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Abstract

Several frictions restrict the government�s ability to tax assets. First of all, it is very costly

to monitor trades on international asset markets. Moreover, agents can resort to non-observable

low-return assets such as cash, gold or foreign currencies if taxes on observable assets become too

high. This paper shows that limitations in asset observability have important consequences for the

taxation of labor income. Using a dynamic moral hazard model of social insurance, we �nd that

optimal labor income taxes typically become less progressive when assets are imperfectly observed.

We evaluate the e¤ect quantitatively in a model calibrated to U.S. data.
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1 Introduction

The existence of international asset markets implies that taxation authorities do not have perfect (or

low cost) control over agents� wealth and consumption. This creates an important obstacle for tax

policy:

�In a world of high and growing capital mobility there is a limit to the amount of tax

that can be levied without inducing investors to hide their wealth in foreign tax havens.�

(Mirrlees Review 2010, p.916)

Even when agents choose not to hide their wealth abroad, they have access to number of non-observable

storage technologies at home, both in developed and developing countries. For example, agents can
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accumulate cash, gold, or durable goods. These assets typically bring low returns, but may nonetheless

impose important restrictions for the collection of taxes on assets that are more easily observed.

Motivated by these considerations, this paper explores optimal tax systems in a framework where

assets are imperfectly observable. We contrast two stylized environments. In the �rst one, consumption

and assets are observable (and contractable) for the government. In the second environment, these

choices are private information. We compare the constrained e¢cient allocations of the two scenarios.

When absolute risk-aversion is convex, we �nd that optimal consumption in the scenario with hidden

assets moves in a less concave (or more convex) way with labor income. In this sense, the optimal

allocation becomes less progressive in that scenario. This �nding can be easily rephrased in terms of

the progressivity of labor income taxes, since our model allows for a straightforward decentralization:

optimal allocations can be implemented by letting agents pay nonlinear taxes on labor income and

linear taxes on assets (Gottardi and Pavoni 2011).1 Our results show that marginal labor income

taxes should become less progressive when the government�s ability to tax/observe asset holdings is

imperfect.

We derive our results in a simple dynamic model of social insurance. A continuum of ex-ante

identical agents in�uence their labor incomes by exerting e¤ort. Labor income realizations are not

perfectly controllable and e¤ort is private information. This creates a moral hazard problem. The

social planner thus faces a trade-o¤ between insuring agents against idiosyncratic income uncertainty

on the one hand and the associated disincentive e¤ects on the other hand. In addition, agents have

access to a risk-free asset, which gives them limited means for self-insurance. In this model, the planner

wants to distort agents� asset decisions, because asset accumulation provides insurance against the

labor income shocks and thereby reduces the incentives to exert e¤ort.2

Using the �rst-order approach (Abraham, Koehne and Pavoni 2011), we can switch from the

observable asset case to the scenario with hidden asset accumulation by adding the agent�s Euler

equation as a constraint to the principal�s optimization problem. This constraint crucially changes

the allocation of consumption across income states. E¢ciency requires that for each income state the

costs of increasing the agent�s utility by a marginal unit equal the bene�ts of doing so. Due to the

Euler equation, it becomes important how such changes in utility a¤ect the agent�s marginal utility.

One can show that a marginal increase of utility in a state with consumption c reduces the agent�s

marginal utility in that state by �u00(c)=u0(c).3 This relaxes the Euler equation and thereby modi�es

how the gains of allocating utility vary in the cross-section. Obviously, the Euler equation a¤ects the

1 In the scenario with hidden assets, the tax rate on assets is zero, of course.
2See Diamond and Mirrlees (1978), Rogerson (1985), and Golosov, Kocherlakota and Tsyvinski (2003).
3To increase u(c) by ", c has to be increased by "=u0(c). Using a �rst-order approximation, this changes the agent�s

marginal utility by u0(c)� u0(c+ "=u0(c)) � �"u00(c)=u0(c).
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costs and bene�ts of allocating utility also by changing the shadow costs of the remaining constraints

of the principal�s problem. However, we show that the former e¤ect is key. If absolute risk-aversion

is convex, we thus �nd that optimal consumption becomes a more convex function of labor income

when asset accumulation is not observable. Put di¤erently, marginal taxes on labor income become

less progressive when asset income cannot be su¢ciently taxed.

Intuitively, imperfect observability of assets entails that the planner can rely less on consumption

frontloading (Rogerson 1985, Golosov, Kocherlakota and Tsyvinski 2003) to create incentives. As a

consequence, the cross-sectional structure of consumption needs to be modi�ed. Notice, however, that

there are two distinct ways of creating stronger incentives using the consumption cross-section. One

possibility is to increase the rewards for high performance, so that consumption becomes a more convex

function of income, loosely speaking. The second option is to impose more severe punishments for low

income realizations, which makes consumption more concave instead. We �nd that the curvature of

the agent�s coe¢cient of absolute risk aversion determines which of the two possibilities dominates.

Clearly, optimal incentives are shaped by the planner�s costs and bene�ts of allocating utility across

income states, and these costs and bene�ts include a component that relates to marginal changes

in the agent�s Euler equation. As explained above, this implies that the curvature of absolute risk

aversion determines how asset accumulation changes the optimal incentive scheme.

In a quantitative exercise, we estimate some of the key parameters of the model. We use con-

sumption and income data from the PSID (Panel Study of Income Dynamics) as adapted by Blundell,

Pistaferri and Preston (2008) and postulate that the data is generated by a tax system in which labor

income taxes are set optimally given an asset income tax rate of 40%.4 Using the implied parameters,

we compute the optimal allocation when asset income taxation is unrestricted and compare it to the

data. Under unrestricted asset taxation, the progressivity of the optimal allocation increases sizably.

The welfare gain of unrestricted asset taxation varies with the coe¢cient of relative risk aversion and

amounts to 1.3% in consumption equivalent terms for our benchmark calibration. The required asset

income tax rates are implausibly high, however, being close to one hundred per cent or above for all

speci�cations. This suggests that imperfect asset observability/taxability is the empirically relevant

case for the United States.

To the best of our knowledge, this is the �rst paper that explores optimal income taxation in a

framework where assets are imperfectly observable. Recent work on dynamic Mirrleesian economies

analyzes optimal income taxes when assets are observable/taxable without frictions; see Golosov,

Troshkin, and Tsyvinski (2011), and Farhi and Werning (2011). In those works, the reason for asset

4This rate is in line with U.S. e¤ective tax rates on capital income calculated by Mendoza, Razin and Tesar (1994),

and Domeij and Heathcote (2004).
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taxation is very similar to our model and stems from disincentive e¤ects associated with the accumu-

lation of wealth. While the Mirrlees (1971) framework focuses on redistribution in a population with

heterogeneous skills that are exogenously distributed, our approach highlights the social insurance

(or ex-post redistribution) aspect of income taxation. In spirit, our model is therefore closer to the

works by Varian (1980) and Eaton and Rosen (1980). With respect to the nonobservability of assets,

our model is related to Golosov and Tsyvinski (2007), who analyze capital subsidies/distortions in a

dynamic Mirrleesian economy with private insurance markets and hidden asset trades.

An entirely di¤erent link between labor income and capital income taxation is explored by Conesa,

Kitao and Krueger (2009). Using a life-cycle model with time-varying labor supply elasticities and

borrowing constraints, they argue that capital income taxes and progressive labor income taxes are

two alternative ways of mimicking age-dependent taxation. They then use numerical methods to de-

termine the e¢cient relation between the two instruments. Interestingly, in the present environment

capital taxes play an entirely di¤erent role and we obtain very di¤erent conclusions. While in Conesa,

Kitao and Krueger (2009) capital income taxes and progressive labor income taxes are substitutable

instruments, in our model they are complements. Laroque (2010) derives analytically a similar substi-

tutability between labor income and capital income taxes, restricting labor taxation to be nonlinear

but homogenous across age groups. In both these cases, the substitutability arises because exogenously

restricted labor income taxes are in general imperfect instruments to perform redistribution. In our

(fully-optimal taxation) environment, labor income taxes can achieve any feasible re-distributional

target. The role of capital taxes is to facilitate the use of such re-distributional instrument in the

presence of informational asymmetries. Hence we obtain a complementarity between capital taxes

and labor income tax progressivity.

Finally, our paper is related to the literature on optimal tax progressivity in static models. This

literature highlights the roles of the skill distribution (Mirrlees, 1971), the welfare criterion (Sadka,

1976), and earnings elasticities (Saez, 2001), among other things (for a recent survey on the issue,

see Diamond and Saez, 2011). However, dynamic considerations and in particular asset decisions are

absent in those works. The present paper emphasizes the link between income tax progressivity and

the availability of savings technologies.

The paper proceeds as follows: Section 2 describes the setup of the model. Section 3 presents the

main result of the paper: hidden asset accumulation makes optimal consumption schemes less progres-

sive. In Section 4, we explore alternative concepts of concavity/progressivity. Section 5 explores the

quantitative importance of our results, while Section 6 concludes and considers a couple of extensions

to the model.
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2 Model

Consider a benevolent social planner (the principal) whose objective is to maximize the welfare of its

citizens. The (small open) economy consists of a continuum of ex-ante identical agents who live for

two periods, t = 0; 1, and can in�uence their date-1 labor income realizations by exerting e¤ort. The

planner designs an allocation to insure them against idiosyncratic risk and provide them appropriate

incentives for working hard. The planner�s budget must be (intertemporally) balanced.

Preferences The agent derives utility from consumption ct � c � �1 and e¤ort et � 0 ac-

cording to u(ct; et); where u is a concave, twice continuously di¤erentiable function which is strictly

increasing and strictly concave in ct, strictly decreasing and (weakly) concave in et. We assume that

consumption and e¤ort are complements: u00ec(ct; et) � 0: This speci�cation of preferences includes

both the additively separable case, u (c; e) = u (c)� v (e) ; and the case with monetary costs of e¤ort,

u(c � v (e)); assuming v is strictly increasing and convex. The agent�s discount factor is denoted by

� > 0:

Technology and endowments The technological process can be seen as the production of

human capital through costly e¤ort, where human capital represents any characteristic that determines

the agent�s productivity. At date t = 0; the agent has a �xed endowment y0: At date t = 1; the agent

has a stochastic income y 2 Y := [y; y]. The realization of y is publicly observable, while the probability

distribution over Y is a¤ected by the agent�s unobservable e¤ort level e0 that is exerted at t = 0. The

probability density of this distribution is given by the smooth function f(y; e0). As in most of the the

optimal contracting literature, we assume full support, that is f(y; e0) > 0 for all y 2 Y; and e0 � 0.

There is no production or any other action at t � 2: Since utility is strictly decreasing in e¤ort, the

agent exerts e¤ort e1 = 0 at date 1. In what follows, we therefore use the notation u1(c) := u(c; 0) for

date-1 utility.

The agent has access to a linear savings technology that allows him to transfer qb0 units of date-0

consumption into b0 units of date-1 consumption. The savings technology is observable for the planner.

Allocations An allocation (c; e0) consists of a consumption scheme c = (c0; c(�)) and a rec-

ommended e¤ort level e0. The consumption scheme has two components: c0 denotes the agent�s

consumption in period t = 0, and c(y); y 2 Y , denotes the agent�s consumption in period t = 1 condi-

tional on income realization y. An allocation (c0; c(�); e0) is called feasible if it satis�es the planner�s

budget constraint

y0 � c0 + q

Z y

y

(y � c(y))f(y; e0) dy �G � 0; (1)
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where G denotes government consumption and q is the rate at which planner and agent transfer

resources over time.

Second best The agent�s savings technology is observable (and contractable) for the planner.

Hence, without loss of generality, we can assume that the planner directly controls consumption. A

second best allocation is an allocation that maximizes ex-ante welfare5

max
(c;e0)

u(c0; e0) + �

Z y

y

u1(c(y))f(y; e0) dy

subject to c0 � c, c(y) � c, e0 � 0, the planner�s budget constraint

y0 � c0 + q

Z y

y

(y � c(y))f(y; e0) dy �G � 0; (2)

and the incentive compatibility constraint for e¤ort

e0 2 argmax
e

u(c0; e) + �

Z y

y

u1(c(y))f(y; e) dy: (3)

2.1 Decentralization and the �rst-order approach

Any second best allocation can be generated as an equilibrium outcome of a competitive environment

where agents exert e¤ort and save/borrow subject to appropriate taxes on income and assets. To

simplify the analysis, we assume throughout this paper that the �rst-order approach (FOA) is valid.

This enables us to characterize the agent�s choice of e¤ort e0 and assets b0 based on the associated

�rst-order conditions. Su¢cient conditions for the validity of the FOA in this setup are given in

Abraham, Koehne, and Pavoni (2011). Speci�cally, the FOA is valid if the agent has nonincreasing

absolute risk aversion and the cumulative distribution function of income is log-convex in e¤ort.6

When the FOA holds, second best allocations can be decentralized by imposing a linear tax on

assets, complemented by suitably de�ned nonlinear labor income taxes.

5Although for pure notational simplicity we consider the case with a continuum of output levels, we do not discuss in

detail the technicalities related to the existence of a solution and the existence of the multipliers in in�nite dimensional

spaces. We can provide details; alternatively, the reader can read the model as one with a large but �nite number of

output levels.
6As discussed by Abraham, Koehne, and Pavoni (2011), both conditions have quite broad empirical support. First,

virtually all estimations of u reveal NIARA; see Guiso and Paiella (2008) for example. The condition on the distribution

function essentially restricts the agent�s Frisch elasticity of labor supply. This restriction is satis�ed as long as the Frisch

elasticity is smaller than unity. In fact, most empirical studies �nd values for this elasticity between 0 and 0.5; see Domeij

and Floden (2006), for instance.
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Proposition 1 (Decentralization) Suppose that the FOA is valid and let (c0; c(�); e0) be a second

best allocation that is interior: c0 > c, c(y) > c, y 2 Y , e0 > 0. Then there exists a tax system

consisting of income transfers (�0; �(�)) and an after-tax asset price ~q (> q) such that

c0 = y0 + �0;

c(y) = y + �(y); y 2 Y;

(e0; 0) 2 argmax
(e;b)

u(y0 + �0 � ~qb; e) + �

Z y

y

u1(y + �(y) + b)f(y; e) dy: (4)

In other words, there exists a tax system (�0; �(�); ~q) that decentralizes the allocation (c0; c(�); e0).

The above result is intuitive and the proof is omitted (compare Gottardi and Pavoni (2011)). It

is e¢cient to tax the savings technology, because savings provide intertemporal insurance when the

agent plans to shirk. The reason why a linear tax on assets is su¢cient to obtain the second best

becomes apparent once we replace the incentive constraint (4) by the associated �rst-order conditions

u0e(y0 + �0; e0) + �

Z y

y

u1(y + �(y))fe(y; e0) dy � 0; (5)

~qu0c(y0 + �0; e0)� �

Z y

y

u01(y + �(y))f(y; e0) dy � 0: (6)

The second condition (6) determines the agent�s asset decision exclusively based on consumption levels

and the price ~q: This means that the planner can essentially ignore the problem of joint deviations

when taxing asset trades. It is now clear that by choosing a su¢ciently large value for ~q; the planner

can in fact ignore this last constraint and obtain the second best allocation.

Notice that we have normalized asset holdings to b0 = 0 in the above proposition. This is without

loss of generality, since there is an indeterminacy between �0 and b0. The planner can generate the

same allocation with a system (�0; �(�); ~q) and b0 = 0 or with a system (�0 � ~q"; �(�) + "; ~q) and b0 = "

for any value of ". This indeterminacy is of course not surprising, because the timing of tax collection

is irrelevant by Ricardian equivalence.

Besides allowing for a very natural decentralization, the FOA also generates a sharp characteri-

zation of second best consumption schemes. Assuming that consumption is interior, the �rst-order

conditions of the Lagrangian with respect to consumption are:7

�

u0c(c0; e0)
= 1 + �

u00ec(c0; e0)

u0c(c0; e0)
; (7)

�q

�u01(c(y))
= 1 + �

fe(y; e0)

f(y; e0)
; y 2 [y; y]; (8)

7A su¢cient condition for interiority is, for example, u0e(c; 0) = 0 for all c > c in combination with the Inada condition

limc!c u
0
c(c; 0) =1:
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where � and � are the (nonnegative) Lagrange multipliers associated with the budget constraint (2)

and the �rst-order version of the incentive constraint (3), respectively.

Finally, we note that a tax on the asset price q is equivalent to a tax rate t on the rate of return

(constant across agents) given by:
�
1 +

�
1
q
� 1
�
(1� t)

��1
= ~q:

2.2 Hidden assets and third best allocations

While savings technologies such as domestic bank accounts, pension funds, or houses may be observable

at moderate costs, there are many alternative ways of transferring resources over time that are more

di¢cult to monitor. For instance, agents may open accounts at foreign banks, or they may accumulate

cash, gold, or durable goods. These technologies typically bring low returns (or involve transaction

costs of various sorts), but are prohibitively costly to observe for tax authorities. Hence, if the after-tax

return of the observable savings technology, 1=~q, becomes too low, agents have a strong incentive to

use nonobservable assets to run away from taxation.

Notice that, even though we focus on a particular decentralization mechanism in this paper, the

above problem is general. Decentralizations that allow asset taxes to depend on the agent�s period-1

income realization (Kocherlakota 2005), for instance, can generate zero asset taxes on average, but

generally require high tax rates for a sizable part of the population.8

This motivates the study of optimal allocations and decentralizations when agents have access

to a nonobservable savings technology. We assume that the nonobservable technology is linear and

transfers qn � q units of date-0 consumption into one unit of date-1 consumption. Using the FOA, we

de�ne a third best allocation as an allocation (c0; c(�); e0) that maximizes ex-ante welfare

max
(c;e0)

u(c0; e0) + �

Z y

y

u1(c(y))f(y; e0) dy

subject to c0 � c, c(y) � c, e0 � 0, the planner�s budget constraint

y0 � c0 + q

Z y

y

(y � c(y))f(y; e0) dy �G � 0 (9)

8For example, assuming additively separable preferences and CRRA consumption utility, the tax rate on asset holdings

in such a decentralization would be 1� q

�

�
c(y)
c0

��
, where � is the coe¢cient of relative risk aversion. For incentive reasons,

c(y) tends to be signi�cantly below c0 for a range of income levels y, which results in tax rates on assets close to 1 at

those income levels. In other words, almost their entire wealth (not just asset income) would be taxed away for those

agents.
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and the �rst-order incentive conditions for e¤ort and nonobservable savings

u0e(c0; e0) + �

Z y

y

u1(c(y))fe(y; e0) dy � 0; (10)

qnu0c(c0; e0)� �

Z y

y

u01(c(y))f(y; e0) dy � 0: (11)

Obviously, in our terminology the notion �second best� refers to constrained e¢cient allocations

subject to nonobservability of e¤ort, while the term �third best� refers to constrained e¢cient alloca-

tions subject to nonobservability of e¤ort and assets/consumption

To decentralize a third best allocation (c0; c(�); e0), we de�ne taxes/transfers (�0; �(�)) on labor

income and an after-tax price ~q of the observable asset as follows:

�0 = c0 � y0;

�(y) = c(y)� y; y 2 Y;

~q = qn:

If agents face this tax system and have access to the nonobservable savings technologies at rate qn,

the resulting allocation will obviously be (c0; c(�); e0).

Again we can use the FOA to characterize the consumption scheme. Assuming interiority, the

�rst-order conditions of the Lagrangian with respect to consumption are now:

�

u0c(c0; e0)
= 1 + �

u00ec(c0; e0)

u0c(c0; e0)
+ �qn

u00cc(c0; e0)

u0c(c0; e0)
; (12)

�q

�u01(c(y))
= 1 + �

fe(y; e0)

f(y; e0)
+ �a(c(y)); y 2 [y; y]; (13)

where �, � and � are the (nonnegative) Lagrange multipliers associated with the budget constraint

(9), the �rst-order condition for e¤ort (10), and the Euler equation (11), respectively.

Proposition 2 Suppose that the FOA is valid and let (c0; c(�); e0) be a third best allocation that is

interior. Then there exists a number �q > q such that equations (12) and (13) characterizing the

consumption scheme are satis�ed with � > 0 whenever qn < �q.

Proof. Fix qn. From the Kuhn-Tucker theorem we have � � 0. If � > 0, we are done. If � = 0,

then the �rst-order conditions of the Lagrangian read

�

u0c(c0; e0)
= 1 + �

u00ec(c0; e0)

u0c(c0; e0)
;

�q

�u01(c(y))
= 1 + �

fe(y; e0)

f(y; e0)
; y 2 [y; y]:
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Since f(y; e) is a density, integration of the last line yields

Z y

y

�q

�u01(c(y))
f(y; e0) dy = 1:

Using � � 0 and the assumption u00ec � 0; we obtain

�

u0c(c0; e0)
� 1 =

Z y

y

�q

�u01(c(y))
f(y; e0) dy �

�q

�
R y
y
u01(c(y))f(y; e0) dy

;

where the last inequality follows from Jensen�s inequality. This inequality is in fact strict, since the

agent cannot be fully insured when e¤ort is interior. Hence - since from the previous condition we

have � > 0 - we conclude

�

Z y

y

u01(c(y))f(y; e0) dy > qu0c(c0; e0): (14)

Clearly, exactly the same allocation delivering condition (14) is obtainable for all qn by ignoring the

agent�s Euler equation. If we now de�ne �q > q such that

�

Z y

y

u01(c(y))f(y; e0) dy = �qu0c(c0; e0);

it is immediate to see that whenever qn < �q the allocation we obtained above ignoring the agent�s

Euler equation is, in fact, incompatible with (11), hence we must have � > 0: Q.E.D.

Proposition 2 states that if the return on the nonobservable savings technology 1
qn
is su¢ciently

high (although possibly lower than the return on observable savings), the agent�s Euler equation will

be binding in the planner�s problem. To simplify the exposition, we set qn := q from now on, so that

the returns of the nonobservable and observable savings technologies coincide. All our results will be

independent of the particular choice of qn and rely only on the fact the Euler equation is binding for

the planner in that case.9

Comparing the characterization of third best consumption schemes, (12), (13), to the character-

ization of second best consumption schemes, (7), (8), we notice that the di¤erence between the two

environments is closely related to the e¤ect of the agent�s Euler equation (11) and the associated

Lagrange multiplier �. We discuss the implications of this �nding in detail in the next section.

3 Absolute progressivity and linear likelihoods

We are interested in the shape of second best and third best consumption schemes c(y). As we

saw above, this shape is related one-to-one to the curvature of labor income taxes in the associated

decentralizations.
9The quantitative analysis in Section 5 suggests that a binding Euler equation is indeed the empirically relevant case.
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De�nition 1 We say that an allocation (c0; c(�); e0) is progressive if c0(y) is decreasing in y. We call

the allocation regressive if c0(y) is increasing in y.

Recall that �(y) = c(y) � y denotes the agent�s transfer and labor income �wedge�, hence ��(y)

represents the labor income tax. De�nition 1 implies that whenever a consumption scheme is progres-

sive (regressive), we have a tax system with increasing (decreasing) marginal taxes �� 0(y) on labor

income supporting it.

In a progressive system, taxes are increasing faster than income does. At the same time, for the

states when the agent is receiving a transfer, transfers are increasing slower than income is decreasing.

The opposite happens when we have a regressive scheme. Intuitively, if the scheme is progressive,

incentives are provided more by imposing �large penalties� for low income realizations, since consump-

tion decreases relatively quickly when income decreases. Regressive schemes, by contrast, put more

emphasis on rewards for high income levels than punishments for low income levels.

The next proposition provides su¢cient conditions for progressivity and regressivity of e¢cient

allocations.

Proposition 3 (Su¢cient conditions for progressivity/regressivity) Assume that the FOA is

justi�ed and that second best and third best allocations are interior.

(i) If the likelihood ratio function l (y; e) := fe(y;e)
f(y;e) is concave in y and 1

u01(c)
is convex in c,

then second best allocations are progressive. If, in addition, absolute risk aversion a(c) is

decreasing and concave, then third best allocations are progressive as well.

(ii) On the other hand, if l (y; e) is convex in y and 1
u01(c)

is concave in c, then second best

allocations are regressive. If, in addition, absolute risk aversion a(c) is decreasing and

convex, then third best allocations are regressive as well.

Proof. We only show (i), since statement (ii) can be seen analogously. De�ne

g(c) :=
�q

�u01(c)
� �a(c):

By concavity of u; 1
u01(�)

is always increasing. Therefore, if 1
u01(�)

is convex and � = 0 (or � > 0 and

a(�) decreasing and concave), then g(�) is increasing and convex. Given the validity of the FOA,

equation (8) (or equation (13), respectively) shows that second best (third best) consumption schemes

are characterized as follows:

g (c(y)) = 1 + � l (y; e0) ;

11



where, by assumption, the right-hand side is a positive a¢ne transformation of a concave function. By

applying the inverse function of g(�) to both sides, we see that c (�) is concave since it is an increasing

and concave transformation of a concave function. Q.E.D.

Note that in the previous proposition, since the function g is increasing, consumption is increasing

as long as the likelihood ratio function l (y; e) is increasing in y.

Proposition 3 implies that CARA utilities with concave likelihood ratios lead to progressive schemes,

both in the second best and the third best.10 In the second best, progressive schemes are also induced

by concave likelihood ratios and CRRA utilities with � � 1, since 1
u01(c)

= c� is convex in this case. For

logarithmic utility with linear likelihood ratios we obtain second best schemes that are proportional,

since 1
u01(c)

= c is both concave and convex. Interestingly, third best schemes are regressive in this case

(since absolute risk aversion a(c) = 1
c
is convex).11

This particular �nding sheds light on a more general pattern under convex absolute risk aversion:

when assets are observable (second best), the allocation has a �more concave� relationship between

labor income and consumption. In other words, observability of assets calls for more progressivity in

the labor income tax system. The next result formalizes this insight.

Proposition 4 (Concavity) Assume that the FOA is justi�ed and let (c0; c(�); e0) be an interior,

monotonic second best allocation and (ĉ0; ĉ(�); e0) be an interior, monotonic third best allocation,

both implementing e¤ort level e0. Suppose that u1 has convex absolute risk aversion and that

the likelihood ratio l (y; e0) is linear in y. Under these conditions, if ĉ is progressive, then c is

as well.

Proof. Given validity of the FOA, by equations (8) and (13) the consumption schemes c(y) and

ĉ(y) are characterized as follows:

g� (c(y)) = 1 + � l (y; e0) , where g� (c) :=
�q

�u01(c)
; (15)

ĝ
�̂;�̂
(ĉ(y)) = 1 + �̂ l (y; e0) , where ĝ�̂;�̂ (c) :=

�̂q

�u01(c)
� �̂a(c); with �̂ > 0: (16)

Since l (y; e) is linear in y by assumption, concavity of ĉ is equivalent to convexity of ĝ
�̂;�̂
: Moreover,

since a(c) is convex in c by assumption, convexity of ĝ
�̂;�̂

implies convexity of g� =
�

�̂

�
ĝ
�̂;�̂
+ �̂a

�
.

Finally, notice that convexity of g� is equivalent to concavity of c, since l (y; e) is linear in y: Q.E.D.

10Other cases where progressivity/regressivity does not di¤er between second best and third best are when a has the

same shape as 1
u0
1

(quadratic utility) and when a is linear (and hence increasing).
11More precisely, consumption is characterized by �q

�
c(y) � � 1

c(y)
= 1 + � l(y; e) in this case. Since the left-hand side

is concave in c and the right-hand side is linear in y, the consumption scheme c(y) must be convex in y.

12



In order to obtain a clearer intuition of this result, we further examine the planner�s �rst-order

condition (13), namely
�q

�u01(c(y))
= 1 + �

fe(y; e0)

f(y; e0)
+ �a(c(y)):

This expression equates the discounted present value (normalized by f (y; e0)) of the costs and bene�ts

of increasing the agent�s utility by one unit in state y. The increase in utility costs the planner q
�u01(c(y))

units in consumption terms. Multiplied by the shadow price of resources �, we obtain the left-hand

side of the above expression. In terms of bene�ts, �rst of all, since the agent�s utility is increased by

one unit, there is a return of 1. Furthermore, increasing the agent�s utility also relaxes the incentive

constraint for e¤ort, generating a return of �fe(y;e0)
f(y;e0)

.12 Finally, by increasing u1(c (y)) the planner

alleviates the saving motive of the agent. This gain, measured by �a(c (y)), depends crucially on the

multiplier � of the agent�s Euler equation. When assets can be fully taxed (second best), we have

� = 0 and this gain vanishes. By lowering the net return of the asset, the planner is able to circumvent

the �rst-order incentive constraint for assets. However, when asset taxation is ruled out (third best),

this constraint is binding and we have � > 0. Under convex absolute risk aversion, the term �a(c (y))

is convex. This implies that, ceteris paribus, the bene�ts of increasing the agent�s utility change in a

more convex way with labor income. As a consequence, in the third best the agent�s utility must also

change in a more convex way with labor income, hence consumption becomes more convex in y in this

case.

A closely related intuition for equation (13) can be obtained by rewriting it as follows:

�q

�u01(c(y))
� �a(c(y)) = 1 + �

fe(y; e0)

f(y; e0)
:

On the right-hand side, we have the (rescaled) likelihood ratio. As in the static moral hazard problem,

this function governs the allocation of utility across income states y. The only change compared

to the static problem is the term �a(c(y)) on the left-hand side. This term stems from the agent�s

Euler equation and modi�es the planner�s costs of allocating utility across states. In the static model,

allocating utility only generates a direct resource cost to the planner. This cost, captured by the

discounted inverse marginal utility, is also present here. In addition, allocating utility to state y

a¤ects the intertemporal structure of the consumption scheme, which creates an additional cost due

to the agent�s Euler equation.

12Of course, if the increase in consumption is done in a state with a negative likelihood ratio, this represents a cost

since the incentive constraint is in fact tightened.
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4 General results on progressivity

Since at least Holmstrom (1979), it is well known that consumption patterns under moral hazard are

crucially in�uenced by the shape of the likelihood ratio function l(�; e). Stated in more negative terms,

one can always �nd functions l(�; e) so that the shape of consumption is almost arbitrary. To make the

impact of asset observability on the shape of optimal consumption easier to observe, we have therefore

normalized the curvature of the likelihood ratio by assuming linearity in Proposition 4.

In this section, we study how the observability of assets changes the curvature of the consumption

scheme for arbitrary likelihood ratio functions. As usual, we assume that the FOA is justi�ed and that

(c0; c(�); e0) and (ĉ0; ĉ(�); e0) are interior, monotonic second best and third best allocations, respectively,

implementing the same e¤ort level e0.

Probably the most well known ranking in terms of concavity in economics is that dictated by

concave transformations (e.g., Gollier 2001).

De�nition 2 We say that f1 is a concave (convex) transformation of f2 if there is an increasing and

concave (convex) function v such that f1 = v � f2:

Proposition 5 Assume that u1 has convex absolute risk aversion. Then, if ĉ is a concave transforma-

tion of l, then c is a concave transformation of l. Conversely, if c is a convex transformation

of l, then ĉ has the same property.

Proof. Recall that we have

g� (c(y)) = 1 + � l (y; e0) , (17)

ĝ
�̂;�̂
(ĉ(y)) = 1 + �̂ l (y; e0) , (18)

where the functions g� and ĝ�̂;�̂ are de�ned as in (15) and (16), respectively. First, suppose that ĉ is a

concave transformation of l: Since the right-hand side of (18) is a positive a¢ne transformation of l, this

implies that ĝ
�̂;�̂
is convex. Now, notice that convexity of ĝ

�̂;�̂
implies that g� (c) =

�

�̂

�
ĝ
�̂;�̂
(c) + �̂a(c)

�

is convex as well (since a(c) is convex by assumption). Hence, using (17), we see that c is a concave

transformation of l.

Conversely, suppose that c is a convex transformation of l: Using (17), we see that g� is then

concave. Convexity of a(c) implies that ĝ
�̂;�̂

is then also concave, which shows that ĉ is a convex

transformation of l: Q.E.D.

The previous result clearly generates a sense in which c is �more progressive� than ĉ. Note that this

�nding generalizes Proposition 4 to arbitrary shapes of the likelihood ratio function l. As a drawback,
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we can rank the curvature of c and ĉ only when, for example, ĉ is a concave transformation of l. We

will now reduce the set of possible utility functions to facilitate such comparisons.

Let us consider the class of HARA (or linear risk tolerance) utility functions, namely

u1 (c) = �

�
� +

c



�1�

with �
1� 


> 0; and � +

c


> 0:

For this class, we have a(c) =
�
� + c



��1
. Hence, absolute risk aversion is convex. Special cases of the

HARA class are CRRA, CARA, and quadratic utility (e.g., see Gollier 2001).

Lemma 1 Given a strictly increasing, di¤erentiable function u1 : [c;1) ! R, consider the two

functions de�ned as follows:

g� (c) :=
�q

�u01(c)
;

ĝ
�̂;�̂
(c) :=

�̂q

�u01(c)
� �̂a(c):

Then, if u1 belongs to the HARA class with  � �1, then ĝ
�̂;�̂
is a concave transformation of

g� for all �̂; �̂ � 0, � > 0.

Proof. If u belongs to the HARA class, we obtain

ĝ
�̂;�̂
(c) =

�̂

�
g�(c)� �̂a(c) =

�̂

�
g�(c)� �̂�

1
 � (g�(c))

� 1
 ; with � =

�
q

��(1� )

� 1


> 0:

In other words, we have

ĝ
�̂;�̂
(c) = h (g�(c)) ; where h (g) =

�̂

�
g � �̂�

1
 � g

� 1
 :

The second derivative of h with respect to g is � �̂�
1
 �


�
1

+ 1
�
g
� 1

�2
; which is negative whenever

 � �1: Q.E.D.

The restriction  � �1 in the above result is innocuous to most applications and it allows for all

HARA functions with nonincreasing absolute risk aversion as well as quadratic utility, for instance.

Recall that second best and third best consumption schemes are characterized as follows:

g� (c(y)) = 1 + � l (y; e0) ,

ĝ
�̂;�̂
(ĉ(y)) = 1 + �̂ l (y; e0) :

For logarithmic utility, g� is linear. Lemma 1 therefore has the following consequence.
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Corollary Suppose u1 is logarithmic. Then c is a concave transformation of ĉ:

Proof. By Lemma 1, there exists a concave function ~h such that c and ĉ are related as follows:

c(y) = ~g�1 � ~h � ~g (ĉ(y)) ;

where ~g(c) = 1
�

�
�q
u0(c) � 1

�
is increasing. For logarithmic utility, ~g is an a¢ne function, which implies

that the composition ~g�1 � ~h � ~g is concave whenever ~h is concave. Q.E.D.

To state the consequences of Lemma 1 for general HARA functions, we introduce the concept

of G-convexity (e.g., see Avriel et al., 1988), which is widely used in optimization. A function f is

G-convex if once we transform f with G we get a convex function. More formally:

De�nition 3 Let f be a function and G an increasing function mapping from the image of f to the

real numbers. The function f is called G-convex (G-concave) if G � f is a convex (concave)

function.

This concept generalizes the standard notion of convexity. It is easy to see that a function f is

convex if and only if it is G-convex for any increasing a¢ne function G. Moreover, it can be shown

that if G is concave and f is G-convex then f must be convex, but the converse is false.13

Lemma 2 Assume u1 belongs to the HARA class with  � �1: Then c is g�-convex ( g�-concave) if

and only if ĉ is ĝ
�̂;�̂
-convex ( ĝ

�̂;�̂
-concave).14

Proof. Recall that consumption is determined as follows:

g� (c(y)) = 1 + � l (y; e0) ;

ĝ
�̂;�̂
(ĉ(y)) = 1 + �̂ l (y; e0) .

As a consequence, we can relate the two consumption functions as follows:

1

�

�
g� (c(y))� 1

�
=
1

�̂

�
ĝ
�̂;�̂
(ĉ(y))� 1

�
: (19)

Now the result follows from the simple fact that convexity/concavity is preserved under positive a¢ne

transformations. Q.E.D.

13For example, suppose f (x) = x2 and G (�) = log (�) ; then G(f(x)) = 2 log(x), which is obviously not convex.
14 In fact, this statement is not only true for concavity and convexity, but more generally for any property de�ned with

respect to the transformations g� and ĝ�̂;�̂.
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Proposition 6 Assume u1 belongs to the HARA class with  � �1: If ĉ is g�-concave then c is

g�-concave. Conversely, if c is g�-convex then ĉ is g�-convex.

Proof. Let ĉ be g�-concave. By Lemma 1, we have ĝ�̂;�̂ = h � g� for some increasing and concave

function h. Hence, when ĉ is g�-concave, then ĉ must also be ĝ�̂;�̂-concave. Now Lemma 2 implies that

c is g�-concave.

To verify the second statement, let c be g�-convex. From Lemma 2, we see that ĉ is ĝ
�̂;�̂
-convex,

i.e., ĝ
�̂;�̂
� ĉ is convex. By Lemma 1, we have ĝ

�̂;�̂
= h � g� for some increasing and concave function h.

Since the inverse of h must be convex, we conclude that g� � ĉ = h�1 � ĝ
�̂;�̂
� ĉ is convex. Q.E.D.

Proposition 6 shows that whenever ĉ satis�es the g�-concavity property, then c satis�es this prop-

erty. In this sense, we note again that c is �more progressive� than ĉ.

5 Quantitative analysis

This quantitative exercise serves two purposes. First, we extend our theoretical results. For example,

recall that the theoretical results compare two allocations that implement the same e¤ort level. In

a calibrated/estimated framework we show that the key result of complementarity between capital

taxation and labor income tax progressivity extends to the case where e¤ort is allowed to change

between the two scenarios.

The second target of this exercise is to evaluate quantitatively how the limited possibility of ob-

serving/taxing capital a¤ects optimal labor income taxes. In order to do this, we use consumption

and income data and postulate that the data is generated by a speci�cation of the model where cap-

ital income is taxed at an exogenous rate of 40%. Equivalently, the distorted asset price is given by

~q = q
0:6+0:4q . Note that the capital income tax of 40% is in line with U.S. e¤ective tax rates on capital

income as calculated by Mendoza, Razin and Tesar (1994) and Domeij and Heathcote (2004). We esti-

mate some of the key parameters of the model by matching joint moments of consumption and income

in an appropriately cleaned cross-sectional data. Then, we use the estimated (and postulated) para-

meters and also solve the model with optimal capital taxes, assuming perfect observability/taxability

of capital. The �nal outcome is a comparison of the optimal labor income taxes between the two

scenarios.

5.1 Data

We use PSID (Panel Study of Income Dynamics) data for 1992 as adapted by Blundell, Pistaferri and

Preston (2008). This data source contains consumption data and income data at the household level.
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The consumption data is imputed using food consumption (measured at the PSID) and household

characteristics using the CEX (Survey of Consumption Expenditure) as a basis for the imputation

procedure. Household data is useful for two reasons: (i) Consumption can be credibly measured at

the household level only. (ii) Taxation is mostly determined at the family level (which is typically

equivalent to the household level) in the United States. We will use two measures of consumption: non-

durable consumption expenditure and total consumption expenditure, the latter being our benchmark

case.

In our model, we have ex-ante identical individuals who face the same (partially endogenous)

process of income shocks. In the data, however, income is in�uenced by observable factors such as age,

education and race. We want to control for these characteristics to make income shocks comparable

across individuals. To do this, we postulate the following process for income:

yi = �(Xi)�i;

where yi is household i�s income, Xi are observable household characteristics (a constant, age, edu-

cation and race of the household head); and �i is our measure of the cleaned income shock. In order

to isolate �i, we regress log(yi) on Xi. The residual of this equation �̂i is our estimate of the income

shock.

The next objective is to �nd the consumption function. To be able to relate it to the cleaned

income measure �i, we postulate that the consumption function is multiplicatively separable as well:

ci = g0(Zi)g1
�
�(Xi)

�
c
�
�i
�

where Zi are household characteristics that a¤ect consumption, but (by assumption) do not a¤ect

income, such as number of kids and beginning of period household assets. Our target is to identify

c (�), the pure response of consumption to the income shock. To isolate this e¤ect, we �rst run separate

regression of log(ci) on Xi and Zi. The residual of this equation is "̂i:We then use a �exible functional

form to obtain c (�). In particular, we estimate the following regression:

log("̂i) =

4X

j=0

j
�
log(�̂i)

�j
:

Hence, in our model�s notation, the estimate of the consumption function is given by

ĉ (y) = exp

0

@
4X

j=0

̂j (log(y))
j

1

A .

Figure 1 displays the estimated consumption function for both of our measures of consumption. Note

that our estimate based on total consumption expenditure displays both signi�cantly more dispersion

and a higher overall level.
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Figure 1: Estimated Consumption Functions

5.2 The empirical speci�cation of the model

For the quantitative exploration of our model, we move to a formulation with discrete income levels.

We assume that we have N levels of second-period income, denoted by ys; s = 1; : : : ; N; with ys > ys�1.

This implies that the density function of income, f(y; e); is replaced by probability weights ps(e); with
PN
s=1 ps(e) = 1 for all e. For the estimation of the parameters, we impose further structure. We

assume

ps(e) = exp(��e)�
l
s + (1� exp(��e))�

h
s ;

where �h and �l are probability distributions on the set fy1; : : : ; yNg and � is a positive scalar. In

addition to tractability, this formulation has the advantage that it satis�es the requirements for the

applicability of �rst-order approach given by Abraham, Koehne and Pavoni (2011).15

15Note that we do not need to impose the stochastic dominance condition - which, in our environment, is virtually

equivalent to monotone likelihood ratios (MLR) - as in the proof of the validity of the �rst order approach we only need

monotone consumption (see Abraham, Koehne and Pavoni (2011) for details). And as Figure 1 shows this is delivered to

us from the data. Note that MLR is a su¢cient but not necessary condition for monotone consumption. Nevertheless, as
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In order to account for (multiplicative) heterogeneity in the data, we allow for heterogeneity in

the initial endowments, specify a unit root process for income shocks, and choose preferences to be

homothetic. In particular, we assume:

u (c; e) =

h
(c)� (v (T � e))1��

i1��

� (1� �)
;

where v is a concave function, � 2 (0; 1) and � > 0:16

Proposition 7 Consider the following family of homothetic models with heterogeneous agents:

max
ci0;c

i
s;e

i
0

X

i

 i

8
><

>:

h�
ci0
�� �

v
�
T � ei0

��1��i1��

� (1� �)
+ �

X

s

ps
�
ei0
�
h�
cis
��
(v (T ))1��

i1��

� (1� �)

9
>=

>;

s.t.
X

i

�
yi0 � c

i
0

�
+ q

X

i

X

s

ps
�
ei0
� �
yis � c

i
s

�
� G;

�
1� �

�

v0
�
T � ei0

�

v
�
T � ei0

�
h�
ci0
�� �

v
�
T � ei0

��1��i1��
= �

X

s

p0s
�
ei0
�
h�
cis
��
(v (T ))1��

i1��

� (1� �)
;

~q

h�
ci0
�� �

v
�
T � ei0

��1��i1��

ci0
= �

X

s

ps
�
ei0
�
h�
cis
��
(v (T ))1��

i1��

cis
;

with � 2 (0; 1) ; and ~q; q > 0: Moreover, assume income follows: yis = yi0�s: For each given

vector of income levels in period zero
�
yi0
�
i
> 0 and any scalar  > 0; let the Pareto weights

( i)i be such that the solution to the above problem delivers period zero consumption c�i0 = yi0

for all i: Then there exists t� 2 R and individual speci�c transfers ti = t�yi0 such that G =
P
i t
i

and the solution to the above problem is

c�i0 = yi0 for all i;

e�i0 = e�0 for all i;

c�is = c�i0 "
�
s for all i;

where e�0 and "
�
s are a solution to the following �normalized� problem

max
"s;e0

h
(v (T � e0))

1��
i1��

� (1� �)
+ �

X

s

ps (e0)

h
("s)

� (v (T ))1��
i1��

� (1� �)
;

expected, our estimated likelihood ratios will exhibit MLR, that is the estimated probability distributions satisfy: �hs=�
l
s

increasing in s:
16Where, obviously, when � = 1 we assume preferences take a logarithmic form.
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s.t

1


� 1 + q

X

s

ps (e0)

�
�s

� "s

�
� t�;

�
(1� �)

�

v0 (T � e0)

v (T � e0)

h
(v (T � e0))

1��
i1��

= �
X

s

p0s (e0)

h
("s)

� (v (T ))1��
i1��

� (1� �)
;

~q
h
(v (T � e0))

1��
i1��

= �
X

s

ps (e0)

h
("s)

� (v (T ))1��
i1��

"s
:

Proof. See Appendix. Q.E.D.

A few remarks are now in order. It should typically be possible to �nd a vector of Pareto weights

( i)i such that the postulated individual speci�c transfers t
i = t�y0 are indeed optimal. However,

because of potential non-concavitites in the Pareto frontier, it is di¢cult to establish such a result

formally. We abstract from this subtlety and simply take the existence of such Pareto weights as given

for our analysis. Intuitively, the Pareto weights  i are determined by income at time 0. This depen-

dence can be seen as coming from past incentive constraints or due to type-dependent participation

constraints in period zero.

Proposition 7 is useful for our empirical strategy for at least two main reasons. First, the proposition

suggests that within our empirical model, we are entitled to use the income and consumption residuals

as computed in the previous section as inputs in our estimation/calibration exercise. More precisely,

the proposition suggests that we can use the values "̂i and �̂i as consumption inputs regardless of the

actual value of ci and yi. In principle, according this proposition, we could go even further and use

residual income and consumption growth in our analysis to identify shocks. We have decided not to

follow that approach for two reasons. First, it requires imposing further structure on the consumption

functions and on the income process. Second, and more importantly, measurement error is known to

be large for both income and consumption. This would be largely exacerbated by taking growth rates.

The other key advantage of the homothetic model is that we can estimate the probability distribu-

tion and all other parameters assuming that e¤ort does not change across agents, hence the �rst-order

conditions and expectations are evaluated at the same level of e¤ort e�0.
17

5.3 Estimation of model parameters

As a �rst step, we �x some parameters. First of all, we set q = :96 to match a yearly real interest rate

of 4%, which is the historical average of return on real assets in the USA. We then set the coe¢cient

17Of course, this also implies that we will partially rely on functional forms for identi�cation.
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of relative risk-aversion for consumption to 3; that is 1� (1� �)� = 3, in line with recent estimation

results by Paravisini, Rappoport, and Ravina (2010).18 We normalize total time endowment to one

(T = 1) and choose v to be the identity function. For the income process, we set N = 20 and choose

the medians of the 20 percentile groups of cleaned income for the income levels �1; :::; �20. To be

consistent with this choice and with Proposition 7 we set y0 = 1: For expositional simplicity we will

assume  = 1 and hence c�0 = y0. Note that Proposition 7 implies that for any level of  we can obtain

the optimal consumption allocation by simply rescaling the consumption allocation of this benchmark.

The only parameter we need to adjust is t� or equivalently government consumption G�.

Given this choice of parameters, the remaining parameters are chosen to match speci�c empirical

moments coming from the data. We use the optimality conditions to design a method of moments

estimator for these parameters. We use the identity matrix as a weighting matrix in the estimation.19

The �rst group of remaining parameters of the model are the e¤ort technology parameter � and the

probability weights
�
�hs ; �

l
s

	N
s=1

that determine the likelihood ratios. Our target moments for these

parameters are ps(e
�
0) = 1=20 for all s; where e

�
0 is the optimal e¤ort, and "

�
s = ĉ (�s) ; where "

�
s is the

optimal consumption innovation in the model with an exogenous capital income tax rate of 40 per

cent, i.e., with ~q = q
0:6+0:4q .

Since the probabilities �ls and �
h
s each sum up to one, we have N � 1 parameters each. Moreover,

we have to estimate the parameter �. To summarize, we have to estimate 2N � 1 parameters and use

the following 2N � 1 model restrictions for these parameters:

ps(e
�
0) = exp(��e�0)�

l
s + (1� exp(��e

�
0))�

h
s for s = 1; :::; N � 1, (20)

q

�
��("�s)

1�(1��)� = 1 + ���
exp(��e�0)

�
�hs � �

l
s

�

ps(e�0)
+ ��

1� (1� �)�

"�s
for s = 1; :::; N , (21)

where (21) is the necessary �rst-order condition for the optimality of second period consumption.

Notice that these equations also include e�0, �
�, �� and ��, moreover we have not yet set parameters �

and � either. The parameter � is chosen such that the equilibrium level of e¤ort e�0 equals 1=3; which

is roughly the average fraction of working time over total disposable time in the United States. Also

notice that, given ps(e
�
0) = 1=20 and "

�
s = ĉ (�s) for all s; if we sum equation (21) across income levels

using weights as ps(e
�
0) = 1=20 we obtain

q

�
��
1

20

20X

s=1

ĉ (�s)
1�(1��)� = 1 +

�� (1 + �� � �)

20

20X

s=1

1

ĉ (�s)
: (22)

18We have made some sensitivity analysis with respect to the risk aversion parameter. Our results are qualitatively

the same for the range of risk aversions between one and four, but the di¤erences between the two scenarios are more

pronounced if risk aversion is larger.
19This choice turned out to be irrelevant, because we obtained a practically perfect �t for all cases we have considered.
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Consequently, the data implies a further restriction between the parameters and endogenous variables

(�; �; ��; ��), which we impose directly.

For the remaining variables/parameters, we use the following four optimality conditions, which we

require to be satis�ed exactly. First, we have the normalized Euler equation (c�0 = 1 is substituted in

all subsequent equations):

~q
h
(1� e�0)

1��
i1��

= �
NX

s=1

ps (e
�
0)
[("�s)

�]1��

"�s
: (23)

Then, we can use the �rst-order incentive compatibility constraint for e¤ort,

� (1� �)

h
(1� e�0)

1��
i1��

1� e�0
= �� exp(��e�0)

NX

s=1

�
�hs � �

l
s

� [("�s)
�]1��

(1� �)
; (24)

and the normalized �rst-order conditions for c�0;

��

(1� e�0)
(1��)(1��)

= 1� ��~q (1 + �� � �)���
(1� �)(1� �)

(1� e�0)
; (25)

together with the planner�s �rst-order optimality condition for e¤ort

q��
X

s

p0s (e
�
0) (�s � "

�
s)+�

�

 

�
X

s

p00s(e
�
0)
("�s)

(1��)�

�(1� �)
�
(1� �)(�+ (1� �)�)

�
(1� e�0)

���(1��)��1

!

+ (26)

+��

 

��
X

i

p0s(e
�
0)"

(1��)��1
s � ~q(1� �)(1� �) ("�s)

(1��)��1 (1� e�0)
(1��)(1��)�1

!

= 0:

Finally we obtain from the government�s budget constraint the implied government consumption

as a function of aggregate income as

G� = q

 
X

i

yi0

!
NX

s=1

ps(e
�
0)(�s � "

�
s): (27)

Here we have used y0 � c
�
0 = 0; the unit root process of income and Proposition 7.

We plot the estimated likelihood ratio on Figure 2. As expected (because of the same properties

of the estimated consumption function) the likelihood ratio is monotone and concave.
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Figure 2: Estimated Likelihood Ratio

5.4 Results

We use the preset and estimated/calibrated parameters of the above model (exogenous capital taxes) to

determine the optimal allocation for the scenario where capital taxes are chosen optimally�assuming

perfect observability/taxability of capital. Figure 3 displays second-period consumption for this sce-

nario together with the consumption function of the benchmark.

It is obvious from the picture that the average level of second-period consumption is higher in the

case with exogenous capital taxes (tax rate on capital income of 40%). This is of course not surprising,

given that optimal capital taxes in general imply frontloaded consumption (Rogerson 1985, Golosov

et al. 2003).

We also observe that, since consumption is concave for the two cases, optimal labor income taxes

are progressive in both scenarios. First note that we can invoke the �rst part of Proposition 6 stating

that if third best consumption ĉ is g�-concave then second best consumption c is g�-concave, too.

Moreover, for relative risk aversion of 3, the function g�(c) = �qc3=� is convex, hence g�-concavity

implies concavity. However, recall that for the current computations we did not �x e¤ort to be the
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same across the two allocations, which was a requirement for Proposition 6. On the one hand, this

result shows that the endogenous response of e¤ort to imperfect capital taxes does not a¤ect the

qualitative results (at least for this set of parameters). On the other hand, we will also show below

that the changes in e¤ort (and consequently the likelihood ratio) have a non-negligible quantitative

e¤ect.
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Figure 3: Optimal Consumption with Optimal and Restricted Capital Taxation

To compare progressivity across the two scenarios quantitatively, we use �c00(y)=c0(y) as a measure

of progressivity. In addition to the obvious analogy to �absolute risk aversion�, the advantage compared

to c00(y) is that it makes functions with di¤erent slopes c0(y) more comparable. A higher value of this

measure obviously indicates a higher degree of progressivity. On Figure 4, we have plotted this measure

of progressivity for the optimal consumption plan for the case when capital taxes are restricted and for

the case when they are optimal. The pattern is clear. The model with optimal capital taxes results in

a uniformly more concave (progressive) consumption function compared to the case when capital taxes

are restricted. The di¤erences are particularly large for lower levels of income (and consumption).
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Figure 4: Income Tax Progressivity with Optimal and Restricted Capital Taxation

We have quanti�ed these graphical observations and have checked robustness to alternative levels of

risk aversion in Table 1. The results are qualitatively the same for all risk aversion levels, but there are

signi�cant quantitative di¤erences. In particular, the di¤erence between the two models is increasing

in the level of risk aversion. The di¤erence between the two progressivity measures is negligible for log

utility, but quite large for the other three cases (ranging between 20 and 100 percent): Note that the

change in measured progressivity is coming from two sources. First, as Figure 3 shows, the concavity

of the optimal consumption function (c(y)) is changing. Second, the distribution of income changes,

as e¤ort is di¤erent under optimal capital taxes compared to the benchmark case. For this reason,

we calculate the measure of progressivity both with and without this second e¤ect (endogenous vs.

exogenous weights). Comparing the �rst and second rows of Table 1, we notice that the changing e¤ort

mitigates the increase in progressivity in a non-negligible way only for higher risk aversion levels. This

also implies that e¤ort is indeed higher when optimal capital taxes are levied. In turn, higher e¤ort

implies a higher weight on high income realizations where the progressivity di¤erences are lower (see

Figure 4). In any case, this second indirect e¤ect through e¤ort is small and hence the di¤erence in

the progressivity measure is still increasing in risk aversion.
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We obtain a similar message if we consider the welfare losses due to restricted capital taxation in

consumption equivalent terms (presented in the last row of Table 1). The losses are negligible for the

log case, considerable for the intermediate cases, and very large for high values of risk aversion.

We have also displayed the optimal capital taxes, calculated as �k = ~q=q�1. Notice that �k is indeed

the tax rate on capital, not on capital income. The 40 percent tax on capital income in the benchmark

model is equivalent to a 1.6% tax on capital. It turns out that optimal taxes are much higher than

this number for all risk aversion levels, including log utility. The tax rates are actually implausibly

high. Even in the log case, they imply a tax rate on capital income of around 90 percent. For our

benchmark case, the implied tax rate on capital income would be around 1000 percent, or equivalently

the after-tax return on savings is -37 percent.20 It is di¢cult to imagine how such distortionary taxes

can be ever implemented in a world where alternative savings opportunities (potentially with lower

return) are available that are not observable and/or not taxable by the government.

Table 1: Quantitative Measures of Progressivity, Welfare Losses and Capital Taxes

Risk aversion 1 2 3 4

Average measure of progressivity (�c00(y)=c0(y))

Optimal K tax (endog. weights) 0.670 0.800 0.963 1.102

Optimal K tax (exog. weights) 0.670 0.804 0.978 1.141

K tax=1.56 (40% on K income) 0.644 0.644 0.644 0.644

Welfare losses from not taxing capital optimally (%)

0.035 0.295 1.309 3.372

Optimal capital tax (%)

�k = ~q=q � 1 3.89 25.15 65.82 123.1

We can get some intuition why the di¤erences are increasing in the risk aversion of the agent

(�̂ := 1� (1� �)�) by examining equation (21) for our speci�cation:

q

�
��("�s)

�̂ � ��
�̂

"�s
= 1 + ���

exp(��e�0)
�
�hs � �

l
s

�

ps(e�0)
for i = 1; :::; N:

The direct e¤ect of restricted capital taxation is driven by ��a("�s). Note that the higher is �̂, the higher

is the discrepancy between the Euler equation characterizing the restricted capital taxation case and

the inverse Euler characterizing the optimal capital taxation case. This will imply that �� is increasing

with �̂. Moreover, absolute risk aversion is given by �̂="�s, which is also increasing in �̂: Hence the

e¤ect of hidden asset accumulation (or suboptimal capital taxes) is increasing in risk aversion for both

20Recall that the after-tax return on capital is given by 1=~q � 1. This is equivalent to a tax rate on capital income

de�ned as t = 1� (1=~q � 1)=(1=q � 1):
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of these reasons. The larger discrepancy between the Euler and inverse Euler equations also explains

that optimal capital taxes must rise with risk aversion in order to make these two optimality conditions

compatible. The same argument also explains why the welfare costs of restricted capital taxation are

increasing in risk aversion.

As another robustness check, we examined how the results would change if we use only non-durable

consumption as our measure of consumption. As we have seen on Figure 1, the main di¤erence between

the two consumption measures is that non-durable consumption is less dispersed (the average slope

is signi�cantly lower). Table 2 contains the average measures of progressivity, optimal capital taxes

and the welfare losses of restricted capital taxation for the benchmark risk aversion case. First of

all, note that our normalized measure of progressivity shows that, although non-durable consumption

is �atter, the progressivity is very similar (recall that the model with restricted capital taxation

replicates perfectly the consumption allocation for both cases). Second, notice that, with non-durable

consumption, we again have a signi�cant increase in progressivity when we impose optimal capital

taxes. This once more implies a sizeable welfare gain and a highly implausible tax rate on capital.

The only di¤erence is quantitative: all these properties are somewhat less pronounced: for example

the increase in progressivity here is 25 percent while it is around 50 percent in the benchmark case.

The general message is that whenever the overall level of insurance is higher (consumption responds

less to income shocks), imperfect observability/taxability of capital tends to have a smaller e¤ect.

Table 2: Di¤erent Consumption Measures

Risk aversion = 3 non-durable total expenditure

Average measure of progressivity (�c00(y)=c0(y))

Optimal K tax (endog. weights) 0.849 0.963

Optimal K tax (equal weights) 0.853 0.978

K tax=1.56 (40% on K income) 0.687 0.644

Welfare losses from not taxing capital optimally (%)

0.434 1.309

Optimal capital tax (%)

�k = ~q=q � 1 37.05 65.82

Hence, we can conclude that the following three main points of our analysis are robust to di¤erent

levels of risk aversion (as far as the coe¢cient of relative risk aversion is not to low) and to di¤erent

measures of consumption: (i) Restricted (as opposed to optimal) capital taxation leads to less progres-

sive optimal income taxes. (ii) There are signi�cant welfare losses due to this restriction on capital

taxation. (iii) The implied optimal capital taxes are implausibly high.
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Finally, we would like to relate the quantitative results to Proposition 5 as well. There we have

shown that under convex absolute risk aversion, whenever consumption is concave function of the

likelihood ratio in the restricted capital tax case, the same must hold in the model with optimal

capital taxes. Recall that this result was obtained assuming constant e¤ort levels across the two

scenarios. Therefore we compute the optimal allocation for the scenario with 40 percent capital

income taxation given the e¤ort level from the optimal capital tax case. Intuitively, we disregard

the planner�s optimality condition regarding e¤ort in this case. Figure 5 displays the results of these

calculations as a function of the likelihood ratio, which is (by construction) the optimal likelihood

ratio under optimal capital taxes.
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Figure 5: Optimal Consumption as Function of the Likelihood Ratio (Fixed E¤ort)

This �gure is clearly in line with the theoretical results of Proposition 5. First of all, consumption

is a concave function of the likelihood ratio in both scenarios. Moreover, consumption under optimal

capital taxation is a concave transformation of consumption under restricted capital taxation.
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6 Concluding remarks

This paper analyzed how restrictions to capital taxation change the optimal tax code on labor income.

Assuming preferences with convex absolute risk aversion, we found that optimal consumption moves in

a more convex way with labor income when asset accumulation cannot be controlled by the planner. In

terms of our decentralization, this implies that marginal taxes on labor income become less progressive

when restrictions to capital income taxation are binding. We complemented our theoretical results

with a quantitative analysis based on individual level U.S. data on consumption and income.

The model we presented here is one of action moral hazard, similar to Varian (1980) and Eaton

and Rosen (1980). The framework has the important advantage of tractability. Although a more

common interpretation of this model is that of insurance, we believe that it conveys a number of

general principles for optimal taxation that also apply to models of ex-ante redistribution.

While the standard Mirrlees model focuses on the intensive margin (with notable exceptions,

e.g., Chone� and Laroque, 2010), the model we consider here focuses on the extensive margin. The

periodic income y is the result of previously supplied e¤ort and is subject to some uncertainty. Natural

interpretations for the outcome y include the result of job search activities, the monetary consequences

of a promotion or a demotion, i.e., of a better or worse match (within the same �rm or into a new

�rm); or again - for self-employed individuals - y can be seen as earnings from the entrepreneurial

activity. It would not be di¢cult to include an intensive margin into our model in t = 1. Suppose, for

simplicity, the utility function takes an additive separable form u1 (c)�v (n) ; where n represents hours

of work. If we now interpret y as productivity, total income becomes I = yn: Clearly, our analysis

would not change a bit if both y and I were observable, while the case where the government can only

observe I is that of Mirrlees (1971).21

A Simple Dynastic Model: We conclude by proposing a simple extension of our model that

allows for multi-periods with �dynastic� considerations through �warm glow� motives for bequests.

Assume that in the last period preferences are u1(c
!k1�!), with ! 2 (0; 1): Here, c is consumption as

21 In this case, the intensive-margin incentive-constraints would take the familiar form: dc(y)
dy

u01 (c (y)) =
v0(n(y))

y

dI(y)
dy

:

The analysis of the intensive margin is standard. If we assume no-bunching, the validity of the FOA for e¤ort, and use

the envelope theorem, it is not di¢cult to derive the formula for third-best allocations as:

q�

�u0 (c (y))
= 1 + �l (y; e) + �a (c (y))�

d�(y)
dy

�f (y; e)
; (28)

where the multiplier associated to the intensive-margin incentive-constraint � (y) is - as usual - related to the Spence-

Mirrlees condition and the labor supply distortion,and it satis�es �
�
y
�
= � (y) = 0: The comparison between the case

with restricted and unrestricted capital taxation amounts again to considering the cases with � > 0 and � = 0 respectively.

Although the forces at play are the same as above, an analytic analysis with intensive margin (and private information

on y) is complicated by the fact that both �; �; and the whole schedule � (�) change.
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above, while k represents bequest transfers to future generations. Given the net income y + � (y) in

the last period, the agent solves (note that there are no reasons to impose capital taxes in t = 1, at

least not in order to alleviate incentives):

max
k;c�0

u1(c
!k1�!)

s:t: c+ k = y + � (y) :

The chosen functional form implies that expenditures on c and k will be �xed proportions of the

disposable income, namely: c (y) = !(y + � (y)); and k (y) = (1 � !)(y + � (y)). This model with

bequest is hence equivalent to our original model with utility ~u(y + �) = u1(A (y + �)) where u1 is

our original utility function and A = !!(1 � !)1�! is a constant. Clearly, none of our theoretical

results changes, since properties such as the convexity of the absolute risk aversion are invariant to

this modi�cation. We did not �nd any sizable quantitative di¤erence either.22 Since we are interested

in the curvature of the consumption function and its changes due to restrictions to capital income

taxation, it is intuitive that such extension has little impact on our results.

It is not di¢cult to see how such model can be embedded into a fully dynastic framework. When y

is observed, k is easily computable as a (deterministic) function of y+� since the warm glow mechanics

does not leave space for strategic considerations in the inter-generational transfer of wealth. Then k

would play the role of y0 for the next generation. Of course, this framework generates heterogeneity

in the initial endowments. However, the link between c0 and y0 would be dictated by distributional

motives alone (i.e., no incentive constraint would play any role here), along the lines of the quantitative

section. Details are available upon request.

22Details are available upon request. In our robustness computations, ! has been calibrated to match the top bracket.

Alternatively, one could set this parameter so that to match the average marginal propensity to consume in the population.
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Appendix: Proof of Proposition 7.

The linear separability of the planner�s problem implies that, given individual transfers ti; the optimal

allocation must solve the following individual contracting problem:

V i = max
ci0;c

i
s;e

i
0

 i
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><

>:
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with  i > 0: Because preferences are homothetic, the incentive constraints depend only on "is = cis=c
i
0 and e

i
0:

We can hence change the choice variables and rewrite the individual contracting problem as
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Now �x some individual j. By continuity we can �nd a transfer tj such that the solution (cj�0 ; e
j�
0 ; "

j�
s ) to the

associated individual problem satis�es cj�0 = yj0: By non-satiation of preferences, t
j is given by

tj = yj0 � y
j
0 + qy

j
0

X

s

ps

�
ej�0

� �
�s � "

j�
s 
�
=: yj0t

�:

We claim that transfers de�ned as ti := yi0t
� imply that for all i the contract

ci�0 = yi0;

ei�0 = ej�0 ; and

"i�s = "j�s ;
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solves the individual contracting problem. Suppose the claim is false for some i. By the construction of transfers,

the contract (yi0; e
j�
0 ; "

j�
s ) is incentive-feasible. Hence if the claim is false the value V i must be strictly higher

than the one generated by (yi0; e
j�
0 ; "

j�
s ): This implies
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�
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��(1��)

8
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On the other hand, the contract (ci�0 y
j
0=y

i
0; e

i�
0 ; "

i�
s ) is incentive-feasible for the individual contracting problem

V j : Hence we get

V j �  j
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Taken together, the two inequalities imply V i > V i, a contradiction. Q.E.D.

33



References

[1] Abraham, A., S. Koehne, and N. Pavoni (2011): �On the First-Order Approach in Principal-

Agent Models with Hidden Borrowing and Lending,� Journal of Economic Theory, 146, 1331�

1361.

[2] Avriel, M., W. E. Diewert, S. Schaible, and I. Zang. (1988): Generalized Concavity.

Plenum Publishing Corporation, New York.

[3] Blundell R, Pistaferri L., Preston I. (2008): �Consumption inequality and partial insur-

ance.� American Economic Revew, 98: 1887�921.

[4] Chone P., and G. Laroque, (2010): "Negative Marginal Tax Rates and Heterogeneity," Amer-

ican Economic Review, 100(5): 2532-47.

[5] Conesa, J. C., S. Kitao, and D. Krueger (2009): �Taxing Capital? Not a Bad Idea After

All!,� American Economic Review, 99 (1), 25-48.

[6] Diamond, P. A., and J. A. Mirrlees (1978): �A model of social insurance with variable

retirement,� Journal of Public Economics, 10(3), 295�336.

[7] Diamond, P. A., and E. Saez (2011): �The Case for a Progressive Tax: From Basic Research

to Policy Recommendations,� Journal of Economic Perspectives, 25(4), 165-190.

[8] Domeij, D., and M. Floden (2006): �The Labor-Supply Elasticity and Borrowing Constraints:

Why Estimates are Biased,� Review of Economic Dynamics, 9(2), 242�262.

[9] Domeij, D., and J. Heathcote (2004): �On The Distributional E¤ects Of Reducing Capital

Taxes,� International Economic Review, 45(2), 523�554.

[10] Eaton, J., and H. S. Rosen (1980): �Optimal Redistributive Taxation and Uncertainty,� The

Quarterly Journal of Economics, 95(2), 357�64.

[11] Farhi, E., and I. Werning (2011): �Insurance and Taxation over the Life Cycle,� mimeo.

[12] Gollier, C. (2001): The Economics of Risk and Time. MIT Press.

[13] Golosov, M., N. Kocherlakota, and A. Tsyvinski (2003): �Optimal Indirect and Capital

Taxation,� Review of Economic Studies, 70(3), 569�587.

[14] Golosov, M., M. Troshkin, and A. Tsyvinski (2011), �Optimal Dynamic Taxes," mimeo.

34



[15] Golosov, M., and A. Tsyvinski (2007), �Optimal Taxation with Endogenous Insurance Mar-

kets,� The Quarterly Journal of Economics, 122(2), 487�534.

[16] Gottardi, P., and N. Pavoni (2011): �Ramsey Asset Taxation under Asymmetric Informa-

tion,� mimeo, European University Institute.

[17] Guiso, L., and M. Paiella (2008): �Risk Aversion, Wealth, and Background Risk,� Journal of

the European Economic Association, 6(6), 1109�1150.

[18] Holmstrom, B. (1979): �Moral hazard and observability,� Bell Journal of Economics, 10(1),

74�91.

[19] Kocherlakota, N. R. (2005): �Zero Expected Wealth Taxes: A Mirrlees Approach to Dynamic

Optimal Taxation,� Econometrica, 73(5), 1587�1621.

[20] Laroque, G. (2011): "On Income and Wealth Taxation in A Life-Cycle Model with Extensive

Labour Supply," Economic Journal, 121(554), F144-F161.

[21] Mendoza, E., A. Razin, and L. Tesar (1994): �E¤ective tax rates in macroeconomics: Cross-

country estimates of tax rates on factor incomes and consumption,� Journal of Monetary Eco-

nomics, 34(3), 297�323.

[22] Mirrlees, J. A. (1971): �An Exploration in the Theory of Optimum Income Taxation,� Review

of Economic Studies, 38(114), 175�208.

[23] Rogerson, W. (1985), �Repeated Moral Hazard,� Econometrica, 53: 69-76.

[24] Sadka, E. (1976): �On Progressive Income Taxation,� American Economic Review, 66(5), 931�

35.

[25] Saez, E. (2001): �Using Elasticities to Derive Optimal Income Tax Rates,� Review of Economic

Studies, 68(1), 205�29.

[26] Varian, H. R. (1980): �Redistributive taxation as social insurance,� Journal of Public Eco-

nomics, 14(1), 49�68.

35


