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Abstract 

We use data from video files of all advertisements in the OTC analgesics industry from 2001 to 2005 to 

measure the information content in ads. We propose a simple theoretical framework to motivate an ordered 

probit model of information content. We find that stronger vertical differentiation is positively associated 

with the delivery of more product information in a brand’s advertisements: brands with higher levels of 

quality include more information cues. Comparative advertisements contain significantly more product 

information than noncomparative advertisements. Brands with higher market shares and brands competing 

against generic substitutes with higher market shares have less information content. 
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How much information brands choose to disclose in advertisements is a question of 

considerable theoretical and empirical debate. Recent research in marketing and economics 

provides some theoretical predictions on the relationship between market structure or firm size and 

the amount of information transmitted (Anderson and Renault 2009; Guo and Zhao 2009; Sun 

2010). The empirical work on advertising content is split into two camps, with essentially no 

overlap. The first camp uses Resnik and Stern’s (1977) methodology to analyze content (for a 

summary, see Abernethy and Franke 1996). The second camp treats advertising content as a choice 

variable (Anderson et al. 2012 (ACLR); Bertrand et al. 2010; Liaukonyte 2011). We develop the 

first empirical study of the information-persuasion trade-off that use data on the information content 

of ads. In our approach the “persuasive” content of an ad is interpreted here as the content that is not 

objective information. 

The key idea of this paper is that there exists an optimal amount of information to be 

included in an advertisement. Advertisements that provide too little objective information about the 

brand arguably waste the opportunity to sufficiently convince prospective consumers to buy it 

(Jacoby 1977). Conversely, those that provide too much information may crowd the ad message and 

lead to information overload for the consumer (Chervany and Dickson 1974; Peters, Wedel and 

Zhang 2007). Factors such as motivation and the ability to process information  mediate individual 

responses to advertising (Cacioppo and Petty 1985; MacInnis and Jaworski 1989). Therefore, the 

complexity of advertising, including too many information cues, can create attention wear-out 

(Pieters, Warlop and Wedel 2002), which suggests that an optimal degree of information content 

exists. The optimal amount of information content may vary systematically across brands and may 

be partially explained by observable factors such as brand type, brand size, suitability of various 

combinations of information, and recent news about the product.  
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Our empirical analysis examines the relationship between market variables and the 

information content of advertising. First, we classify and fully measure different types of 

advertising content, as well as the distribution of information cues, within an entire industry. 

Second, we use an ordered probit model of the number of information cues in advertisements as a 

function of the market share of a brand, its core vertical characteristics, and the share of the generic 

substitute. To motivate the selection of an ordered probit we develop a simple and intuitive 

framework in which firms decide how much objective information to include in an advertisement. 

The underlying idea behind our empirical analysis is that there exists a trade-off between objective 

information and other persuasion, subject to random factors intrinsic to specific ads. The amount of 

time spent on information—as approximated by the number of information cues—has systematic 

and random components. 

We find that stronger vertical differentiation is positively associated with more information. 

We also find that comparative advertisements contain significantly more information than non-

comparative advertisements, and that larger brands and a higher market share of the generic version 

of a brand are both associated with less informative ads. Significant estimation bias results from not 

controlling for the endogeneity of the decision to use comparative advertising and from the 

endogeneity of market share.  

Our analysis contributes to the sparse empirical literature on the persuasive vs. informative 

content of advertising (see Bagwell, 2007, for a comprehensive survey). To our knowledge, the only 

papers that have tried to disentangle the informative from the persuasive effect of advertising 

are Ackerberg (2001, 2003). In order to identify the persuasive from the informative 

role, Ackerberg (2001, 2003) analyzes consumer reactions to the advertising of a new product (the 

yogurt Yoplait 150). Essentially, Ackerberg uses a clever identification assumption that advertising 

is only informative for first buyers, while it is both informative and persuasive for repeat buyers. 
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Our approach is fundamentally different because we explicitly code the information content. This 

enables us to distinguish between the informative and the persuasive role of advertising directly 

from the content data. 

The present paper is related to ACLR (2012) because it analyzes the same industry. The 

analysis in ACLR (2012), however, is very different. It deploys a structural empirical oligopoly 

model of how much each brand spends "attacking" each other brand through comparative 

advertising, where an attack both pulls down the target's perceived quality and pushes up the 

sender's. The attack matrix of how much is spent attacking each rival is used to derive the matrix of 

diversion ratios between brand pairs. However, the attack spending is not broken down by 

characteristic. In this paper, on the other hand, we focus explicitly on the advertising content by 

analyzing product attributes promoted in the ads. 

 

Advertising Content and the Information-Persuasion Trade-off in an Ordered Probit Model 

In general, information in advertisements can be (1) about the brand, brand attributes, 

benefits, users, or usage situation; (2) cognitive, emotional or subconscious; or (3) contextual 

information, including consumers’ past experiences (MacInnis, Moorman, and Jaworski 2001; 

Vakratsas and Ambler 1999). We focus on the first aspect of brand information (tractable, objective 

information cues) and treat cognitive, emotional, and contextual information as the intractable, 

subjective element of an ad. We define this subjective element as the persuasive component.
4
  

Contrary to the classic content analysis, which determines the fraction of advertisements that 

fall into each category given a number of cues and uses univariate analysis to compare scenarios, 

                                                 
4
 The persuasive component can also be tractable in well-defined studies (e.g., Maheswaran and Joan Meyers-Levy 

1990), but it is outside of the scope of this paper.  
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we use an ordered probit model to study the determinants of the distribution of cues. We now 

present a simple way to motivate the use of an ordered probit in this context. 

We maintain that firms face a trade-off: given the limited amount of time available in an ad, 

the firm must decide how much of that time to allocate to providing information and how much of it 

to allocate to persuading consumers to buy the brand through the use of channels other than 

objective information. We assume that the persuasive power of an advertisement depends on the 

number of seconds devoted to the persuasive component, and a random term, which reflects the 

idiosyncratic features of a particular advertisement. Let the persuasive power of the ad be ܲሺݏ, ሻߝ ൌ ሺ̅ െ  ݏሻߝ

where s is the number of seconds spent on persuasion, ̅ is a constant and ε is a random term.
5
  

Panel A of Figure 1 illustrates the function P(s,ε). The x-axis indicates the number of seconds used 

for persuasion. As more time is allocated to persuasion, the function P(s,ε) increases from right to 

left. The y-axis shows the total benefit from persuasion. The more time spent on persuasion, the 

larger the total benefit. 

The marginal persuasion for an advertisement with s seconds of persuasion and a given draw 

of the random term ε is therefore ̅ െ  The persuasion function is linear, and therefore the .ߝ

marginal persuasion does not change with the share of the advertisement that is allocated to it.  

Panel B of Figure 1 illustrates the function ̅ െ  The x-axis again indicates the number of seconds .ߝ

used for persuasion. Because ̅ െ ̅ does not change with s, the function ߝ െ -is parallel to the x ߝ

axis. The y-axis depicts the marginal benefit of persuasion. In the empirical implementation of the 

econometric model that we are developing here, ̅ will vary according to the observable features of 

the advertised brand (e.g., market share, observable quality, generic competition, etc.) and of the 

advertisement itself, such as whether it is a comparative or non-comparative advertisement. 

                                                 
5 P(s,ε) does not have to be linear in s. It should be an increasing and concave function of s. The linear specification 

simplifies the exposition significantly. 
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Figure 1. Trade-off Between Informative and Persuasive Content 
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Let each information cue take ̅ݏ seconds to convey, so that if there are S seconds in the ad 

(i.e. n information cues are conveyed), there are s=S-n̅ݏ seconds of persuasion. Let Ii be the benefit 

of the i
th

 information cue i, with i=1,...,n. We rank the cues from the highest to the lowest 

information benefit for each given advertisement (and the ranking may differ across advertisements 

according to the particular theme of the ad). Clearly, the brand will choose to include the cues 

delivering the highest information benefit, i.e., those cues for which the values of Ii are the highest. 

Because a given advertisement only has a limited amount of available time, S, the brand 

must decide how much of that time to allocate to providing information vs. for persuasion. This 

trade-off and the total benefit of information are depicted in Panel A of Figure 1. Panel B of Figure 

1 shows the marginal benefit of information, which is decreasing in the amount of information 

already provided. The marginal benefit of information is also a step function. The firm chooses s 

(or, alternatively, n) to maximize the sum of the total benefit of persuasion and the total benefit of 

information.  Formally, the firm solves: 

ቐmax௦ ∑ሺܦ ܫ  ܲሺݏ, ሻୀଵߝ ሻݏ. ݊   .ݐ ൌ ܵ െ ݏ̅ݏ .  

Here D(.) is an increasing function representing the firm’s demand as a function of an 

advertisement’s information and persuasion content. The solution to this optimization problem can 

be described by comparing the incremental benefit from adding a cue to the advertisement to the 

opportunity cost of reducing the time spent on persuasion. If the advertisement contains n-1 cues, 

then the extra benefit from the n
th

 cue is In. We can see this graphically in Panel A of Figure 1. 

There we see that I₄, the marginal benefit of the fourth information cue, is larger than I₅, the 

marginal benefit of the fifth information cue. The slope of the persuasion function, ̅ െ  is such ,ߝ

that:  

I₅ < ̅ݏሺ̅ െ  .ሻ < I₄ߝ
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This implies that the optimal number of cues depicted in Panel A of Figure 1 is four. 

Panel B of Figure 1 shows this solution in a way that allows us to introduce our ordered 

probit in a straightforward way. Define for all Ii the value εi such that ܫ ൌ ሺ̅ െ  ,ݏ̅ ሻߝ
so that εi is the threshold value of the random error such that the firm chooses to include at least i 

information cues in the advertisement if ε > εi. In Figure 1, Panel A depicts ε₄ < ε < ε₅. Hence, in 

this particular illustration, the brand chooses to include four information cues in the advertisement. 

Accounting for the fact that there can be no fewer than zero cues and no more than ܥ ൌ  ,ݏ̅/ܵ

we have the following mapping from the value of ε to the number of cues, here denoted by y: 

 y = 0, for ε ≤  ε₁ 
       ... 

 y = i,  for εi < ε ≤  εi+1 

      ... 

     y = n, for ε > εn. 

The basic intuition of this statistical model is the following: when the (negative) random 

shock is very small (ε < ε₁) — which implies that an advertisement has ability to have very strong 

persuasive power (relative to the benefit of information in that particular advertisement) — then the 

firm has no incentive to include information cues. As the persuasive power of an advertisement 

decreases, the firm chooses to include more information cues. 

From the specification above we can construct a probability distribution of observing the 

corresponding number of cues, where F( . ) denotes the cumulative distribution of ε: 

   y = 0, with probability F(ε₁) 
      ... 

   y = i,  with probability F(εi+1) - F(εi) 

      ... 

   y = n, with probability 1 - F(εn). 
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If F(.) is normally distributed, the formulation corresponds to an ordered probit model.
6
 In 

particular, we show how the probability function in the model above can be written as the textbook 

version of the ordered probit, where ߝ ൌ ߙ െ ሻߝሺܨ and therefore ߚܺ ൌ Φሺߙ െ  ሻ.  In thisߚܺ

ordered probit specification the unobserved components, i.e. ε,  are drawn from a normal 

distribution, and the cutoff values (αi) are such that the realization of a latent variable (explained 

component plus noise) lies within a range that corresponds to each specific number of cues.
7
ܭ is a ߚ  ൈ 1 vector of parameters, and ܺ is a ܭ ൈ 1 vector of observable features of the brand, which does 

not include a constant. For ߚ  0, an increase in X will lower the threshold εi which will in turn 

make it more desirable to add additional information cues. Therefore, for ߚ  0, larger Xs are 

associated with more information content in an advertisement. 

We can rewrite ܨሺߝሻ ൌ Φሺߙ െ ߝ ሻ. First, recall thatߚܺ ൌ ̅ െ ூ௦̅ . Here ̅ is a variable, the 

value of which determines the benefit of persuasion content. Hence, we set ߙ െ ߚܺ ൌ ̅ െ ூ௦̅ .   It is 

useful to extract a constant from െ ூ௦̅   and to rewrite the equality as ߙ െ ߚܺ ൌ ̅ െ ܫ ̅ െ ூሚ௦̅ . Then ܺߚ ൌ ̅ܫ െ  so that, consistent with the discussion in the preceding paragraph, the X variables ̅

increase the benefit of information or, equivalently, decrease the benefit of persuasion. Second, we 

can define the cutoff value ߙ ൌ െ ூሚ௦̅ , which determines whether the firm is including i or i+1 

information cues. The econometric model does not identify the constant term ܫ ̅separately from the 

cutoffs ߙ , which we need to keep in mind when we interpret the cutoffs. 

In our framework, the cutoffs have a clear structural interpretation. In particular: 

ାଵߙ െ ߙ ൌ ܫ െ ݏାଵ̅ܫ . 
                                                 
6 For a comprehensive review of ordered models, see Greene (1997) and Woolridge (2001). 
7
 For concreteness, we describe the random term as entering the persuasion power, but it could just as well enter the 

marginal information benefit described below. Or, indeed, the random term could enter on both sides and the analysis 

would then capture the net effect. 
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Thus, conditional on ̅ݏ (which is unobserved), differences in the cutoffs provide information 

on differences in the information benefits of an additional cue.  

We estimate this ordered probit model and use the results to examine the relationships 

between the fundamental variables (e.g., a market share of a firm) and the number of information 

cues that a firm includes in an advertisement. Before discussing the relationships of interest, we 

state and prove a helpful result. 

 

Lemma 1. An increase in Ii stochastically increases the number of information cues. 

Proof. From the analysis above, i cues will be advertised if ε ∈  (εi, εi+1), where, as above, ߝ ൌ ̅ െ ூ௦̅ . The corresponding probability of observing i cues is Pi = F(εi+1) െ F(εi), or 

 Pi =F( െ ூశభ௦ ) െܨ ቀ െ ூ௦ቁ.  Suppose now that Ii increases while retaining its position as the ith 

largest information benefit. Then Pi increases at the expense of Pi-1, while all other probabilities 

remain unchanged. Hence, the number of cues increases stochastically. Now suppose that the 

increase in Ii raises it to the j
th

 highest cue, with j < i. Then each intervening cue is promoted so that 

the probability of observing at least that number of cues rises. The probability of observing i+1 cues 

or more stays the same, as does the probability of observing each number less than j. Again, the 

number of cues stochastically increases. QED 

 

Explanatory Variables in the Ordered Probit Model 

First, we consider intrinsic characteristics of a product, which include: strength of pain 

relief, relative efficiency,  and safety. In the industry analyzed in this paper, these variables are 

naturally exogenous to the information decision. This is because they depend on the medical 

properties of the active ingredients in analgesic pain relievers, which in turn are inflexibly regulated 
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by the Federal Drug Administration (FDA). Therefore, the direction of causality can be clearly 

identified, and we can investigate how different locations in the product characteristics space are 

associated with information disclosure. 

The driving idea here is that the information benefit to the brand from communicating a 

characteristic is increasing in the strength of the performance of the brand in that characteristic. 

Communicating a weak characteristic does not give as much incremental benefit as communicating 

a strong one. Characteristics that are important to consumers are more likely to be communicated, 

and additional strength in any particular cue will raise its relative information benefit and also make 

it more likely to be included in the advertisement. Thus, using the result from Lemma 1 we would 

expect that brands with higher levels of quality (on each of the quality dimensions for which we 

have data) will include more information cues in their advertisements. 

The second relationship that we study is that of information disclosure and the market share 

of a brand. We investigate whether larger brands benefit less than smaller brands from providing 

information, because larger brands are already well known and have higher advertising goodwill 

and brand equity (Simon and Sullivan 1993, Dekimpe and Hanssens 1995). In other words, the 

incremental benefit is smaller because consumers are already more aware of the features of 

commonly used products. The simple framework that we have presented above does not provide 

any insight on the effect of market share on information content, and so we will learn from the 

empirical analysis the nature of the relationship between market share and information content in an 

ad. 

Next, we investigate the relationship between information disclosure and the size of the 

generic counterpart market. An important characteristic of our analyzed market and of many other 

consumer product categories is the presence of generic substitutes. The simple framework presented 

above does not provide any prediction on the presence of generic substitutes on information content. 
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However, we can impose some restrictions to our theoretical framework that would lead to tighter 

predictions about this relationship. Consider the following simple specification for the objective 

function of a non-generic firm: 

ܦ ൭ܫ  ܲሺݏ, ሻߝ
ୀଵ ൱ െ ܮ ൭ݏ,ܫ

ୀଵ ൱ , 
where ܦሺ∑ ܫ  ܲሺݏ, ሻୀଵߝ ሻ denotes the increase in demand for both the branded product and its 

generic counterpart, and ܮ൫ݏ, ∑ ୀଵܫ ൯ denotes the leakage to the generic. The leakage is assumed to 

be increasing in the generic market share, sg, and in the information content, ∑ ୀଵܫ .  Note that n 

information cues will be preferred to n+1 if  ܦሺ∑ ܫ  ܲሺݏ, ሻୀଵߝ ሻ െ ,ݏ൫ܮ ∑ ୀଵܫ ൯ > ܦሺ∑ ܫ  ܲሺݏ, ሻାଵୀଵߝ ሻ െ ,ݏ൫ܮ ∑ ାଵୀଵܫ ൯  
where we have let the argument n denote the use of the first n information cues. Rewriting this 

condition as ܮ൫ݏ, ∑ ାଵୀଵܫ ൯ െ ,ݏ൫ܮ ∑ ୀଵܫ ൯  > ܦሺ∑ ܫ  ܲሺݏ, ሻାଵୀଵߝ ሻ െ ∑ሺܦ ܫ  ܲሺݏ, ሻୀଵߝ ሻ and 

noting that the right hand side of the inequality does not depend upon sg, then including the lower 

number of cues, n, is more likely to be preferred as the left hand side of the equation increases. That 

holds if the incremental leakage is increasing in sg. This is a natural condition given that the leakage 

itself is increasing in sg (for example, if leakage were proportional to generic market size times an 

increasing and concave function of information cues). This is consistent with the rationale that 

brands that emphasize product quality also provide free advertising for generic counterparts of their 

products
8
, and therefore this would decrease the incentive to include information in the ads. On the 

other hand, consumers of brands might not be inclined to consume generics, and, in that case, 

brands might include information in their ads, independently of the size of the generic counterpart. 

While this is an intuitive and interesting exercise, our empirical analysis will not impose any (sign) 

                                                 
8 Unlike other generic substitutes of consumer products, the generic versions of OTC analgesics are (and, by regulation, 

have to be) identical in quality to branded products with the same active ingredient, since the quality of these OTC 

drugs is overseen by the FDA.  
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restriction on the relationship between the share of the generic counterpart and the amount of 

information included in an ad. 

Finally, the last relationship that we study is the one between the decision to make a 

comparative claim and amount of information provided.  There is no existing theory that tells us 

whether comparative advertisements should include more or less information than non-comparative 

advertisements.
9
 More information is conveyed by comparing two brands than just promoting a 

brand, and comparing relative performance provides a more precise and concrete reference point. 

On the other hand, an advertisement with comparative content is likely to have a weaker persuasion 

effect, even if the amount of time devoted to persuasion is the same. This might happen because 

mentioning the other brand dilutes the persuasion because it reiterates the existence of the rival 

brand. Previous research (Chou, Franke, and Wilcox 1987; Harmon, Razzouk, and Stern 1983) has 

found that comparative advertisements have more information, and we expect to find similar 

patterns. In particular, we might expect a comparative advertisement to both increase the marginal 

information and decrease the marginal persuasion benefit of an advertisement. Both effects cause 

the number of cues to rise stochastically (see Figure 1). 

 

Data and Content Analysis 

We use sales and advertising data from the OTC analgesics industry in the United States.  

The OTC analgesics market covers pain relief medications with four major active chemical 

ingredients: aspirin, acetaminophen, ibuprofen, and naproxen sodium. The nationally advertised 

brands include Tylenol (acetaminophen), Advil (ibuprofen), Motrin (ibuprofen), Aleve (naproxen 

sodium), Bayer (aspirin or combination), and Excedrin (acetaminophen or combination). 

                                                 
9 Each comparative advertisement must include at least one cue, because the comparison is made for at least one 

characteristic. We compare all non-comparative advertisements to all comparative advertisements, conditional on an 

advertisement having at least one cue.  
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We focus on the OTC analgesics industry for several reasons. First, television advertising 

constitutes a large fraction of total advertising and of total sales, implying that it is the most 

important marketing strategy used by the industry to communicate to its consumers. Second, the 

products sold by firms differ significantly in their characteristics, so that there is a range of 

meaningful information to potentially communicate (Lancaster 1971, Christou
 
and Vettas 2008). 

Third, the information is concentrated in experience- and credence-based characteristics, which tend 

to be advertised, rather than search characteristics that consumers can learn in the store before 

purchase (Erdem, Keane and Sun 2008). Fourth, product differentiation—both real and spurious—is 

important because we emphasize the trade-off between persuasion and information, with the 

optimal mix depending upon a product’s characteristics (see Soberman 2002). Finally, the type of 

cues mentioned (e.g., “strong”) are clearly identifiable, which enables us to avoid making any 

subjective judgments while coding the information cues. 

The advertising data come from TNS Media Intelligence and cover the entire U.S. OTC 

analgesics product category. The dataset contains video files of all advertisements, as well as 

monthly advertising expenditures, for each product advertised in the OTC analgesics category from 

2001 to 2005. The advertising numbers also include expenditures on other media, but almost all the 

advertising budgets (approximately 90%) were spent on television advertising, including network 

and cable networks. In our analysis, we examine only the television advertising data.  We watched 

4503 individual commercials that were broadcast during the 2001–2005 period, 346 of which had 

missing video files. Each individual advertisement was usually shown multiple times.   

The widely used Resnik and Stern (1977) method for measuring advertising information 

categorizes the information provided in advertisements into 14 distinct “information cues,” 

including price, quality, performance, components, availability, special offers, taste, nutrition, 

packaging, warranties, safety, independent research, company research, and new ideas. More than 
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60 studies have applied the Resnik and Stern’s approach to measure the information content of 

advertising in different media (Chou, Franke, and Wilcox 1987; Harmon, Razzouk, and Stern 1983; 

Stern and Resnik 1991), countries (Hong, Muderrisoglu, and Zinkhan 1987; Madden, Caballero, 

and Matsukubo 1986), and product categories (Stern, Krugman, and Resnik 1981). The results have 

varied markedly, even within the same medium, because of the lack of a multivariate statistical 

analysis, redundant or too broad definitions of information cues, and small sample size (Abernethy 

and Franke 1996).  The main advantage of the Resnik and Stern’s classification system is the 

general nature of the information cue categories, which allow for comparison of products from 

multiple industries. However, this advantage is also a disadvantage. Categorizing advertising 

information content into coarse categories inevitably omits some information that consumers might 

find important. For example, in the OTC analgesics industry, two distinct information cues (e.g., 

fast and strong) would be coded as one "performance" cue in the Resnik and Stern’s classification 

system.  

Our attribute coding approach documents every attribute mentioned. For each 

advertisement, we recorded whether the commercial had any comparative claims and, if so, the 

specific claim (e.g., faster, stronger). We also noted all information cues mentioned, including the 

purpose of the drug (e.g., arthritis, headache), drug efficiency (e.g., strength, speed), safety, and 

other characteristics. The type of information cues that were mentioned (e.g., “strong”) are clearly 

identifiable, which enables us to avoid making any subjective judgments while coding the 

information content.  The disadvantage of this approach is that it is industry-specific.  

Our analysis also incorporates data on the strength of pain relief, relative efficiency, and 

safety for each brand. We collected this information from peer-reviewed medical journals. 

Clinically, all four main active ingredients have varying degrees of side effects. Because individuals 

react to each ingredient differently, clinical pain researchers hesitate to assign superiority to any 
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single drug. Each active ingredient has a comparative advantage. A sample of these comparative 

advantages and disadvantages is the following: Aspirin (brand name - Bayer) is weak in pain relief 

but has low, almost nonexistent cardiovascular risk. Naproxen sodium (Aleve) is the most potent 

drug but is associated with very high gastrointestinal risk. Acetaminophen (Tylenol and Excedrin) 

has low gastrointestinal risk but is weak in pain relief and has medium cardiovascular risk. 

Ibuprofen (Advil and Motrin) and naproxen sodium–based brands (Aleve) have the highest 

cardiovascular risk but are also the fastest in pain relief. 

 

Table 1. Descriptive Statistics of Information Disclosure, Vertical Attributes, Ad Spending and Sales 

Information Disclosure Vertical Characteristics
1 

Advertising and Sales 

Brand 
Number  
of Cues 

Compa-
rative?  

NNT 
GI 

Risk
CV 

Risk
Relative 
Speed  

Avg 
Monthly 

Spending 
per Ad 

Average 
Monthly 

Sales 

Total Ad 
Spending 

Total 
Sales

Ad to 
Sales 
Ratio

Advil 3.6 0.74 2.40 2.00 1.44 1 $0.14 $23.92 $293.10 $1,374 21.30%
(1.004) (0.441) (0.241) (1.693) 

Aleve 3.77 0.9 2.30 9.10 1.44 3 $0.12 $11.41 $174.80 $659 26.50%
(1.156) (0.298) (0.293) (1.123) 

Bayer 3.19 0.31 4.00 3.10 1.07 4 $0.10 $7.95 $131.20 $458 28.80%
(1.320) (0.461) (0.222) (0.964) 

Excedrin 2.4 0.15 3.86 1.67 1.26 2 $0.26 $12.39 $182.40 $689 26.50%
(0.695) (0.359) (0.456) (1.172) 

Motrin 2.61 0.37 2.40 2.00 1.44 1 $0.10 $8.03 $102.00 $466 21.90%
(0.937) (0.484) (0.240) (0.762) 

Tylenol 2.54 0.28 3.80 1.00 1.35 2 $0.13 $40.59 $414.90 $2,328 17.80%
  (0.957) (0.449) (0.346) (3.195) 

Notes: 1 Larger number implies weaker performance. These are relative risk and performance measures taken from peer-reviewed medical literature. 

See Appendix for more details. 

 

We quantify or rank all of the “true” characteristics that were used in advertising associated 

with each active ingredient as follows. First, we interpret “fast” as the time taken to achieve 

perceptible or meaningful pain relief (medical literature calls this “onset to perceptible pain relief”). 

Second, we interpret claims about strength (e.g., “strong,” “stronger,” “tougher on pain”) as the 

maximum level of pain relief achieved; we use the number-needed-to-treat (NNT) measure to 

approximate analgesic efficiency claims. Finally, we collect reported data on gastrointestinal and 

cardiovascular risks (GI Risk and CV Risk, respectively) for each of the active ingredients. 
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Appendix describes these measures in greater detail and presents a list of peer-reviewed medical 

articles that quantify these performance attributes. The first two columns of Table 1 also present 

each brand’s (expenditure-weighted) average number of information cues mentioned in ads as well 

as the incidence of comparative ads. We also add advertising spending and sales descriptive 

statistics to Table 1.  

 

Figure 2. Advertised Attributes and Expenditures 

 

During our analyzed period, 30 different product attributes were mentioned. Figure 2 

represents the top 23 attributes and shows the advertising expenditures (in millions of dollars) spent 

on advertising those attributes during the sample period.
10

 We separate advertising expenditures by 

type of advertisement (comparative versus non-comparative). The attributes “fast,”  “strong,” “long 

lasting,” and “trust and/or safety” are among the top five most heavily advertised attributes. These 

                                                 
10

 The remaining 7 attributes (not reported) had negligible advertising expenditures. The sum of the expenditures in 

Figure 2 exceeds total ad spending because many advertisements promote multiple characteristics and, for the purpose 

of this Figure only, we attributed total ad spending to each characteristic mentioned.   
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attributes are directly related to the inherent (exogenous) chemical characteristics of each active 

ingredient in each analyzed brand.  

 

Table 2. Matrix of Frequency of Attributes that are Mentioned Together 

   Fast  Strong 
Head‐
ache 

Long 
lasting  Safe  Arthritis 

Dr. 
recomm 

Liquid 
gels 

Legs/ 
muscle 

Gentle 
on 

stomach  Back 
Fewer 
pills  Total 

Fast     $251.61  $296.52  $70.25  $32.76  $23.80  $16.69  $204.55  $101.42  $66.32  $25.65  0  $613.52 

      49.32%  78.63%  23.22%  11.17%  8.77%  6.70%  98.90%  49.52%  56.98%  22.11%  0    

Strong  $251.61     $126.43  $103.37  $93.88  $123.06  $97.80  $140.66  $133.31  $45.46  $51.94  $53.01  $510.20 

   41.01%     33.53%  34.16%  32.02%  45.34%  39.28%  68.01%  65.10%  39.05%  44.78%  46.81%    

Headache  $296.52  $126.43     $6.22  $28.85  $11.95  $25.42  $84.88  $17.53  $24.40  $15.88  $6.22  $377.09 

   48.33%  24.78%     2.06%  9.84%  4.40%  10.21%  41.04%  8.56%  20.96%  13.69%  5.49%    

Long 
lasting 

$70.25  $103.37  $6.22     $68.50  $153.97  $83.96  $14.43  $64.17  $23.18  $44.99  $100.06  $302.56 

11.45%  20.26%  1.65%     23.36%  56.73%  33.72%  6.98%  31.34%  19.91%  38.79%  88.35%    

Safe  $32.76  $93.88  $28.85  $68.50     $115.84  $77.64  $5.51  $29.96  $55.50  $39.29  $30.46  $293.20 

   5.34%  18.40%  7.65%  22.64%     42.68%  31.18%  2.67%  14.63%  47.68%  33.87%  26.90%    

Arthritis   $23.80  $123.06  $11.95  $153.97  $115.84     $125.59  $21.58  $18.38  $55.21  $19.22  $80.12  $271.42 

   3.88%  24.12%  3.17%  50.89%  39.51%     50.43%  10.43%  8.97%  47.43%  16.57%  70.75%    

Dr. 
recomm. 

$16.69  $97.80  $25.42  $83.96  $77.64  $125.59     0  $23.88  $38.35  $4.71  $50.65  $249.02 

2.72%  19.17%  6.74%  27.75%  26.48%  46.27%     0  11.66%  32.95%  4.06%  44.73%    

Liquid 
gels 

$204.55  $140.66  $84.88  $14.43  $5.51  $21.58  0     $23.06  $44.74  0  0  $206.82 

33.34%  27.57%  22.51%  4.77%  1.88%  7.95%  0     11.26%  38.43%  0  0    

Legs/ 
muscle 

$101.42  $133.31  $17.53  $64.17  $29.96  $18.38  $23.88  $23.06     $23.06  $56.44  $7.54  $204.79 

16.53%  26.13%  4.65%  21.21%  10.22%  6.77%  9.59%  11.15%     19.81%  48.66%  6.65%    

Gentle on 
stomach 

$66.32  $45.46  $24.40  $23.18  $55.50  $55.21  $38.35  $44.74  $23.06     $0.88  0  $116.40 

10.81%  8.91%  6.47%  7.66%  18.93%  20.34%  15.40%  21.63%  11.26%     0.76%  0    

Back 

$25.65  $51.94  $15.88  $44.99  $39.29  $19.22  $4.71  0  $56.44  $0.88  $14.83  $115.98 

4.18%  10.18%  4.21%  14.87%  13.40%  7.08%  1.89%  0  27.56%  0.76%     13.10%    

Fewer 
pills 

0  $53.01  $6.22  $100.06  $30.46  $80.12  $50.65  0  $7.54  0  $14.83     $113.25 

0  10.39%  1.65%  33.07%  10.39%  29.52%  20.34%  0  3.68%  0  12.79%       
 

 

We examine the attribute usage correlations to investigate whether the coded cues represent 

distinct information. For example, although we code “strong” and “fast” as separate information 

categories, we also ensure that the coded information categories are indeed distinct information 

cues. Table 2 portrays the correlation matrix of cue usage and shows that the cue descriptors that we 

use are distinctive. For example, both “fast” and “strong” are often used together, but they are also 
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used separately in more than half of the occurrences (in dollar terms).
11

 Thus, two cues may be used 

together frequently, but each still provides consumers with important information. “Strong” denotes 

how powerful the medicine is, and “fast” denotes the speed of the onset of pain relief.  

 

Identification Strategy 

A brand’s decision about how much information to include in an advertisement is likely to 

be made simultaneously with the decision about the type of advertisement (comparative or non-

comparative). Therefore, these two decisions are interdependent, in much the same way as 

equilibrium price and quantity are determined at the same time in a simple demand–supply model. 

In other words, there is some unobservable exogenous variable that explains both the information 

content and whether that content is a non-comparative or comparative advertisement. For example, 

a higher-quality brand might provide less information and have more comparative advertisements 

than a lower-quality brand.  

The other two potentially endogenous explanatory variables that we consider are the size of 

the brand and the size of a brand’s generic counterpart. To see why endogeneity might be an issue, 

note that market size and information content are outcomes of brands’ strategic interactions, and a 

fully structural equilibrium model would specify three equations, one for each of the three variables 

(information content, market size, and the generic counterpart’s market size). Here, we estimate 

only one of the three equations—the one that explains information content as a function of the other 

two endogenous variables—but we control for the endogeneity of the other two variables. 

Equivalently, we could consider an unobservable variable (e.g., quality) that is correlated with the 

                                                 
11

 There are two instances of high correlation that merit comment. First, whenever "liquid gels" are mentioned, "fast" is 

almost always mentioned. Second, "long lasting" and "fewer pills" are used together 33% of the time. Conversely, when 

"fewer pills" are mentioned, long lasting was mentioned 88% of the time. We experimented with providing an umbrella 

classification that encompasses both, but the differences in the results were minor.
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brand’s market size and information content. By omitting that variable from our regressions, we 

would introduce a bias into the estimation of the parameters of the model.  

We use an instrumental variable approach to determine whether our concerns about the 

endogenous variables are empirically relevant (Villas-Boas and Winer 1999). Instruments that 

correlate with sales and advertising but not with unobserved quality provide information on how 

important the endogeneity problem is likely to be. Our main identification strategy is to use 

variation in generic prices as the exogenous source of variation in the industry. 

The crucial observation for our identification strategy is that all of the patents for the OTC 

analgesics have expired. The patent for Naproxen was the last one to expire in 1993. After patents 

expire, generic counterparts are produced at prices that are substantially lower than the brand name 

product (here, Aleve). As time passes by, new entry of generic competitors brings the price of the 

generic counterpart down to marginal cost, as shown by Grabowski and Vernon (1992). If the 

marginal cost is constant and the generic prices are set at the marginal cost, then the generic prices 

are independent of the prices set by the national brands. Then, the generic prices are exogenous and 

can be appropriately used as instrumental variables.
12

 More specifically, we include constructed 

means, squared and cubed terms of the brand’s active ingredient generic counterpart prices and 

generic prices of brand’s competitors. We also construct interactions between generic prices (own 

and competitors’) and a multi-brand parent company. Finally, we interact the characteristics with 

the 2005 year dummy to capture advertising content changes—2005 was considered one of the most 

turbulent years in the analgesics industry.
13

  

                                                 
12 Notice that we can allow generic brands to charge prices that are higher than marginal costs as long as this is 

explained by local conditions that national brands do not take into account when they set their prices. 
13

 The growth of information content during 2005 is most likely due to the FDA’s announcement of the results of a 

clinical study, at the end of 2004, which indicated that patients taking naproxen sodium (Aleve) may be at an increased 

risk heart attack or stroke (the withdrawal of Vioxx was also associated with this clinical study). By the end of January 

2005, sales of Aleve plummeted by more than 50%, suffering the largest decline in brand history. 
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To deal with the endogenous variables in our nonlinear ordered probit model, we follow 

Rivers and Vuong’s (1988) proposed approach. First, we rewrite the information content as ߙ െ ߚܺ െ ߛݓ ൌ ̅ െ ܫ ̅ െ ூሚ௦̅ , where ݓ is a vector of the three endogenous variables. The main 

identification assumption is that instruments are not correlated with the error term (i.e., ሺܼᇱ߳ሻ ൌ 0ሻ. 
Here, ܼ includes all of the exogenous variables, such as brand characteristics (ܺሻ and functions 

(here, the average) of the characteristics of the brand’s competitors. We use a two-step procedure 

described in Rivers and Vuong (1988). First, we run an ordinary least squares regression, ݓ ൌ ߜܼ ߭, where ߭ is not observed and is the omitted variable that generates the endogeneity problem. This 

first stage regression yields residuals ො߭, which we include in the ordered probit in the second stage 

of the estimation.
14

 The estimation of this ordered probit provides consistent estimates of all of the 

parameters.  Here, we are not interested in the magnitude of the parameters of the information 

content relationship (i.e., ߚ) but rather in the marginal effects of a change in the endogenous 

variables, which we can consistently estimate using Blundell and Powell’s (2003) approach.  

 

Empirical Findings 

Table 3 reports the findings of the various specifications estimated with our data. We 

investigate whether brands with higher vertical quality transmit more information, by associating 

the number of information cues (our dependent variable) with the values of the exogenous medical 

characteristics of the active ingredients. The first column of Table 3 includes NNT, relative speed, 

and measures of cardiovascular and gastrointestinal risk as such explanatory variables. 

Keeping all else constant, we find that brands with inherently stronger pain relief have 

advertisements with more information content. As explained in the Appendix, for NNT (as well as 

for Relative Speed, CV Risk and GI Risk), a higher number implies worse performance and a less 

                                                 
14 The variable Comparative is a dummy variable. Here we run a linear probability model. 
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effective drug. Thus, the negative coefficient on NNT is consistent with strong and efficient drugs 

having more information in their advertisements. We find a similar pattern for brands that have 

lower gastrointestinal and cardiovascular risks: their advertisements also tend to be more 

informative. Finally, consistent with our theoretical framework, brands that offer faster relief also 

have more information content.  

Overall, the first column of Table 3 suggests that there is a positive relationship between the 

amount of information provided and the strength of a painkiller along one of the four dimensions 

identified by the exogenous medical characteristics of the active ingredient. 

 

Figure 3.  Estimated Decreasing Marginal Returns of Informative Content 

 
 

The cutoffs estimated in these regressions have a clear interpretation. In particular, we 

showed that ߙାଵ െ ߙ ൌ ூିூశభ௦̅ .  In our analysis ̅ݏ is unknown, so assume for the sake of 

interpretation that ̅ݏ ൌ 1.
15

 Then, for each i we can compute the difference Ii - Ii+1, which is the 

incremental benefit of the i
th

 information cue i. Consider the case of i=5. Then, ܫହ െ ܫ ൌ 1.002. 

                                                 
15 Instead of normalizing ̅ݏ ൌ 1, one could also report 

ఈశభିఈఈలିఈభ , but that would only rescale Figure 2. The normalization ̅ݏ ൌ 1 gives a more intuitive interpretation for Figure 2. 
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We can then find the point (6, 1.002) in Figure 3 to represent the empirical analogue of the 

theoretical incremental benefit corresponding to six information cues that we had derived in Panel B 

of Figure 2. We can replicate this exercise for the case of i=4, for which the scatter point will 

correspond to (5, 1.939), which is equal to 1.002 + 0.937. By repeating this exercise for all i = 

1,…,6, we derive the scatter plot in Figure 3. What we see in Figure 3 is remarkably similar to what 

we derive theoretically in Panel B of Figure 1: there is a fundamental trade-off between information 

and persuasion content that firms face when preparing an advertisement. This relationship, 

depicting the diminishing marginal returns to information, holds in every specification that we 

estimate and looks very similar to the one illustrated in Figure 3.  

Next, we want to investigate whether brands include more information in comparative 

advertisements than in non-comparative advertisements. Note that comparative advertisements will 

always have at least one cue because a brand must compare itself with another brand along at least 

one dimension. Therefore, the analysis examines whether comparative and non-comparative ad 

information content is different, conditional on having at least one information cue. The results are 

presented in column 2 in Table 3. Here, we treat the choice of comparative advertisement as an 

exogenous variable. We find that the comparative advertising dummy is highly statistically 

significant and positive. This result indicates that comparative advertisements have more 

informational cues and that the likelihood that an advertisement is comparative increases with the 

number of cues.  

In Column 3 we include the variables that measure brand size, brand size squared (to capture 

a possible nonlinear relationship), and the size of the brand’s generic counterpart. We find that the 

largest brands transmit less information than the rest of the brands.  
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The evidence is also consistent with a relatively large spillover effect from informative 

advertising. We find that branded firms include less information content when the size of their 

generic competitors is large because the parameter of standardized generic sales is negative.  

 Table 3. Determinants of Information Disclosure  

  (1) (2) (3) (4) 

Comparative? 0.559*** 0.476*** 0.968*** 

(0.025) (0.026) (0.077) 

Standardized Sales 0.445*** 0.309*** 

(0.027) (0.036) 

Standardized Sales Squared -0.204*** -0.130*** 

(0.017) (0.021) 

Standardized Generic Sales -0.136*** -0.140*** 

(0.043) (0.045) 

Standardized NNT -0.724*** -0.602*** -0.785*** -0.670*** 

(0.029) (0.029) (0.047) (0.050) 

Relative Speed 0.336*** 0.281*** 0.260*** 0.198*** 

(0.041) (0.041) (0.047) (0.048) 

Standardized GI Risk -0.133*** -0.132*** -0.151*** -0.189*** 

(0.035) (0.035) (0.056) (0.059) 

Standardized CV Risk -0.151*** -0.185*** -0.478*** -0.465*** 

(0.029) (0.029) (0.053) (0.054) 

Residuals-Comparative -0.557*** 

(0.082) 

Residuals-Sales -0.175** 

(0.068) 

Residuals-Generic Sales -0.167*** 

        (0.041) 

Cutoff (0->1 Cues) -3.085*** 

(0.194) 

Cutoff (1->2 Cues) -1.041*** -0.941*** -1.199*** -1.042*** 

(0.090) (0.091) (0.100) (0.104) 

Cutoff (2->3 Cues) 0.291*** 0.436*** 0.196** 0.360*** 

(0.089) (0.090) (0.098) (0.103) 

Cutoff (3->4 Cues) 1.095*** 1.271*** 1.054*** 1.218*** 

(0.090) (0.090) (0.099) (0.103) 

Cutoff (4->5 Cues) 2.032*** 2.228*** 2.029*** 2.196*** 

(0.091) (0.092) (0.100) (0.105) 

Cutoff (5->6 Cues) 3.034*** 3.234*** 3.035*** 3.213*** 

  (0.097) (0.097) (0.105) (0.109) 

# of Obs. 9739  9708  9708  9708  

Log-Likelihood -13847.5 -13527.6 -13378.8 -13351.8 

note: *** p<0.01, ** p<0.05, * p<0.1; Bootstrapped standard errors reported in Column 4. 
Endogenous variables: Comparative?, Standardized Sales, Standardized Generic Sales. 
Instrumental Variables: Functions of Generic Prices. The first stage R

2
 for endogenous 

variables is the following: Comparative? - R
2
 =.35, Standardized Sales - R

2
= 0.96, 

Standardized Generic Sales - R
2
=0.77) 
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We also find that the coefficient estimate for the comparative advertisement dummy is close 

to the one in the second column of Table 3. Therefore, we conclude that comparative advertising 

decisions are not collinear with brand sales and generic sales. This result is noteworthy because it 

suggests that the comparative advertisement decision might not depend significantly on the market 

share of the attacking brand but rather on the market share of the target brand (i.e., attack larger 

brands). ACLR (2012) investigate the relationship among the attacker’s market share, the attacked 

brand’s market share, and the amount of their comparative advertising. They show that the decision 

to use comparative advertising is due to the market share of the attacked brand and the interaction 

between the shares of the attacked brand and those of the attacking brand.  

In Column 4 we follow an instrumental variable approach to estimate the effect of 

comparative advertisements, sales, and generic sales on information content. Column 4 uses the 

generic prices as instrumental variables. The results in Column 4 are those that we will use to 

discuss the main implications of our analysis. We find that the estimated coefficient of comparative 

advertisements is larger than in Column 3, implying that comparative advertisements have more 

information content than non-comparative advertisements and that such information content is 

significantly higher than under the exogenous treatment. The strong endogeneity of this dummy 

variable is confirmed by the estimated coefficient of the control function, which is statistically 

significant at the 1% confidence level. Thus, we cannot reject the hypothesis that the variable 

“Comparative” is endogenous (Smith and Blundell 1986). Therefore, our omitted variable concern 

in this setting is valid, and such unobserved quality is associated with the attractiveness of having 

comparative advertisements.  

Both the coefficient on standardized sales and the on the squared standardized sales are 

smaller in absolute value than in Column 3, suggesting a flatter, but still negative, relationship 
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between brand shares and information content. The coefficient estimate of the control function is 

statistically significant, confirming the endogeneity of shares. 

 Finally, the marginal impact of the generic counterpart’s market share is the same in 

Column 3 and 4, suggesting that its endogeneity is not empirically significant. The coefficient is 

negative, implying the negative relationship between the generic counterpart and information 

disclosure, as suggested by our extended theoretical framework. 

To understand the economic importance of the results regarding brand and its generic 

counterpart market sizes, we constructed figures that associate a brand’s probability of choosing a 

given amount of information (e.g., one cue) with the distribution of brand’s size and the size of the 

market for generic substitute (at the 10th, 25th, 50th, 75th, and 90th percentiles of market size 

distribution). For example, Figure 4 shows that the likelihood of an advertisement including only 

one cue increases sharply with size. In contrast, the probability of observing an advertisement with 

four or more cues decreases with size. Specifically, a move from the 10th percentile in the size 

distribution to the 90th percentile increases the probability of providing only one cue by 

approximately 16%. Similarly, Figure 5 represents the changes in the likelihood that an 

advertisement includes a certain number of information cues depending on the size of the generic 

counterpart market share. For example, the likelihood that a product with a large generic 

counterpart will include one information cue is approximately 10% higher than the likelihood that a 

product with a small generic counterpart will include one information cue. The converse is true for 

three or more information cues: brands with smaller generic counterparts are significantly more 

likely to include more information in their advertisements. 
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Figure 4. Marginal effects on Information Disclosure by Brand Size 

 

 

‐12%

‐9%

‐6%

‐3%

0%

3%

6%

9%

12%

10th 25th 50th 75th 90th

1 cue

‐12%

‐9%

‐6%

‐3%

0%

3%

6%

9%

12%

10th 25th 50th 75th 90th

2 cues

‐12%

‐9%

‐6%

‐3%

0%

3%

6%

9%

12%

10th 25th 50th 75th 90th

3 cues

‐12%

‐9%

‐6%

‐3%

0%

3%

6%

9%

12%

10th 25th 50th 75th 90th

4 cues

‐12%

‐9%

‐6%

‐3%

0%

3%

6%

9%

12%

10th 25th 50th 75th 90th

5 cues

‐12%

‐9%

‐6%

‐3%

0%

3%

6%

9%

12%

10th 25th 50th 75th 90th

6 cues



28 

 

Figure 5. Marginal effects on Information Disclosure by Generic Counterpart Size 
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endogeneity, we also show that more competition from generics gives rise to less information 

transmission by branded products, which is in line with the view that there are significant spillovers 

to informative advertising. Finally, we quantify the extent to which comparative advertisements 

have significantly more information content than noncomparative ones, and find that this effect is 

much larger than would be predicted without correcting for endogeneity.  

From a methodological standpoint, we describe a method that is appropriate for dealing with 

information content with multiple explanatory variables, and show how the analysis can be 

corrected for endogeneity and how this alters the results.  Our empirical analysis is restrictive in 

several aspects, and therefore suggests extensions that constitute themes for further research into 

information content. First, further research could use a sub-classification of cues (e.g., into vertical 

cues such as “fast” that all consumers would appreciate, or horizontal cues such as “headache” or 

“menstrual pain” that only some consumers desire) to explore the differential content of various cue 

types. Second, an information cue can be deployed only if a product has the attribute communicated 

in the cue, and can be used comparatively only if a product has an advantage over another product. 

Thus, further research might examine the amount of information advertised as a function of the total 

number of cues that could feasibly be advertised. Likewise, investigating whether products use 

comparative advertisements more often against similar or dissimilar products would be an 

interesting extension. Third, we do not examine product advertising campaigns in which 

advertisements address a subset of themes over a limited horizon. Fourth, we code only the 

objective content of advertisements as quantified by their reference of specific characteristics and 

competitors. We recognize that advertising may persuade through channels other than pure 

information, thereby leading consumers to act on emotional factors. While our paper recognizes that 

the trade-off between persuasive and informative content of an ad exists, we have not attempted to 

code persuasive effects. The primary purpose of the empirical component of this paper was to 
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measure the objective content of advertising along the lines of traditional content analysis and 

incorporating the subjective side would be an important aspect to explore in future research. Finally, 

we do not address whether the market provision of information is optimal, how valuable the 

information is to consumers (Ippolito and Pappalardo 2002; Pappalardo and Ringold 2000) or how 

government policy towards advertising content might affect promotion effectiveness (Goldfarb and 

Tucker 2011). Instead, the purpose of this paper was to document empirical regularities present in 

the data, rationalized via our information-persuasion trade-off theoretical framework, and to 

provide measures of the fundamental variables that can be used to answer such questions  

Our content analysis methodology can readily be applied to other product categories and 

industries. Extensions of the proposed methodology could be applied to answer questions such as: 

How does advertising information content differ for experience, search, and credence products? 

Does the relationship between brand size and information hold in more broad contexts? Do new 

products provide more information? These questions should hold both empirical and theoretical 

interest.  
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APPENDIX. Vertical Product Performance and Medical Measures 

 

We reviewed 10 peer-reviewed medical journal articles to collect efficiency measures for: 

1. Strength (Numbers Needed To Treat (NNT)); 

2. Speed (Onset to perceptible pain relief (Relative Speed));  

3. Gastrointestinal side effects  (Gastrointestinal risk (GI risk));  

4. Cardiovascular side effects (Cardiovascular risk (CV risk).  

These 4 efficacy measures for each brand are reported in Table 1. 

 

The peer-reviewed medical literature provides objective risk and efficiency measures for 

each product, based on its active ingredient (or combination of ingredients), strength, and 

recommended dosage. Each active ingredient has definitive maximum doses and durations of 

therapy. Differences exist across active ingredients in terms of the important safety issue of the 

potential for gastrointestinal toxicity and cardiovascular risk as well as relative strength and onset to 

perceptible pain relief. We collected the measurable characteristics for maximum OTC 

recommended dosage (single dose): Ibuprofen: 400 mg; naproxen sodium: 440 mg; aspirin: 1000 

mg; and acetaminophen: – 1000 mg.  

Relative risk is the risk of an event (e.g., developing a disease) relative to exposure. Relative 

risk is the ratio of the probability of the event (E) occurring in the exposed group versus the control 

(nonexposed) group: 

ܴܴ ൌ Pr ሺݐ݊݁݉ݐܽ݁ݎݐ|ܧሻPr ሺܴ|݈ܿݎݐ݊ሻ  
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Relative risk is used frequently in clinical trial data to compare the risk of developing a 

disease in people not receiving the new medical treatment (or receiving a placebo) versus people 

receiving an established (standard of care) treatment. In the case of the gastrointestinal (GI Risk) 

and cardiovascular relative risk (CV Risk) numbers used herein, we use them to compare the risk of 

developing a side effect in people receiving a drug with people who do not receive the treatment (or 

receive a placebo). Thus, a cardiovascular relative risk of 1.44 means that cardiovascular problems 

arise with 44% higher likelihood using the drug (versus placebo).  

The number needed to treat (NNT) is an epidemiological measure used in assessing the 

effectiveness of a health-care intervention, typically a treatment with medication. The NNT is the 

average number of patients who need to be treated to prevent one additional bad outcome (i.e. the 

number of patients that need to be treated for one to benefit compared with a control in a clinical 

trial). It is defined as the inverse of the absolute risk reduction. The ideal NNT is 1, where everyone 

improves with treatment and no one improves with control. The higher the NNT, the less effective 

is the treatment. More specifically, NNT is used with respect to two treatments, A and B, with A 

typically a drug and B a placebo. If the probabilities P and P under treatments A and B, 

respectively, are known, we can compute NNT as follows:  

ܰܰܶ ൌ 1P െ P 

The NNT for a given therapy is simply the reciprocal of the absolute risk reduction (ARR= P െ P) for that treatment. For example, in a hypothetical migraine study, if risk decreased from P= .30 without treatment with drug M to P = .05 with treatment with drug M, for a relative risk of 

.17 (.05/.3), a relative risk reduction of .83 ([.3 – .05]/.3), and an absolute risk reduction of .25 (.3 – 

.05), the NNT would be 1/.25, or 4. In clinical terms, an NNT of 4 means that four patients need to 
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be treated with drug M to prevent migraine from recurring in one patient. Typically, the lower the 

NNT number, the more potent and efficient the treatment is.  
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