ous realizations of fares. Equations 2 only imply that the consumer’s decision to buy a

ticket today must be uncorrelated with future price shocks εijt. Moreover, weak exogeneity

or endogeneity of ln(Fare)ijt means that the price today is uncorrelated with future de-

mand shocks uijt. This do not restrict consumers or sellers from adopting forward-looking

perspectives. Weak exogeneity and endogeneity are consistent with rational expectations

models, in which sellers’ and buyers’ beliefs would be equal to the true data-generating

process. However, sellers and consumers can have their own subjective beliefs about the
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evolution of prices and sales, not necessarily following Equations 1 and 4. As explained in

Arellano and Bond (1991), short-run dynamics will compound influences from expectations

formations and decision processes. Even if all travelers have rational expectations about

the evolution of fares and sales, the presence of private information and arrival rates implies

variance in who actually buys in any period. Private information arises because consumers

are heterogeneous and they privately know their own individual demand and valuation, in

addition to potential heterogeneity in the formation of beliefs.

In airlines, agents’ beliefs about the evolution of sales and prices are formed not only

based on current and past realizations of sales and prices for one particular flight. Airlines

use historical data, and buyers are likely to be familiar with price patterns based on previous

trips. Beliefs are important because consumers can purchase at the ongoing price or delay

their purchase decisions. If a consumer is optimistic about future prices, he might expect

the possibility of a “last-minute deal” and prefer to postpone his purchase. Forward-looking

behavior combined with the existence of higher expected fares closer to the departure —

which does not rule out occasional last-minute deals — can lead consumers to buy tickets as

soon as they solve their individual demand uncertainty. For concern about its reputation,

it is not optimal for the carrier to have frequent last-minute deals because this can result in

a large fraction of buyers delaying their purchases. At some point, it may be more valuable

for the airline to fly with idle capacity than to set lower fares close to departure.

4.2 Dynamic Demand Estimates

Table 4 reports the results from the estimation of the dynamic demand in Equation 4.

DayAdvt is treated as strictly exogenous in all the specifications. ln(Fare)ijt is treated

as strictly exogenous in columns 1 and 2, as weakly exogenous in columns 3 through 6,

and as endogenous in columns 7 and 8.15 The four system GMM estimates pass all the

specification tests. There is strong evidence that uijt is not serially correlated, and the

15Instruments for the first-differenced equations are lags 1 and 2 of ∆Loadij,t−1 and ln(Fare)ijt in

columns 3 and 5, and additionally lags 3 in columns 4 and 6. The instruments used in the levels equations

of columns 5 and 6 are ∆2Loadij,t−1 and ∆ ln(Fare)ijt. Treating ln(Fare)ijt as potentially endogenous

invalidates ln(Fare)ij,t−1 and ∆ ln(Fare)ijt as instruments. Hence, the first-differenced equations in column

7 use lags 1 and 2 of ∆Loadij,t−1 and ln(Fare)ij,t−1, and in column 8 additionally use lag 3. The levels

equations in columns 7 and 8 use ∆2Loadij,t−1 and ∆ ln(Fare)ij,t−1.
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instruments and the additional instruments are validated by the Sargan and the Difference

Sargan respectively.

[Table 4, here.]

All GMM specifications find a statistically significant negative coefficient for ln(Fare)

— a downward sloping period t demand. Moreover, there is almost no difference between

the estimates that treat prices as weakly exogenous and those that treat prices as endoge-

nous. This is evidence that uijt represents a shock not only for the econometrician but also

for the carrier. The coefficient on ln(Fare) in column 6 indicates that when the price of

a ticket in period t increases by 10%, contemporaneous sales decrease by 0.28 seats in a

100-seat aircraft.16 This estimate is reasonable because if a carrier expects to sell 2 seats

on a given period, with a 10% higher price expected sales drop to 1.72 seats. All four

system GMM specifications also agree on the sign and provide a similar magnitude for the

effect of days in advance. The estimates suggest that sales increase as departure nears: the

estimate in column 6 reads that, for each day closer to the departure date, sales increase

by 0.0476 seats for a 100-seat aircraft. Additional results presented in the Appendix show

very similar estimates for specifications that include a second-order autoregressive term

and use different sets of instruments.

5 Dynamic Pricing with Learning

5.1 Separating the Booking Curve and the Demand Shocks

An alternative way to write Equation 4 to illustrate the feedback mechanism from previous

prices to cumulative bookings is

Loadijt = (1 + ρ)Loadij,t−1 − ρLoadij,t−2 + φ ln(Fare)ijt + δDayAdvt + ηij + uijt. (6)

When φ = 0, Loadij,t−1 in Equation 1 is strictly exogenous. When φ 6= 0, Loadij,t−1

is weakly exogenous and depends via ln(Fare)ij,t−1 on all past disturbances, not just on

εij,t−1. Without Loadij,t−2 and DayAdvt, Equation 6 is one of the characterizations of

16This is obtained using ∆∆Load ≈ (−0.028/100)(%∆Fare). A 10% increase in price (%∆Fare = 10)

decreases sales (∆Load) by 0.0028, which in a 100-seat aircraft is 0.28.
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the feedback mechanism presented in Bun and Kiviet (2006).17 Equation 6 can be written

to emphasize the existence of two different components:

Loadijt = E[Loadijt|Loadij,t−1,Loadij,t−2, ln(Fare)ij,t−1,DayAdvt, ρ, φ, δ, ηij ] + uijt.

(7)

The first term on the right-hand side is the “anticipated” component, which depends on all

previous sales and prices, captured by the lags of Loadijt and ln(Fare)ijt, and the second

term is the “unanticipated” component or demand shock at period t.

The anticipated component describes the expected evolution of sales as the departure

date nears under normal or average conditions. It is known in airlines and in operations

research as the booking curve, BCijt. Then the difference between actual bookings and

the booking curve, Sijt ≡ Loadijt − BCijt, contains the necessary information to know

whether capacity in flight i at time t is above or below expectations. The booking curve

can be obtained as the fitted values, BCijt = L̂oadijt, and the unexpected component of

the demand as the residuals, Sijt = Loadijt − L̂oadijt.

5.2 Dynamic Pricing with Learning Equation

After separating the evolution of cumulative booking into the booking curve and demand

shocks, I replace Loadij,t−1 in Equation 1 with BCij,t−1 and Sij,t−1 to estimate the effect

of each of these components on price,

ln(Fare)ijt = α ln(Fare)ij,t−1 + γDayAdvt + βBCBCij,t−1 + βSSij,t−1 + νij + εijt, (8)

with both BCij,t−1 and Sij,t−1 treated as weakly exogenous. Sij,t−1 is the new piece of

information about the pattern of sales that was not available when the carrier set the price

last period. A positive βS coefficient means that if there is a positive demand shock —

signaling that actual bookings are above expectations — the carrier sets a higher price,

evidence that the airline responds to new information about the pattern of sales. Moreover,

aggregate demand learning and price adjustment occurs if the response to a demand shock

17Bun and Kiviet (2006) formalize the feedback mechanism to analyze the finite sample behavior of

particular least-squares and method-of-moments estimators. A similar characterization is used in Blundell

et al. (2000) in Monte Carlo simulations.
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is greater than the response to an anticipated sale. There is learning in the sense that the

carrier can distinguish between expected sales and demand shocks.

Following the estimation of Equation 1, after first differencing Equation 8 I use the

moments E(∆εijtZ) = 0. The vector of instruments Z will have lags of ln(Fare)ij,t−1,

BCij,t−1, and Sij,t−1 to instrument for ∆ ln(Fare)ij,t−1, ∆BCij,t−1, and ∆Sij,t−1, respec-

tively. Moreover, ∆DayAdvt serves as its own instrument. For the system estimator, the

additional moments E[(νij + εijt)W] = 0 for the levels equation use lags of ∆ ln(Fare)ijt,

∆BCijt, and ∆Sijt for the vector of instruments W. Notice that the booking curve and the

demand shock that appear in the pricing equation are estimated regressors derived from

a first-stage estimation of the dynamic demand. Including BC alone in the estimation

of Equation 8 would yield incorrect standard errors because of the additional variation

that arises from the estimation error in BC. Equation 8 follows one of the models of Pa-

gan (1984) and accounts for the estimation error associated with the first-step estimation,

Sijt = Loadijt − L̂oadijt, explicitly by including it in the estimated equation.18

5.3 Identification

The identification of the pricing and demand equations comes from variation over time in

prices and sales. As previously discussed, the identification in the first-difference estimator

requires limited serial correlation in the error term and instruments that are exogenous.

These assumptions are tested using a serial-correlation test and the Sargan over-identifying

restrictions test, respectively. When the variables are persistent the first-difference estima-

tor may suffer from weak instruments, hence the use of the system estimator. The validity

of the additional moment conditions in the system estimator is tested with the Difference

Sargan test.

Notice that the identification of the demand shocks comes from the specific flight’s

demand pattern relative to other contemporaneous flights. This is because the estimation

of the booking curve uses the same data as the estimation of the pricing equation, with

all the flights sharing the same departure date. Airlines have more information than what

is used in this paper, and it is reasonable to believe that they use historical data within

flights to estimate the booking curve and not necessarily data across flights.

18Abowd et al. (1999) have a more recent implementation of this model.

20



One limitation in this strategy to identify demand shocks is that even though the

estimation controls time-invariant characteristics, there may be some time-variant charac-

teristics not captured by the BC that would be captured if I were using historical data.

For example, airlines know whether some flights should fill earlier than others (e.g., flights

with more tourists fill earlier). In this case, a higher Load that is not captured by the

BC will appear to be a demand shock. Hence, there is some additional variation in S that

corresponds to the BC, and this should bias the estimates against finding learning and

price adjustment. One benefit of using data across flights is that all flights in the sample

share the same departure date and the same dates prior to departure. This is helpful in

controlling for time-variant characteristics common to all flights. If sales are particularly

different during specific dates prior to departure (e.g., higher closer to departure), this is

known ex-ante by the carrier and will also be part of the estimated BC. Hence, it should

not mislead the carrier into thinking that it is a flight-specific demand shock.

5.4 Dynamic Pricing with Learning Estimates

Table 5 reports the parameter estimates of the dynamic pricing with learning equation.

To separate cumulative bookings into BC and S, columns 1 and 2 use the estimates from

the dynamic demand in column 8 of Table 4, which treats price as endogenous. Columns

3 through 10 use the estimates from column 6 of Table 4, which treats price as prede-

termined.19 To illustrate some of the dynamics of S, Figure 2 plots the demand shocks

obtained using the estimates in column 6 of Table 4. The fast increase in the load factor

at 82 days to departure is captured as a positive demand shock.

[Table 5, here.]

All the columns in Table 5 pass the three specification tests. The two main coefficients

of interest — the marginal effects of BC and S — are both positive and highly significant

across the first four specifications. Evaluated at the sample mean of fares, the coefficient on

BC in column 4 indicates that in an aircraft with 100 seats, every additional expected sale

increases fares by $0.79 ($291.1×0.273/100). The positive and highly significant coefficient

19Estimates of νij are not needed because the estimation of Equation 8 controls for time-invariant char-

acteristics.
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on S shows strong evidence that prices respond to new information about the pattern of

sales. The coefficient on S from column 4 indicates that if there is a positive demand

shock in period t, every additional unanticipated sale will increase fares by $1.92. Across

these first four specifications, at at least 1% significance level, the response of prices to

an unanticipated sale is greater than the response to an anticipated sale. This is evidence

of aggregate demand learning and price adjustment as opposed to prices mechanically

adjusting to sales, whether or not they are expected. Columns 5 and 6 show that when

allowing for breaks at 7 and 14 days prior to departure the coefficient on BC is no longer

significant, but the main result holds: an unanticipated sale has a larger effect on prices

than an anticipated sale.

The combination of the estimated coefficients on BC and S can predict price drops for

a sufficiently large negative demand shock. For example, using the estimates in column

4 and for a 100-seat aircraft, if the carrier expects to sell two seats but only sells one,

then the overall effect is a drop in fares by $ 0.34 ($291.1×(2×0.273−1×0.664)/100). The

combined effect of BC and S on fares is consistent with the positive DayAdv coefficient

found in the estimation of Equation 1. DayAdv considers the particular case in which time

to departure changes and a negative demand shock exactly offsets expected sales; hence, no

actual sales occur. This can explain why DayAdv is not significant in these specifications.

An obvious implication from aggregate demand learning, price adjustment, and the

downward-sloping dynamic demand estimated in Equation 4 is that airlines can use prices to

partially control the path of cumulative bookings and affect the final state of the aggregate

demand. This explains the nature of the dynamic interaction between prices and sales.

Previous prices affect cumulative bookings — Load is weakly exogenous in Equation 1 —

and realized demand affects pricing decisions — ln(Fare) has to be treated as endogenous

or weakly exogenous in Equation 4.

Columns 7 through 10 provide two additional results. Columns 7 and 8 illustrate how

the effect of new information changes with the identity of the carrier. AA is a dummy

variable equal to one if the carrier is American Airlines, zero otherwise. The positive and

significant coefficient on the interaction term S × AA is slightly bigger that the coefficient

on S. This indicates that the effect of a demand shock has a little more than twice the
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impact on prices in an American Airlines flight than in a flight of a different carrier.20

Columns 9 and 10 show how learning and price adjustment changes as the departure date

nears. Intuitively, being one seat above expectations long before departure should have a

smaller impact on fares than being one seat above expectations when there is less time to

sell. The coefficients in column 10 evaluated at the sample average of fares illustrate that

in a 100-seat aircraft, a demand shock of one additional unexpected sale increases fares

by $2.52 at four weeks before departure, but increases fares by $3.12 at one week before

departure.21 I present various robustness results in the Appendix.

These aggregate demand learning and price adjustment results are consistent with se-

rial nesting of booking classes. In an expected peak flight, when a higher booking class

sells more quickly than expected, serial nesting of booking classes allows sales from a lower

booking class to be available. Therefore, for booking classes within the same cabin, in-

ventories for a lower class are always counted as available for higher booking classes. This

occurs in such a way that higher booking classes can never be sold out before a lower

booking class. On the other hand, seats from a higher booking class might be released into

a lower booking class in an expected off-peak flight. This serial nesting changes the lowest

available fare in the same way it is observed in the data.

Finally, while focusing on one-way non-stop tickets helps to control for various sources

of price dispersion and helps to define the Load variable, the inventory of seats is also sold

as part of round-trips and longer itineraries. Even if one-way tickets are a small fraction

of overall tickets sold, this should not affect the estimation of the pricing equation as long

as the carrier adjusts the observed one-way price based on the current inventory. In the

dynamic demand equation, φ measures the response of ∆Load to a change in the logarithm

of the one-way (ow) price, ln(Fare)ow. It is worth noting that this marginal effect may be

channeled through the prices of other tickets for the same flight, for example, a round-trip

(rt) ticket, ∂∆Load
∂ ln(Fare)rt ·

∂ ln(Fare)rt

∂ ln(Fare)ow = φ. The estimation is also capturing ∂∆Load
∂ ln(Fare)rt = φ

if ∂ ln(Fare)rt

∂ ln(Fare)ow = 1, which is the case when the round-trip price is always two times the

20Similar specifications with interactions of S with dummies of other carriers found that the interactions

were not statistically significant.
21Notice that these specifications no longer follow Pagan (1984); hence, I bootstrap the two-stage proce-

dure to obtain bootstrap standard errors, clustered by flight.
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one-way price.22

6 Conclusion

This paper uses a unique panel data set of U.S. domestic flights to empirically study the

dynamics of prices and inventories as the departure date nears. The construction of the data

set controls for important sources of price dispersion in the industry (e.g., Saturday-night

stayover, fare class, refundability, different connections/legs, minimum- and maximum-

stay), while the panel structure is key to control for unobserved time-invariant flight-,

route-, and carrier-specific characteristics. The results showed that, for a given inventory,

fares decrease as there is less time to sell, with breaks at 7 and 14 days to departure

when price increases. Moreover, at a fixed point prior to the departure date, fares rise

as the inventory decreases. These findings are consistent with various theoretical models

of optimal pricing under uncertain demand and perishable inventories (e.g., Gallego and

van Ryzin (1994), Zhao and Zheng (2000), Su (2007) and various references therein). In

addition, the higher fares with lower inventories is also consistent with models that predict

dispersed prices when capacity is costly, demand is uncertain, and when prices are set

ex-ante (e.g., Prescott (1975)).

To assess whether carriers learn about the aggregate demand during the sales season,

I estimate a dynamic demand equation and a dynamic pricing equation that jointly char-

acterize the adjustment process between prices and sales as the flight date nears. These

two equations are consistent with rational expectations models and allow sellers and buy-

ers to behave dynamically: Current decisions to price and buy can be affected by prior

realizations of fares and sales. In addition, agents can form their own beliefs and adopt

forward-looking perspectives. The results show that demand shocks have a positive and

much larger effect on prices than the positive effect of anticipated sales. This is evidence

that carriers differentiate between expected and unexpected sales, and adjust their prices

as new information about the pattern of sales is revealed. Aggregate demand learning and

price adjustment, combined with a downward-sloping dynamic demand, mean that carriers

22This is a standard assumption to obtain the one-way price based on the round-trip price, see for example

Borenstein and Rose (1994, p. 677), and Gerardi and Shapiro (2009, p. 5).

24



can partially control the evolution of cumulative bookings using prices.

Appendix

Table 6 provides robustness results for the estimation of the dynamic demand equation.

The first three columns treat ln(Fare) as weakly exogenous, while columns 4 through 6

treat it as endogenous. Instruments for the first-differenced equations in the first three

columns are lags of ∆Loadij,t−1 and ln(Fare)ijt, with column 1 using the first two lags,

column 2 the first three lags, and column 4 the first four lags. The instruments used

in the levels equations in the first three columns are all the same: ∆2Loadij,t−1 and

∆ ln(Fare)ijt. When ln(Fare)ijt is treated as potentially endogenous, the instruments in

the first-differenced equations are lags of ∆Loadij,t−1 and ln(Fare)ij,t−1. Columns 4, 5,

and 6 use the first 2, 3, and 4 lags respectively. For all the levels equations the instruments

are ∆2Loadij,t−1 and ∆ ln(Fare)ij,t−1. ∆DayAdvt acts as its own instrument in the

difference equation across all specifications.

[Table 6, here.]

The results show that the coefficients on ln(Fare) andDayAdv from Table 4 are robust

to the selection of the instrument list and the addition of the second-order autoregressive

term. I use the results in columns 3 and 6 — which pass all three specification tests — to

obtain alternative estimates of the booking curve and the demand shocks. Table 7 provides

robustness results for the dynamic pricing with learning equation using these alternative

BC and S. The instruments across different columns follow the same criteria as previous

pricing equations. All the specifications show that the response of prices to demand shocks

is greater than the response to anticipated sales, which is evidence of aggregate demand

learning and price adjustment. Note that in Table 7 the estimates of the autoregressive

term suggest that ln(Fare) could be a random walk. Following Blundell and Bond (2000)

and Bond et al. (2005), I estimated a simple OLS AR(1) specification for ln(Fare), which

rejected the unit-root null. This is important because if ln(Fare) followed a random walk,

lagged values of ln(Fare) would be uncorrelated with its first differences and the difference

GMM estimator would not identify α. In that case Bond et al. (2005) and Binder et
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al. (2005) explain that identification comes from the levels equation under the additional

assumption that var(ln(Fare)ij1)< ∞. That is, the variance of the initial logarithm of

prices is finite.

[Table 7, here.]
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Table 1: Summary Statistics

Mean Std.Dev. Min. Max.

VARIABLES (1) (2) (3) (4)

Fare a 291.087 171.879 54.000 1,224.000

DayAdv 52.289 30.154 1.000 103.000

Load 0.509 0.252 0.012 1.000

BC b 0.518 0.246 0.017 1.049

S b 0.000 0.043 -0.436 0.448

BC c 0.518 0.247 0.016 1.051

S c 0.001 0.043 -0.438 0.479

Notes: The sample size is 7,933. a The standard deviation

between flights is 152.933 and within is 78.751. b Based on

column 6, Table 4. c Based on column 8, Table 4.
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Table 2: Dynamic Pricing Estimates

Load treated as: Strictly exogenous Weakly exogenous

Estimator: Within Pooled Within Difference System

Instruments: t− 2 t− 3 t− 2 t− 3

VARIABLES (1) (2) (3) (4) (5) (6) (7) (8)

ln(Fare)ij,t−1 0.723* 0.948* 0.706* 0.827* 0.788* 0.938* 0.932*

(0.030) (0.004) (0.030) (0.045) (0.047) (0.008) (0.020)

DayAdvt/103 -1.802* -1.280* -0.380* -0.107 1.197* 1.248* 1.763* 1.961*

(0.115) (0.349) (0.093) (0.171) (0.257) (0.242) (0.278) (0.671)

Loadij,t−1 0.516* 0.106* 0.300* 0.449* 0.482* 0.492* 0.527*

(0.066) (0.013) (0.032) (0.052) (0.051) (0.052) (0.134)

Serial correlationa (p-value) 0.874 0.860 0.900 0.902

Sarganb (p-value) 0.005 0.086 0.492 0.919

Difference Sarganc (p-value) 1.000 1.000

Notes: The dependent variable is ln(Fare)ijt. Figures in parentheses for the OLS are White heteroskedasticity-

consistent estimates of the asymptotic standard errors, N → ∞. For the GMM are the Windmeijer finite-sample

corrected standard errors of the GMM two-step estimates. ‡ significant at 10%; † significant at 5%; ∗ significant

at 1%. a For the GMM, the null hypothesis is that the errors in the first-difference regression exhibit no second-

order serial correlation (valid specification). b The null hypothesis is that the instruments are not correlated

with the residuals (valid specification). c The null hypothesis is that the additional instruments used in the

levels equations are not correlated with the residuals (valid specification).
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Table 3: Dynamic Pricing GMM System Estimates

Instruments: t− 2 t− 3 t− 2 t− 3 t− 2 t− 3

VARIABLES (1) (2) (3) (4) (5) (6)

ln(Fare)ij,t−1 0.943* 0.938* 0.953* 0.947* 0.951* 0.946*

(0.007) (0.018) (0.008) (0.019) (0.008) (0.022)

DayAdvt/103 1.728* 1.923* 1.461* 1.666* 1.547* 1.753*

(0.274) (0.618) (0.286) (0.626) (0.294) (0.661)

1[DayAdv<7] 0.091* 0.090* 0.073* 0.073*

(0.019) (0.020) (0.020) (0.020)

1[DayAdv<14] 0.060* 0.059* 0.037* 0.035†

(0.010) (0.014) (0.011) (0.015)

Loadij,t−1 0.434* 0.469* 0.351* 0.390* 0.359* 0.398†

(0.052) (0.120) (0.059) (0.138) (0.061) (0.158)

Serial correlationa (p-value) 0.948 0.949 0.840 0.844 0.901 0.905

Sarganb (p-value) 0.495 0.920 0.492 0.920 0.500 0.924

Difference Sarganc (p-value) 1.000 1.000 1.000 1.000 1.000 1.000

Notes: The dependent variable is ln(Fare)ijt. Figures in parentheses are the Windmeijer

finite-sample corrected standard errors of the GMM two-step estimates. ‡ significant at 10%;

† significant at 5%; ∗ significant at 1%. a b c See notes on Table 2.
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Table 4: Dynamic Demand Estimates

ln(Fare) treated as: Strictly exogenous Weakly exogenous Endogenous

Estimator: Pooled Within Difference System System

Instruments: t− 2 t− 3 t− 2 t− 3 t− 2 t− 3

VARIABLES (1) (2) (3) (4) (5) (6) (7) (8)

∆Loadij,t−1 -0.111* -0.140* -0.186* -0.184* -0.193* -0.192* -0.196* -0.193*

(0.032) (0.027) (0.025) (0.026) (0.025) (0.025) (0.025) (0.025)

ln(Fare)ijt -0.004* -0.030* -0.025* -0.027* -0.027* -0.028* -0.029* -0.030*

(0.001) (0.003) (0.007) (0.007) (0.005) (0.005) (0.006) (0.006)

DayAdvt/103 -0.340* -0.446* -0.424* -0.446* -0.461* -0.476* -0.474* -0.483*

(0.020) (0.023) (0.033) (0.030) (0.031) (0.029) (0.032) (0.031)

Serial correlationa (p-value) 0.624 0.681 0.494 0.513 0.436 0.488

Sarganb (p-value) 0.000 0.004 0.091 0.389 0.084 0.372

Difference Sarganc (p-value) 0.999 1.000 0.999 1.000

Notes: The dependent variable is ∆Loadijt. Figures in parentheses for the OLS are White heteroskedasticity-

consistent estimates of the asymptotic standard errors, N → ∞. For the GMM are the Windmeijer finite-sample

corrected standard errors of the GMM two-step estimates. ‡ significant at 10%; † significant at 5%; ∗ significant

at 1%. a b c See notes on Table 2.
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Table 5: Dynamic Pricing with Learning GMM System Estimates

BC and S from: Table 4, column 8 Table 4, column 6

Instruments: t− 2 t− 3 t− 2 t− 3 t− 2 t− 3 t− 2 t− 3 t− 2 t− 3

VARIABLES (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

ln(Fare)ij,t−1 0.973* 0.966* 0.971* 0.964* 0.995* 0.987* 0.992* 0.985* 0.987* 0.979*

(0.006) (0.010) (0.006) (0.011) (0.007) (0.011) (0.007) (0.010) (0.009) (0.013)

DayAdvt/103 0.256 0.513 0.325 0.583 -0.180 0.097 -0.082 0.159 0.141 0.415

(0.254) (0.361) (0.251) (0.423) (0.266) (0.409) (0.290) (0.369) (0.366) (0.455)

1[DayAdv<7] 0.068* 0.068* 0.065* 0.065* 0.074* 0.075*

(0.020) (0.018) (0.018) (0.018) (0.018) (0.019)

1[DayAdv<14] 0.056* 0.053* 0.056* 0.054* 0.048* 0.046*

(0.010) (0.010) (0.010) (0.010) (0.009) (0.012)

BCij,t−1 0.214* 0.260* 0.227* 0.273* 0.012 0.066 0.032 0.0790 0.064 0.116

(0.043) (0.067) (0.043) (0.079) (0.053) (0.076) (0.047) (0.068) (0.060) (0.093)

Sij,t−1 0.636* 0.668* 0.629* 0.664* 0.537* 0.573* 0.462* 0.488* 1.074* 1.140*

(0.102) (0.130) (0.101) (0.136) (0.106) (0.141) (0.150) (0.165) (0.219) (0.284)

Sij,t−1× AA 0.562† 0.599†

(0.275) (0.247)

Sij,t−1 ×DayAdvt/103 -9.202† -9.837†

(3.948) (4.868)

Serial correlationa (p-value) 0.894 0.896 0.895 0.897 0.872 0.877 0.888 0.894 0.871 0.875

Sarganb (p-value) 0.381 0.874 0.380 0.876 0.382 0.877 0.995 1.000 0.383 0.876

Difference Sarganc (p-value) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

H0 : βBC = βS
d (p-value) 0.000 0.002 0.000 0.000 0.000 0.000

Notes: The dependent variable is ln(Fare)ijt. The figures in parentheses in columns 1 through 4 are the Windmeijer finite-sample

corrected standard errors of the GMM two-step estimates. For columns 7 through 10 are bootstrap standard errors based on the two-step

procedure, 500 replications and clustered by flight. ‡ significant at 10%; † significant at 5%; ∗ significant at 1%. a b c See notes on

Table 2. d The null hypothesis is that coefficients on expected and on unexpected sales (demand shocks) are the same.

36



Table 6: Dynamic Demand GMM System Estimates

ln(Fare) treated as: Weakly exogenous Endogenous

Instruments: t− 2 t− 3 t− 4 t− 2 t− 3 t− 4

VARIABLES (1) (2) (3) (4) (5) (6)

∆Loadij,t−1 -0.257* -0.236* -0.225* -0.262* -0.240* -0.227*

(0.038) (0.038) (0.029) (0.038) (0.038) (0.037)

∆Loadij,t−2 -0.097* -0.074* -0.061* -0.097* -0.076* -0.063*

(0.024) (0.023) (0.020) (0.025) (0.024) (0.022)

ln(Fare)ijt -0.027* -0.028* -0.029* -0.030* -0.031* -0.033*

(0.005) (0.005) (0.009) (0.007) (0.006) (0.010)

DayAdvt/103 -0.530* -0.530* -0.523* -0.548* -0.544* -0.540*

(0.039) (0.037) (0.047) (0.041) (0.040) (0.052)

Serial correlationa (p-value) 0.033 0.095 0.172 0.049 0.099 0.162

Sarganb (p-value) 0.067 0.343 0.787 0.059 0.329 0.814

Difference Sarganc (p-value) 1.000 1.000 1.000 1.000 1.000 1.000

Notes: The dependent variable is ∆Loadijt. Figures in parentheses for the OLS are White

heteroskedasticity-consistent estimates of the asymptotic standard errors, N → ∞. For the

GMM are the Windmeijer finite-sample corrected standard errors of the GMM two-step

estimates. ‡ significant at 10%; † significant at 5%; ∗ significant at 1%. a b c See notes on

Table 2.
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Table 7: Dynamic Pricing with Learning GMM Estimates

BC and S from: Table 6, column 3 Table 6, column 6

Instruments: t− 2 t− 3 t− 2 t− 3 t− 2 t− 3 t− 2 t− 3

VARIABLES (1) (2) (3) (4) (5) (6) (7) (8)

ln(Fare)ij,t−1 0.981* 0.974* 1.005* 0.997* 0.978* 0.970* 1.001* 0.993*

(0.006) (0.012) (0.007) (0.013) (0.006) (0.010) (0.007) (0.012)

BCij,t−1 0.152* 0.201† -0.063 -0.007 0.183* 0.232* -0.032 0.024

(0.044) (0.081) (0.054) (0.086) (0.044) (0.067) (0.053) (0.084)

Sij,t−1 0.634* 0.665* 0.538* 0.578* 0.614* 0.644* 0.523* 0.561*

(0.103) (0.136) (0.107) (0.131) (0.101) (0.129) (0.105) (0.129)

DayAdvt/103 -0.121 0.159 -0.601† -0.304 0.048 0.328 -0.433 -0.137

(0.269) (0.492) (0.282) (0.473) (0.261) (0.369) (0.275) (0.460)

1[DayAdv<7] 0.067* 0.067* 0.068* 0.068*

(0.020) (0.018) (0.020) (0.018)

1[DayAdv<14] 0.058* 0.056* 0.057* 0.055*

(0.010) (0.010) (0.010) (0.009)

Serial correlationa (p-value) 0.883 0.885 0.860 0.864 0.884 0.886 0.862 0.866

Sarganb (p-value) 0.265 0.792 0.277 0.795 0.264 0.794 0.273 0.797

Difference Sarganc (p-value) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

H0 : βBC = βS
d (p-value) 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000

Notes: The dependent variable is ln(Fare)ijt. Figures in parentheses are the Windmeijer finite-sample corrected

standard errors of the GMM two-step estimates. ‡ significant at 10%; † significant at 5%; ∗ significant at 1%.

a b c See notes on Table 2. d The null hypothesis is that coefficients on expected and on unexpected sales

(demand shocks) are the same.
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