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Abstract

This paper applies a heterogeneous agent asset pricing model, featuring fundamen-

talists and chartists, to the price-dividend and price-earnings ratios of the S&P500 index.

Agents update their beliefs according to macroeconomic information, as an alternative

to evolutionary dynamics. For estimation, a STAR model is introduced, with a transi-

tion function depending on multiple transition variables. A procedure based on linearity

testing is proposed to select the appropriate linear combination of transition variables.

The results show that during periods of favorable economic conditions the fraction of

chartists increases, causing stock prices to decouple from fundamentals.
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1 Introduction

Asset pricing models based on the efficient market hypothesis (EMH) have a difficult time ex-

plaining the observed dynamics of financial markets. According to these models, asset prices

reflect a rational forecast by the market of future cash flows (dividends) generated by the as-

set and are therefore expected to be smoother than the actual cash flows. However, financial

asset prices such as stock prices are historically more volatile than real economic activity

including corporate earnings and dividends. Several studies (e.g. LeRoy and Porter, 1981;

Shiller, 1981; West, 1988; Campbell and Shiller, 1988, 2001) discuss this excess volatility in

financial markets and conclude that stock prices can not be explained by expected dividends

alone.

Heterogeneous agent models provide an alternative to the EMH. In these models, the

single representative rational agent is replaced by boundedly rational agents who are hetero-

geneous in beliefs, are not necessarily forecasting future dividends and may switch between

trading strategies over time. Hommes (2006) and Manzan (2009) provide surveys of such

models in economics and finance. The model in this paper is based on the work by Brock and

Hommes (1997, 1998), who introduce a simple analytically tractable heterogeneous agent

model with two types of agents: Fundamentalists and chartists. Fundamentalists believe,

in accordance with the EMH, that asset prices will adjust toward their fundamental value.

Chartists (or trend-followers) speculate on the persistence of deviations from the fundamen-

tal value. I use data on the S&P500 index to estimate a heterogeneous agent model in which

macroeconomic and financial variables simultaneously govern the agents’ switching between

strategies. It turns out that during periods of high economic growth, agents switch from fun-

damentalism to chartism, i.e. loose sight of fundamentals and become more interested in

following recent trends in asset prices, which causes asset price bubbles to inflate.
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Heterogeneous agent models are typically estimated empirically using regime-switching re-

gression models, with the distinct regimes representing the expected asset pricing processes

according to each type of agent. In particular smooth-transition regime-switching models

such as the smooth-transition autoregressive (STAR) models (Teräsvirta, 1994) are suitable,

as the modeled process is a time-varying weighted average of the distinct regimes. The time-

varying weights of the regimes are then interpretable as the fractions of agents belonging to

each type.

Recent studies have estimated asset pricing models featuring chartists and fundamental-

ists for several types of asset prices including exchange rates (Manzan and Westerhoff, 2007;

De Jong et al., 2010), option prices (Frijns et al., 2010), oil prices (Reitz and Slopek, 2009;

Ter Ellen and Zwinkels, 2010) and other commodity prices (Reitz and Westerhoff, 2007).

Boswijk et al. (2007) apply the model by Brock and Hommes (1998) to price-dividend (PD)

and price-earnings (PE) ratios of the US stock market, finding that the unprecedented stock

valuations observed during the 1990s are the result of a prolonged dominant position of the

chartist type over the fundamentalist type.

Agents are in general assumed to switch between strategies based on evolutionary consid-

erations. Boswijk et al. (2007) follow Brock and Hommes (1998) by letting the agents choose

their regime based on the realized profits of each type. Alternatively, the switching may be

based on relative forecast errors (Ter Ellen and Zwinkels, 2010), or on the distance between

the actual and fundamental price (Manzan and Westerhoff, 2007). In this paper, the agents’

choice of strategy is not evolutionary, but varies instead over the business cycle. In practice,

this means I estimate a STAR model, in which the transition function depends on a linear

combination of exogenous or predetermined macroeconomic variables. This framework al-

lows for identifying the macroeconomic conditions under which chartism or fundamentalism

dominates the market.

The result that chartism is associated with economic expansion is novel but can be related
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to existing results in the literature on the effects of the real economy on financial markets.

For example, Fama and French (1989), Campbell (2003) and Cooper and Priestley (2009),

amongst others, study the variation of risk aversion over the business cycle, and find more

risk appetite on financial markets during economic upturns. The interpretation of counter-

cyclical risk premiums is different from this paper. Instead of a rational representative agent

becoming less risk averse, I assume that under favorable economic conditions an increasing

fraction of agents chooses a more speculative trading strategy by becoming chartist. These

findings are, however, not necessarily inconsistent, as chartists are sometimes described as

being less risk averse than fundamentalists (Chiarella and He, 2002; Chiarella et al., 2009).

Using a cross-section of US stock returns, Chordia and Shivakumar (2002) find that momen-

tum strategies are profitable only during the most expansionary periods of the business cycle.

Without making any agent-based interpretations, Spierdijk et al. (2012) use a panel of stock

market indices from 18 OECD countries to find that the speed of mean reversion towards

the fundamental value accelerates during periods of high economic uncertainty. This result

confirms my findings since a high speed of mean reversion implies a high fraction of funda-

mentalists.

The STAR model is typically univariate, in which the transition between regimes depends

on a lag of the dependent variable as in Teräsvirta (1994). Alternatively, the transition func-

tion may depend on a single exogenous or predetermined transition variable as in Reitz and

Westerhoff (2003), Reitz and Taylor (2008) and Reitz et al. (2011), who study the nonlinear

effects of purchasing power parity and central bank policies on exchange rates. In contrast

to these studies, I allow for a multivariate transition function depending on multiple exoge-

nous or predetermined transition variables with unknown weights, in order to estimate the

nonlinear effects of multiple economic variables simultaneously. Estimating this multivariate

STAR model raises two difficulties compared to the univariate STAR: Selection of the tran-
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sition variables to include, and estimation of their weights. Medeiros and Veiga (2005) and

Becker and Osborn (2012) consider estimating STAR models with unknown weighted sums

of transition variables, but both are limited to univariate models in which the transition func-

tions depend on linear combinations of different lags of the dependent variable. I propose to

apply the linearity test by Luukkonen et al. (1988) to select the transition variables from a

large set of information and simultaneously estimate their respective weights in the transition

function. The resulting STAR model with multivariate transition function provides a better

fit to the PD and PE ratios than linear models and STAR models with a single transition vari-

able do, while the estimates support the idea of a smooth transition between chartism and

fundamentalism.

The next section presents the heterogeneous agent model and the STAR specification

in more detail. Data descriptions and linearity tests are given in section 3 while section 4

presents estimation results, interpretation and diagnostic checks. Section 5 concludes.

2 The model

In a simple linear present value asset pricing model, consistent with the efficient market

hypothesis, the price of a financial asset (Pt) equals the discounted sum of the expected asset

price next period and any expected cash flows (dividends, Dt+1) paid out on the asset in the

coming period (Gordon, 1959). Iterating forward, the price can be expressed as a infinite sum

of discounted expected dividends:

Pt =
1

1+ r
Et [Pt+1 +Dt+1]=

∞

∑
i=1

1

(1+ r)i
Et [Dt+i], (1)
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in which the constant discount factor is given by (1+ r)−1. By introducing the dividend

growth rate gt , such that Dt = (1+gt)Dt−1, this equation can be rewritten as:

Pt

Dt
=

∞

∑
i=1

1

(1+ r)i
Et

[
i

∏
j=1

(
1+gt+ j

)
]
. (2)

According to equation (2), any movements of the PD ratio
(

Pt

Dt

)
can be caused only by

time-variation of the discount factor or by changed expectations on future dividend growth

rates. Under the assumption of a constant discount factor, an increase in the PD ratio should

predict an increase in future dividends and vice versa. However, Campbell and Shiller (2001)

argue that neither the PD nor the PE ratio are good predictors for future dividend growth rates.

Instead, both valuation ratios work well as a predictor for future stock returns. High valuation

ratios predict decreasing stock prices, while low ratios predict increasing prices (Campbell

and Shiller, 2001).

The assumption of a constant discount factor is very restrictive. Instead, modern asset

pricing models often incorporate a stochastic discount factor (SDF), representing the time-

varying risk aversion of a representative agent (Cochrane, 2011). Nevertheless, Campbell

and Shiller (1988) show that the finding of excess volatility is robust to several time-varying

discount factors, including discount factors based on consumption, output, interest rates and

return volatility.

Brock and Hommes (1998) provide an alternative to the present-value relationship (1) and

the SDF framework, by allowing asset prices to depend on the expectations of H different

types of boundedly rational agents:

Pt =
1

1+ r

H

∑
h=1

Gh,tE
h
t [Pt+1 +Dt+1] , (3)

with Eh
t [·] representing the beliefs of agent type h. The fraction of agents following trading
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strategy h at time t is denoted by Gh,t . For analytical tractability, Brock and Hommes (1998)

assume a constant discount factor. This model nests the standard present-value model; when

all types have rational beliefs (i.e. Eh
t [·] = Et [·] ∀h), model (3) reduces to (1). Boswijk et al.

(2007) show that if dividends are specified as a geometric random walk process, model (3)

can be reformulated as follows:

yt =
1

1+ r

H

∑
h=1

Gh,tE
h
t [yt+1] , (4)

in which yt is defined as the PD ratio in deviation from its fundamental value. The results of

Campbell and Shiller (2001) suggest to estimate mispricings in the market as the PD ratio in

deviation from its long-run average:

yt =
Pt

Dt
−µ, (5)

in which µ = 1
T

T

∑
t=1

Pt

Dt
represents an estimate of the fundamental value of the PD ratio. yt gives

the size of the bubble in the market, which can be negative as well as positive. The asset is

over-valued if yt > 0 and under-valued if yt < 0. The price of the asset Pt can be decomposed

in an estimated fundamental value µDt and bubble ytDt :

Pt = µDt + ytDt (6)

A widely cited example of model (3) distinguishes two types of agents, fundamentalists and

chartists, who are both aware of the fundamental value, but disagree about the persistence

of the deviation from this fundamental value. The fundamentalists’ strategy is to buy stocks

when the market is undervalued and sell when the market is overvalued. They believe in

mean reversion; mispricings in the market should disappear over time: EF
t [yt+1] = ηFyt−1,

with ηF < 1+ r. Chartists (or trend-followers), on the other hand, speculate that the stock
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market will continue to diverge from its fundamental valuation: EC
t [yt+1] = ηCyt−1, with

ηC > 1+ r.

By substituting these two beliefs into (4) and allowing the fractions of both agent types to

vary over time, the asset pricing process can be described by a smooth-transition autoregres-

sive (STAR) process:

yt = αFyt−1(1−Gt)+αCyt−1Gt + εt , (7)

with αF = ηF/(1+ r) < 1 and αC = ηC/(1+ r) > 1. The transition function Gt defines the

fraction of chartist in the market. The fraction of fundamentalists is in this two-type model is

given by 1−Gt . Although both types use a linear prediction rule, the time-varying fractions

of each agent type makes the process nonlinear and, under certain parametrizations, chaotic

(Brock and Hommes, 1998).

Boswijk et al. (2007) estimate a variant of this model for both the PD and PE ratio of

the S&P 500 index, in deviation from their mean, for the period 1871 to 2003. They follow

Brock and Hommes (1998) by letting agents update their beliefs based on the realized profits

of each type in the previous period. Under these evolutionary dynamics, agents switch from

the less profitable strategy to the more profitable strategy. The transition function therefore

becomes a logistic function depending on lagged values of the dependent variable:

Gt = (1+ exp[−γ(ηC −ηF)yt−3(yt−1 − (1+ r)yt−2)])
−1 , (8)

in which γ represents the intensity of choice of the agents. If γ → ∞ all agents choose the

strategy that was most profitable in the previous period. On the other hand, if γ = 0, the

fraction of both types is exactly 50% in all periods, independent of the realized profits.

Instead of these evolutionary dynamics, I let the agents base their choice of strategy on

macroeconomic and financial information, which can be interpreted as an extension of the

agents’ information set. Of interest is to find which economic conditions can be associated
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with each type of agent.

The transition function Gt is a logistic function, as in the logistic STAR (LSTAR) model

by Teräsvirta (1994):

Gt = (1+ exp[−γ(xt − c)])−1 , (9)

in which the transition variable xt is usually a lagged value or lagged difference of the depen-

dent variable, but can be any predetermined or exogenous variable. The transition function

may also depend on a linear combination of variables:

Gt = (1+ exp[−γ(Xtβ − c)])−1 , (10)

with Xt = [x1,t . . .xp,t ] and p is the number of included transition variables. For this model; γ ,

c and β can not be all identified. This problem can be solved by placing a restriction on β .

In this paper, the elements of β are restricted to sum to one, so that Xtβ is a weighted sum of

multiple transition variables.

3 Data and linearity tests

Figure 1 shows quarterly data of the PD (left) and PE (right) ratios of the S&P500 index since

18811. These valuation ratios show the level of the S&P500 index relative to the cash flows

that the indexed stocks are generating. In particular the path of the PE ratio (right) seems

stable or mean-reverting in the long run. Even after reaching record levels around the start

of this century, the PE ratio recently dropped again below its average value during the credit

crisis in 2009. This latest peak is comparable in size to earlier episodes, most notably the

1920s. For the PD ratio, this pattern is less clear. Due to relatively low dividend payouts by

listed firms in recent decades (Fama and French, 2001), the PD ratio climbs during the 1990s

1Source: Robert Shiller, http://www.irrationalexuberance.com/index.htm
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to much higher levels than during any earlier peaks in the market. Although the model in

section 2 is expressed in terms of the PD ratio, I estimate the STAR model with both these

valuation ratios as the dependent variable. Earnings are smoothed over a period of ten years,

creating the so-called cyclically adjusted PE ratio. Both valuation ratios are taken in deviation

from their average value.

I follow the specification, estimation and evaluation cycle for STAR models proposed

by Teräsvirta (1994). The specification stage includes the selection of the appropriate lag

structure and justification of STAR modeling by testing for linearity. To find the optimal

lag length, I estimate linear AR(q) models including up to six lags for both the PD and PE

ratio. Table 1 shows the Akaike Information Criteria (AIC) and Bayesian Information Cri-

teria (BIC) for all specifications. For both valuation ratios, the AR(1) model is selected as

the appropriate specification. The STAR model is therefore estimated with an autoregressive

structure of one lag, as in equation (7). At the end of this paper, I verify the sufficiency of

this lag structure by submitting the residuals from the final STAR model to a test of serial

independence.

The next step is to test for linearity and simultaneously select the transition variables. I

consider a set of financial and macroeconomic indicators as potential transition variables2.

The first set of indicators is related to the performance of the stock market and includes both

dependent variables (PD and PE), monthly returns (RET ) and the volatility of the S&P500

index (VOL), defined as the variance of daily returns in each quarter. For the other indicators

I follow the choice of variables by Campbell (2003), who uses business cycle indicators, in-

flation and interest rates to study the cyclical properties of risk premiums. The business cycle

indicators considered by Campbell (2003) are real GDP (GDP) and consumption (CON). I

2 Source: FRED® (Federal Reserve Economic Data)
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supplement these indicators with the output gap (OPG) and industrial production (IND). The

inflation rates are the consumer price index (CPI) and GDP deflator (DEF). The interest

rates used by Campbell (2003) are the short-term yield on 3-month US treasury bills (STY )

and the long-term yield on 10-year US treasury notes (LTY ). I add to this the 10-year yield

on Baa-rated corporate bonds (CBY ) and construct the term spread (T SP = LTY −STY ) and

the yield spread of corporate bonds over sovereign bonds (Y SP = CBY −LTY ). While the

business cycle indicators measure the current state of the economy, these interest rates and

spreads contain expectations on future macroeconomic conditions (Bernanke, 1990; Estrella

and Mishkin, 1998). GDP, CON, IND, CPI and DEF are measured in quarter-on-quarter

growth rates. OPG is a percentage of GDP. For the interest rates and the output gap I look

at both levels and first differences (denoted by △). These data are not available for the full

period of S&P500 data, so the model is estimated using 208 obervations (1960Q1-2011Q4).

All variables are standardized (demeaned and divided by their standard deviation), to accom-

modate numerical estimation of the nonlinear model. For all explanatory variables, I consider

both first and second lags, which are therefore predetermined with respect to the dependent

variable.

To determine which of these variables are valid transition variables in the STAR model,

they are submitted to a linearity test based on a Taylor approximation of the STAR model

following Luukkonen et al. (1988). First, I consider the univariate transition function (9). A

third-order Taylor approximation of (7) with univariate transition function (9) around γ = 0

gives:

yt = φ0 +φ1yt−1 +
3

∑
i=1

φ1+iyt−1xi
t + et . (11)

Linearity can now be tested by estimating this Taylor approximation by OLS and testing the

null hypothesis Ho : φ2 = φ3 = φ4 = 0. Rejection of linearity implies that xt is a valid transition

variable.

Results of the linearity tests are given in Table 2, which shows the test statistics and cor-
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responding P-values. The test statistic is asymptotically F(n,T −k−n−1) distributed under

the null, with T = 208 (observations), k = 2 (unrestricted parameters) and n = 3 (restricted

parameters). An asymptotically equivalent χ2-test may be applied here as well, but the F-test

has preferable properties in small samples (Teräsvirta et al., 2010). The results in Table 2

show that several variables are valid transition variables.

I consider the LSTAR only, since a logistic transition function follows directly from the

logit switching rule in the model by Brock and Hommes (1998). Alternatively, the transition

function could be an exponential function as in the ESTAR model. To verify that the LSTAR

is the correct model, I apply a sequence of three F-tests based on (11) proposed by Teräsvirta

(1994) to choose between both transition functions: Ho1 : φ4 = 0, Ho2 : φ3 = 0 | φ4 = 0 and

Ho4 : φ2 = 0 | φ3 = φ4 = 0. If H02 yields a stronger rejection than H01 and H03, the ESTAR

model is the best choice. Otherwise, the LSTAR model is preferred. Table 2 shows that with

most transition variables, the LSTAR (marked by L) is the preferred specification. Teräsvirta

(1994) further recommends to estimate the STAR model with the transition variable for which

rejection of linearity is the strongest. However, the fact that linearity is rejected for different

transition variables suggests to incorporate more than one variable in the transition function.

Allowing for a multivariate transition function, I now propose a similar procedure based

on linearity tests to select the appropriate transition variables X = [x1 . . .xp]. From substitut-

ing xt = Xtβ into (11) it becomes clear that this Taylor approximation can not be estimated by

OLS if the weights β are unknown. To circumvent this problem, I first estimate β based on

a first-order Taylor approximation3 of (7), with a multivariate transition function (10) around

γ = 0:

yt = φ0 +φ1yt−1 +φ2yt−1(Xtβ )+ et , (12)

3A linearity test based on a first-order Taylor approximation does not allow to choose between a LSTAR and

ESTAR, but does provide power against STAR nonlinearity in general, except when the regime switching is in

the intercept rather than the autoregressive parameters (Luukkonen et al., 1988).
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or:

yt = φ0 +φ1yt−1 +
p

∑
i=1

θiyt−1xi,t−1 + et , (13)

such that θi = φ2βi. This Taylor approximation can be estimated by OLS for any set of

explanatory variables, after which the OLS estimates θ̂ and the restriction
p

∑
i=1

βi = 1 can be

used to derive estimates of β :

θi = φ2βi

p

∑
i=1

θi = φ2

p

∑
i=1

βi = φ2

β̃ j =

(
p

∑
i=1

θ̂i

)−1

θ̂ j. (14)

Selecting the optimal set of transition variables consists of the following steps. First, I es-

timate (13) for each possible set of one to four transition variables, which never includes

more than one variable out of each of the following four groups: (i) Stock market indicators,

(ii) business cycle indicators, (iii) inflation rates and (iv) interest rates and spreads. This ap-

proach limits the number of sets under consideration and, because several variables within

each group are highly correlated, it avoids multicollinarity within the transition function. For

each set, I then compute β̃ , following (14) and perform a t-test on each element of β̃ . In

trying to avoid selecting an overfitted model, I proceed only with those sets of variables for

which all elements of β̃ are significant at the 10% level. For these selected sets, I substitute

xt = Xt β̃ into the third-order Taylor approximation (11) in order to test the null hypothesis

Ho : φ2 = φ3 = φ4 = 0. Finally, I choose the set of variables yielding the strongest rejection

of linearity as the optimal set of transition variables. Table 3 reports the final results of this

test procedure. With the selected linear combinations of transition variables, the rejection of

linearity is stronger than with any of the single transition variables in Table 2. In both cases

the LSTAR model is preferred over the ESTAR.
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4 Results

The parameter estimates for the STAR model are presented in Table 4. The models are

estimated by nonlinear least squares, preceded by a (p+ 1)-dimensional grid search for γ , c

and the (p−1) free elements of β to find starting values. The selection criterion in this grid

search is the sum of squares of the STAR model, which can be estimated by OLS when γ ,

c and β are kept fixed. The estimated autoregressive parameters of each regime are denoted

by α1 and α2, rather than αC and αF , because the latter notation implies restrictions on these

parameters that I do not impose during estimation.

The top rows of Table 4 show the parameter estimates for the STAR models (7) with

univariate transition function (9), using the transition variable for which rejection of linearity

is the strongest, which is the first lag of industrial production (INDt−1) for both valuation

ratios. Because there is only one transition variable, there are no weights β to estimate.

Although both estimated models include a mean-reverting and a trend-following regime, the

results are not entirely consistent with the spirit of the heterogeneous agent model by Brock

and Hommes (1998), because the intensity of choice parameter γ is so high that the fraction

of each type is either zero or one. Contrary to the idea of heterogeneous beliefs these results

suggest that the entire population of agents makes the same switch simultaneously.

The bottom rows of Table 4 show the STAR models (7) with multivariate transition func-

tion (10). With multiple transition variables, the estimates of γ are lower, in support of a

smooth transition between the regimes. In both estimated models, two distinct regimes are

identified. Each specification has one autoregressive parameter significantly smaller than one

(representing the fundamentalist type), while the other autoregressive parameter is signifi-

cantly greater than one (representing the chartist type). Interpreting β reveals that chartists

are more dominant during periods of economic expansion, while the fraction of fundamen-

talists increases during economic downturns.
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With yt = PDt , the effect of volatility (VOLt−1) does not seem significant. I keep this

transition variable in the model, because excluding it does not improve the fit of the model.

Industrial production growth (INDt−1) has a positive coefficient, implying in this case it

supports the chartist type. An increase in industrial production causes an increase in the

fraction of chartists in the economy. Also the short-term yield on 3-month treasury bills

(STYt−2) has a positive coefficient. A high yield on low-risk assets like treasury bills implies

low levels of risk aversion, and in this model a high fraction of chartists. With yt = PEt ,

the model does not include the exact same set of transition variables, but the results tell a

similar story: Chartism is the dominant strategy during expansive periods, signalled by high

industrial production growth (INDt−1) and inflation (DEFt−2).

Several measures are applied to evaluate the fit of the STAR model, compared to the fit

of an AR(1) model and the linear regression model:

yt = ω1yt−1 +Xtω2 + et , (15)

which includes the same explanatory variables as the STAR model. Table 5 presents, in addi-

tion to the R2, AIC and BIC of all models, the results of a pseudo out-of-sample forecasting

exercise. Using an expanding window approach, I estimate all models using a subset of the

data (1960Q2-S) and use the estimated models to compute forecasts for period S+ 1. This

process is repeated 48 times, creating pseudo out-of-sample forecasts for the period (2000Q1-

2011Q4), from which Mean Absolute Errors (MAE) and Root Mean Squared Errors (RMSE)

are computed. Due to the high persistency of the valuation ratios, the R2 of all models includ-

ing the univariate AR(1) are relatively high. The improved fit of the STAR model over the

linear alternatives is small but seems robust to several measures. According to the AIC, BIC

and out-of-sample results, the STAR model with multivariate transition function outperforms

its linear alternatives as well as the STAR model with a univariate transition function. The
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result that the STAR model (7)-(10) has a better fit than the linear model (15) implies that the

variables in Xt work better in explaining the switching process between mean-reverting and

trend-following regimes than they do in explaining the level of PDt and PEt , which supports

the notion of chartism and fundamentalism. The macroeconomic information is not simply

correlated with stock prices but has an effect on the nonlinear adjustment towards the funda-

mental value. Table 5 also shows the test statistics and bootstrap P-values for the linearity

test by Hansen (1996, 1997). Like the linearity tests in section 2, these tests show strong

rejections of linearity, with P-values lower than 1%.

An intuitive interpretation of the results is found by giving (7) the alternative formulation

of an AR(1) process with a time-varying parameter:

yt = δtyt−1 + εt , (16)

in which δt = α1(1−Gt)+α2Gt , which can be interpreted as an indicator of market senti-

ment. When δt > 1 the valuation ratio is diverging from its mean, implying that the chartist

regime is dominant, while the valuation ratio is mean-reverting when δt < 1. Figure 2 offers

a graphical evaluation of both estimated models by showing plots of δt over time and scatter

plots of Gt against X ′
t−1β , evaluated at the estimates of the multivariate STAR model. Be-

cause of the relatively low value of the intensity of choice parameter γ , both scatter plots on

the right side of Figure 2 clearly show a logistic curve. Most of the time, both chartists and

fundamentalists are represented in the economy, with δt fluctuating around one. In 2001 and

again in 2008 the market turned almost completely to the fundamentalist type for a prolonged

period, causing the bubble built up in the 1990s to deflate.

Finally, the estimated multivariate models in Table 4 are evaluated with diagnostic checks.

Table 6 presents results on tests of serial independence, parameter constancy and no remain-

ing nonlinearity. Eitrheim and Teräsvirta (1996) provide technical details on all three tests.
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The test of serial independence test the null hypothesis of no qth order autocorrelation in

the residuals. For a qth order test, the resulting test statistic is asymptotically F(q,T −q−4)

distributed under the null, with T = 208 (sample size). I execute this test for first- up to

fourth-order autocorrelation. For both models, the test results give no reason the reject the

null hypothesis, confirming the sufficiency of an autoregressive structure of only one lag.

Under the null hypothesis of no time-variation of the parameters in (7) and (10), the

parameter constancy test statistic is asymptotically F(6,T − 10) distributed. Also this test

gives no reason to reject the specification.

The test of no remaining nonlinearity checks whether any variable has a significant non-

linear effect on the residuals. This could be the case when a transition variable is omitted,

or when these variables have an effect on yt through some other nonlinear channel. The test

statistic is asymptotically F(3,T −6) distributed under the null. This test is repeated for the

first lags of all potential transition variables considered in this paper. For the majority of the

variables, the null hypothesis of no remaining non-linearity can not be rejected at the 10%

level. There are some exceptions, in particular lagged returns (RETt−1), but including these

variables in the transition function does not improve the fit of the model. Given that the test

is repeated for many variables, it is possible that the rejections are Type I errors. Overall, the

results of these diagnostic checks are positive and provide support to the specification of the

model.

5 Conclusion

In this paper, I identify two types of agents: fundamentalists and chartists. The presence

of chartists, who are predicting trends rather than fundamentals, explains the existence of

bubbles in asset prices. To estimate the effects of macroeconomic conditions on the behavior

of agents, I propose a STAR model with a multivariate transition function. This STAR model
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outperforms STAR models with a single transition variable as well as linear alternatives in

terms of goodness-of-fit.

Agents are more willing to believe in the persistence of bubbles during times of positive

macroeconomic news. Chartists gain dominance during periods of favorable economic con-

ditions, mainly measured by industrial production. The fraction of fundamentalists increases

during economic downturns, which encourage agents to re-appreciate fundamentals.

Further research in this area may include an investigation of international stock markets,

in order to find whether the switching between chartism and fundamentalism is based on

the same factors and occurs simultaneously across countries. In addition, the framework

presented in this paper is suitable to find the macroeconomic conditions under which any

asset price deviates from some measure of fundamental value. Other possible applications

include the deviation of exchange rates from purchasing power parity (see e.g. Rogoff, 1996),

or the term structure of interest rates in deviation from the expectations hypothesis (see e.g.

Mankiw and Miron, 1986).
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Tables and charts

0

20

40

60

80

100

1880 1900 1920 1940 1960 1980 2000
0

10

20

30

40

50

1880 1900 1920 1940 1960 1980 2000

Figure 1: S&P 500 index 1881Q1-2011Q4: price-dividend ratio (left) and price-earnings ratio (right).
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Figure 2 :Regression results: Plot (left) of δt = α1(1−Gt)+α2Gt over time and scatterplot (right) of Gt against

Xtβ , evaluated at parameter estimates in Table 4.

TABLE 1. AR(q): Selection criteria

yt q: 1 2 3 4 5 6

PDt

AIC -699.5 -696.7 -691.2 -686.7 -680.5 -676.7

BIC -692.8 -686.7 -677.8 -670.1 -660.6 -653.5

PEt

AIC -681.8 -678.1 -672.4 -669.7 -664.9 -662.1

BIC -675.2 -668.1 -659.1 -653.1 -645.0 -638.9

Notes: Akaike Information Criteria (AIC) and Bayesian Information

Criteria (BIC) for AR(q) models. Sample size (for yt = PDt and yt = PEt )

is 208 observations: 1960Q1-2011Q4.
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TABLE 2. Linearity tests: Univariate transition function

yt = PDt yt = PEt

lag t −1 t −2 t −1 t −2

x F P L/E F P L/E F P L/E F P L/E

PD 0.667 0.573 L 0.974 0.406 L 3.359 0.020 E 2.811 0.041 E

PE 0.236 0.871 E 0.282 0.838 L 0.512 0.674 L 0.475 0.700 L

RET 2.407 0.068 E 0.600 0.616 L 2.741 0.044 E 0.266 0.850 E

VOL 1.621 0.186 L 0.818 0.486 L 0.496 0.686 L 0.541 0.655 L

GDP 4.742 0.003 L 0.868 0.459 L 3.495 0.017 L 0.574 0.633 L

CON 2.596 0.054 L 0.873 0.456 L 0.849 0.469 L 0.484 0.694 E

OPG 1.555 0.202 L 0.337 0.799 L 0.483 0.694 E 1.820 0.145 E

△OPG 3.847 0.010 L 0.760 0.518 L 3.299 0.021 L 0.614 0.607 L

IND 5.073 0.002 L 2.845 0.039 L 4.358 0.005 L 2.249 0.084 L

CPI 1.119 0.342 L 1.084 0.357 L 1.261 0.289 L 0.732 0.534 L

DEF 2.639 0.051 L 1.201 0.311 L 4.102 0.007 L 1.472 0.223 L

STY 1.139 0.334 L 1.247 0.294 L 1.205 0.309 L 1.339 0.263 L

△STY 0.254 0.858 L 1.475 0.223 L 0.162 0.922 L 0.577 0.631 L

LTY 0.238 0.870 L 0.577 0.631 E 0.283 0.838 L 0.833 0.477 L

△LTY 0.496 0.686 L 0.565 0.639 L 0.335 0.800 L 0.519 0.670 L

TSP 2.591 0.054 L 2.724 0.045 L 1.476 0.222 E 1.498 0.216 L

CBY 0.128 0.943 E 0.163 0.921 E 0.056 0.982 L 0.071 0.975 E

△CBY 0.391 0.760 L 0.076 0.973 L 0.109 0.955 L 0.354 0.787 L

YSP 1.414 0.240 L 1.971 0.119 L 1.375 0.252 L 2.216 0.087 L

Notes: F-test statistics and corresponding P-values for Ho : φ2 = φ3 = φ4 = 0 in equation (11), using both first and

second lags of several transition variables. L/E refers to the LSTAR or ESTAR model selected by the procedure of

Teräsvirta (1994).

TABLE 3. Linearity tests: Multivariate transition function

yt Xt β1 β2 β3 F P L/E

PDt (VOLt−1, INDt−1,STYt−2) 0.20 0.54 0.26 7.98 4.7×10−5 L

PEt (INDt−1,DEFt−2) 0.67 0.33 . 7.79 6.0×10−5 L

Notes: Optimal set of transition variables Xt in terms of the highest F-test statistics and

lowest P-values for Ho : φ2 = φ3 = φ4 = 0 in equation (11), with xt = Xt β . L/E refers to

the LSTAR or ESTAR model selected by the procedure of Teräsvirta (1994). The

elements of β are estimated based on equations (13)-(14)
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TABLE 4. Parameter estimates for STAR model

yt Xt α1 α2 γ c β1 β2 β3

PDt INDt−1

0.948 1.098 80.44 0.375 . . .

(0.010) (0.021) (52.79) (0.012) . . .

PEt INDt−1

0.898 1.019 1244 -0.371 . . .

(0.016) (0.011) (1247) (2.148) . . .

PDt (VOLt−1, INDt−1,STYt−2)
0.917 1.101 7.452 0.123 -0.012 0.721 0.291

(0.017) (0.026) (2.572) (0.089) (0.076) (0.077) (0.040)

PEt (INDt−1,DEFt−2)
0.841 1.045 4.739 -0.372 0.656 0.344 .

(0.036) (0.023) (1.873) (0.135) (0.069) (0.069) .

Notes: NLS parameter estimates for model (7) with univariate transition function (9) or multivariate

transition function (10). Standard errors in parenthesis. All estimated models include a constant, which are

not significantly different from zero and are therefore not reported.

TABLE 5. Goodness of fit

yt Xt model R2 AIC BIC MAE RMSE F lin P (boot)

PDt . AR(1) 0.966 -699.5 -692.8 1.317 1.526 . .

PDt INDt−1 Linear 0.966 -697.5 -687.5 1.321 1.532 . .

PDt INDt−1 STAR 0.970 -718.0 -704.7 1.292 1.490 23.81 0.002

PDt (VOLt−1, INDt−1,STYt−2) Linear 0.967 -699.1 -682.4 1.323 1.538 . .

PDt (VOLt−1, INDt−1,STYt−2) STAR 0.971 -723.3 -710.0 1.283 1.490 29.79 0.001

PEt . AR(1) 0.963 -681.8 -675.2 0.943 1.227 . .

PEt INDt−1 Linear 0.963 -679.9 -669.9 0.946 1.231 . .

PEt INDt−1 STAR 0.966 -696.1 -682.7 0.919 1.196 19.06 0.003

PEt (INDt−1,DEFt−2) Linear 0.965 -686.1 -672.8 0.940 1.216 . .

PEt (INDt−1,DEFt−2) STAR 0.967 -701.1 -687.8 0.904 1.193 24.62 0.002

Notes: Measures of goodness of fit of the STAR models from Table 4, a linear AR(1) model and the linear

models (15) including the same explanatory variables as the STAR. Mean Absolute Errors and Root Mean

Square Errors are computed from 48 pseudo out-of-sample forecasts for 2000Q1-2011Q4. The F-test for

linearity by Hansen (1996, 1997) tests Ho : α1 = α2 in the STAR model. The corresponding bootstrap

P-value is computed based on 10.000 replications.
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TABLE 6. Diagnostic tests

yt PDt PEt

Xt (VOLt−1, INDt−1,STYt−2) (INDt−1,DEFt−2)

F P F P

Serial independence: 1st 1.380 0.242 1.327 0.251

2nd 0.804 0.449 0.805 0.448

3rd 0.921 0.432 1.683 0.172

4th 0.846 0.498 1.250 0.291

Parameter constancy: 1.225 0.295 1.529 0.170

No remaining nonlinearity: PDt−1 1.210 0.307 4.195 0.007

PEt−1 0.389 0.761 2.974 0.033

RETt−1 4.878 0.003 4.816 0.003

VOLt−1 2.267 0.082 0.651 0.583

GDPt−1 0.835 0.476 0.943 0.421

CONt−1 0.639 0.591 0.326 0.807

OPGt−1 0.425 0.735 0.445 0.721

△OPGt−1 0.635 0.593 0.837 0.475

INDt−1 0.126 0.945 0.645 0.587

CPIt−1 1.231 0.299 1.478 0.222

DEFt−1 2.131 0.097 4.832 0.003

STYt−1 0.090 0.966 0.616 0.605

△STYt−1 0.277 0.842 1.730 0.162

LTYt−1 0.778 0.508 0.459 0.711

△LTYt−1 0.200 0.896 0.886 0.449

TSPt−1 1.192 0.314 1.283 0.281

CBYt−1 0.811 0.489 0.472 0.702

△CBYt−1 0.577 0.631 0.164 0.920

YSPt−1 0.469 0.704 0.048 0.986

Notes: F-test statistics and corresponding P-values for first- to fourth-order serial independence, parameter

constancy and no remaining non-linearity (Eitrheim and Teräsvirta, 1996)
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