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Abstract.  This paper explores extensions to the random walk model for time series in finance.  

There is some disagreement about the suitability of multifractal probability models, but they 

have compelling attributes.  Research that has found no evidence to support the multifractal 

model has used testing procedures that do not have known statistical power.  Therefore, there 

is an opportunity for new methodology.  This paper presents a testing procedure to determine 

if data follows a multifractal or monofractal process.  Using simulation, the paper derives the 

power of the test.  Although the power is low, the test suggests that some observed prices do 

follow multifractal behaviour.  This is a strong result.  Further, this work suggests there will be 

further disagreement in the literature going forward due to the difficulty of identifying 

multifractal data. 
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1. Introduction: 

This paper develops a formal criteria to choose between two models for time series in finance.  

Both models are extensions of the random walk model, where percentage changes follow a 

known distribution.  One model is the monofractal, where percentage changes follow a normal 

distribution.  The other model is a multifractal, where percentage changes are governed by a 

distribution that is determined by a combination of fractal distributions.  To determine if data 

has evidence of multifractal behaviour, a researcher must determine if a particular curve is 

linear or nonlinear.  Although this seems simple enough, it has not been studied before using 

formal statistical procedures.  This paper explores the decision using a goodness of fit test. 

 

The paper works towards several goals.  First, I explore relevant literature that reveals 

disagreement about the use of multifractals in finance.  By using simulation, this paper adds 

structure to the debate around testing for presence of multifractals.  Next, the paper shows 

how the multifractal model can be calibrated to observed price data.  Finally, theory tells us 

that a particular curve will be linear for a monofractal and nonlinear for a multifractal; this 

motivates a test statistic based on the second derivative of the curve.  Lacking theoretical 

guidance on properties of the test statistic, the paper simulates monofractal data to identify a 

critical value for the test statistic. By simulating multifractals and using the critical value, it is 

possible to construct the power of the test.  The results show that it is very difficult to correctly 

distinguish between mono and multifractals using the test statistic.  This suggests that literature 

on the topic will continue to be unsettled due to the difficulty of this question at the core of the 

model.   

 

2. Literature Review 

The Multifractal Model of Asset Returns (MMAR) is an important model that was proposed in 

the seminal paper by Mandelbrot, Calvet and Fisher (2001).  The model builds on fractal 

geometry and has compelling strengths.  The interested reader should start by reviewing 

Mandelbrot, Calvet, Fisher (2001) and subsequently review articles that use the MMAR for 
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empirical purposes, such as Matteo (2010).  Together, these empirical and theoretical papers 

give a clear picture of the model and how to use it; alone, however, they can be daunting.   

 

In contrast to papers that focus on empirical use of the MMAR, several papers focus on 

theoretical properties of the model.  Calvet and Fisher (2004) provide a comprehensive review 

of the model and, in passing, provide a test to distinguish between mono and multifractals.  The 

test is motivated by simulating monofractals to calculate the standard deviation of points on a 

particular curve; the test is calculated by counting the number of times that an empirically-

based curve is different outside the error bounds of the monofractal one.  Since the test is not 

the focus of the paper, the authors do not explore the power of the test.  However, I suspect 

that their test does not focus on the linear-nonlinear tradeoff, which motivates my use of the 

second derivative.   

 

Testing for the presence of multifractals is either a passing concern or the central concern of a 

researcher.  Amongst those who are concerned with testing for the presence of multifractals, 

two separate papers deduce that there is no evidence for the MMAR in observed price data.  

Focusing on high frequency, intraday data, Jianga and Zhoua (2008) find evidence that observed 

data does not have multifractal attributes.  This result is found using a box counting method 

which is different from the estimation procedure I will use.  At this time, it is not clear to me 

why the authors find no evidence for MMAR, however, this negative result is troubling for the 

MMAR because it is supposed to be broadly applicable. 

 

Another researcher finds that “the apparent nonlinear scaling… can be accounted for by 

spurious multi-scaling typically obtained with financial data after randomization of their 

temporal structure" (Lux 2003, 7).  Using price data for stock market indices, a currency pair 

(USD/DM) and daily gold prices, the author finds no evidence that the data follows a 

multifractal process; although he notes that this result may be driven by low power of the 

statistical test.  Lux uses a reshuffling approach, where the data is reordered and used to 

estimate the distribution of key properties.  The author finds that the nonlinearity of c(q) is not 
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large relative to estimates of c(q) obtained from reshuffled data.  Although the author states 

that this is a typical technique, there is no discussion of the power this test has for 

distinguishing multifractals.  This criticism (unknown power of test) applies to both research 

efforts that found no evidence of multifractal data using observed data.  In fact, these 

shortcomings motivated my use of simulations.  Simulations allow a researcher to 

simultaneously control and test for the presence of multifractal data, which provides new 

insight into the behaviour of mono and multifractal in the MMAR estimation framework. 

 

The discord within the literature is compelling for my work.  Although Calvet and Fisher (2004) 

simulate monofractals to identify bounds on the curve of interest, it is not clear that any 

researcher has simulated different types of data to study whether a particular testing 

procedure is any good at distinguishing between mono and multifractal data.  This means there 

is a great opportunity to strengths and weaknesses of various procedures that are used to test 

for the presence of multifractals.   

 

3. Analysis 

In the first section, I show the estimation procedure for the MMAR.  I use observed data for 

GLD, the most heavily traded gold ETF in the USA, from February 13 2012.  This asset is chosen 

because it is highly traded but not covered in other papers.  The second section explores 

simulation of the MMAR and presents the test statistic.  The simulations use software created 

by Christian Wengert (2010).  The third section applies the test to the observed GLD data and 

presents a power curve that shows the ability of the test to correctly reject the monofractal 

model.   

 

1. Estimation Techniques 

This section discusses some of the methods used to estimate the MMAR.  The procedure starts 

with observations on price taken at regularly spaced intervals in time.  This basic data set 

should have the highest frequency of interest, for example, the GLD data I use is updated every 

10 seconds.  This data will be denoted as     , the i-th observation of prices. 
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The first variable we need to define is   (tau), an integer larger than   and smaller than   

(number of price observations).  The   represents the rate at which the basic data set is 

resampled to form a new sample.  If       then we form a new sample of price observations 

that has a new entry every time 100 observations are made in the basic data set (every time 

1,000 seconds pass).  At first,   will be fixed but subsequently will be changed in a loop.  I define      as the j-th observation of prices under the new sampling rate  .  For fixed  , the      are 

calculated as: 

 

(1)                                                     . 

 

The next object of interest depends on a variable  , which is a positive real number.  For   in a 

certain range, multifractal data is known to follow a power law scaling rule; generally, we 

consider   in       (Calvet and Fisher, 2004).  The central object in this scaling rule is the  -

power of absolute percentage changes, which I denote as       .  This term can be calculated 

as follows: 

 

 (2)                                . 

 

The object        is sufficiently important that it is represented graphically (Calvet and Fisher 

2004, Matteo 2010).  The object is related to the average percentage change of the prices., but 

does not have a physical interpretation because of the exponent  .  When it is calculated for 

the GLD data, I find the following result: 
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The behaviour shown in Figure 1 is typical of       , as reported in Calvet and Fisher (2004) 

and Matteo (2010).  There is good reason that the axes are as shown in Figure 1; the variable   

serves a mechanical purpose in calculating the scaling behaviour of the data.  In contrast,   has 

a higher order interpretation and there is a good reason why there is a separate curve for each 

value of  .  The physical interpretation of points in Figure 1 is secondary to the relationship 

between the slopes of the lines, which are the next step towards revealing the scaling rule 

present in fractal data. 

 

At this point, the estimation procedure is not complete.  Next, the researcher holds   fixed and 

performs linear regression as follows: 

 

 (3)                          . 
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The key variable of interest in Equation (3) is the coefficient estimate  .  Since this regression 

depends on  , this will be referred to as     .  In other research, this is referred to as   - the 

multiscaling exponent (Calvet and Fisher, 2004).  For simplicity, I refer to it as     .   

 

To proceed, the procedure requires that we graph      vs  .  If the data is monofractal then, in 

theory, the curve will be linear with slope 0.5.  If the data is multifractal then the curve will be 

nonlinear.  This graph is the central concern for the rest of this paper. 

 

 

 

The results presented in Figure 2 are typical of research using empirical data. Researchers use 

rules of thumb (at best) to determine whether a given curve is sufficiently nonlinear that they 

can infer the presence of multifractal data.  It is clear that      estimated using GLD data is 

nonlinear, but it is not clear if it is sufficiently nonlinear to say it is multifractal data; this 

requires that we know something about the variability in the estimates of a monofractal.  This 

unsatisfying state of affairs motivates the need for simulations.   
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Figure 2: Scaling Function Estimated using GLD Data 
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2. Simulation Procedure 

 

To begin, I simulate monofractal price data and calculate the      curve.  Then, I simulate 1,000 

monofractal paths and calculate the variability of the      curve.  This is important to confirm 

that my results are comparable to those reported in Calvet and Fisher; I find that standard 

deviation of      increases with   and achieve similar levels as Calvet and Fisher (2004).  The 

results are: 

 

Table 1: Standard Deviation of c(q) from Monofractal Simulation 

q 0.5 1 2 3 4 5 

s.d. c(q) 0.024 0.046 0.089 0.137 0.190 0.248 

 

Although it is possible to use Table 1 to generate a test to distinguish mono and multifractals, I 

suspect this would not test for linearity of      precisely; rather, it would test if the      curve 

is different from the line with slope 0.5.  Recall that we are concerned with testing if      is 

linear or not, because a monofractal gives a linear      curve with slope 0.5.  Thus, it is 

important to test whether      has different curvature than a line with slope 0.5 .  If the curve 

is a monofractal, then the second derivative will equal to zero because the slope is constant. 

 

The curvature of      can be calculated by applying a numerical derivative formula twice.  I 

calculate the second derivative        for the observed GLD data and show the results as the 

thick line in Figure 3.  For comparison, I show        as estimated using several paths of 

monofractal data.  The results are shown in Figure 3. 

  



Peter Bell, Goodness of Fit Test for Multifractal Model  Page 8 of 14 

 

 

 

Figure 3 shows how        compares for empirical data and several monofractal simulations.  

There are strong differences between most monofractal curves and the empirical one.  This is a 

promising result that leads nicely into a testing procedure.  A goodness of fit test compares an 

estimated curve to a benchmark to determine if the estimated one is significantly different.  

Here, the estimated curve will be        and the benchmark will be zero.  A goodness of fit test 

requires a metric that measures the difference between the curves; I use the absolute value of 

the difference.  Based on this, the test statistic   can be defined as: 

 

 (4)                   where   takes discrete values in (           . 
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This test statistic is the average value of the second derivative of     .  I use an average so that 

other researchers can use the critical values for D, even if they use different numbers of   

points.  In theory, the value for this test statistic should be zero for a monofractal.  However, 

this may not be true for a given sample.  To investigate this, I simulate many monofractal paths 

and calculate the distribution of the test statistic.  For 1,000 simulations, I estimate the 

distribution of   as follows: 

 

 

 

Using Figure 4, it is possible to get a critical value for the test statistic  .  This value will be used 

to test if observed data is monofractal or multifractal, and to build a power curve for the test.  

At 95% level of significance, the critical value             .  This value is the fiftieth most 

large observation of all simulated D values.  At 99% significance, the critical value is             .  These critical values are designed in a way that allows any researchers to use them, 

regardless of the values number of  -points that they consider.  For reference, I use      . 
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3. Results 

First, I state the statistical procedure in terms of the hypothesis, test statistic, and decision 

criteria.  This testing procedure is supposed to be valid for testing the MMAR in any situation. 

 

Table 2: Goodness of fit test procedure for MMAR 

Hypotheses:   Test Statistic:  Decision criteria: 

H0: Data is generated by 

monofractal model (H=0.5) 

                  where      

is calculated as in Section 3.1. 

Reject H0 if                   

HA: Data is generated by 

multifractal model (H>0.5) 

 

When the test statistic is applied to the data for GLD, the test statistic         .  Since this is 

larger than      , the test suggests that the GLD data is not from a monofractal at 95% 

confidence.  The test suggests that GLD has multifractal properties.  It is encouraging that this 

result confirms the intuition that Figure 2 suggests GLD has presence of multifractal data. 

 

A more involved result is the power curve for the test.  This result depends specifically on the 

structure of the test statistic   and the critical value used.  Power is the probability that the test 

reports that data is not monofractal when the data is, in fact, not monofractal.  Power is a good 

thing for a statistical test since it means the test is giving a correct result.  It is possible to 

calculate power since we can simulate multifractal data (Wengert 2010).  To simulate a 

multifractal path the key parameter is  , the Hurst exponent.  If         then the data will 

be generated by a multifractal process.  So, I establish a grid of values for   in        .  For each   value, I simulate 100 paths.  For each path, I calculate the test statistic  ; if         then 

this represents a correct rejection.  For each value of  , the power is the proportion of correct 

rejections to incorrect rejections.   
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The power curve implies that it is difficult for this test to distinguish between mono and 

multifractals.  For all possible parameters, the power is small and this means the test will often 

give false signals.  In particular, the test will often suggest that data is monofractal when it is 

actually multifractal.  This has two implications.   

 

Figure 5 implies that if we reject the null using observed data then this is a very strong result.  

This is because the test proposed here has low power; even when faced with multifractal data, 

the test is likely to suggest that it follows a monofractal distribution.  So, if the test suggests 

data follows a multifractal process then we can infer that the data is strongly different from a 

monofractal.  This is adds weight to our result that GLD data is multifractal. 

  

Figure 5 also leads me to expect that the literature on the topic will continue to be divided on 

suitability of the MMAR for financial data.    The test shows that it is very difficult to distinguish 

between mono and multifractal processes; therefore, research showing that data follows 

monofractal process is to be expected.  This disagreement may be based on diagnostic 

challenges from using the model, not the model itself.  
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Figure 5: Power Curve for Test Statistic 
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3. Conclusion 

This paper replicates results that show the MMAR in action.  The analysis suggests that high 

frequency gold price data is multifractal, but the literature does not provide a tool to formally 

test whether this is true or not.  To show that this methodological gap poses a problem, the 

paper uses simulation to show that mono and multifractal behave in subtly different ways in 

the MMAR estimation framework.  Next, the paper proposes a goodness of fit test to determine 

if the curve of interest is linear with slope 0.5.  The paper defines a test statistic and determines 

critical values for the statistic based on simulation of monofractals.  When applied to gold price 

data, this test suggests that there is evidence for a multifractal model.  However, the paper 

shows that power of this test is quite low.  This makes the result that gold prices have 

multifractal attributes is more strong because it is a hard result to achieve. 

 

There is much future work to do with the MMAR.  The model has attributes that make it 

compelling for use in industrial applications and theoretical models of financial markets.  

However, the results presented here are not a final word on testing between mono and 

multifractals.  In fact, there is an outstanding question around the simulation of multifractals 

that could motivate further research.  When simulating multifractal data, the program by 

Christian Wengert (2010) allows a researcher to vary   (the Hurst exponent) and   (the number 

of subdivisions).  When I simulate multifractal paths, I vary   but keep     fixed; it may be 

that larger   causes multifractal paths to become more pronounced. It follows that this change 

could improve the power of the test.  The test statistic proposed in this paper would become 

more valuable if it could be shown that the power increases when the data comes from a better 

multifractal simulation. 
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Appendix  

“Goodness of fit test for the Multifractal Model of Asset Returns”
2 

By Peter Bell
1 

 

 

 

Note: 

This appendix contains all the code I wrote to execute the estimation and simulation 

reported in the paper.  The code is written in Matlab.  There are two files: first, a long 

file that makes calls to various files to conduct the research; second, a function that is 

used to estimate the c(q) function from the paper.   

To use the code provided below, you will require to download three files written by 

Christian Wengert (2010).  A link is provided below
3
.  These files allow you to simulate 

multifractal processes. 

 

 

  



%%  Code Supplement for paper "Goodness of fit test for MMAR" 
%   By Peter Bell, April 2012.  For Econ 546 Econometrics 2, Dr David Giles 
%    
%   This file calls functions in order to estimate MMAR for GLD price data. 
%   Also conducts simulation to establish power of test proposed in paper. 
% 
% 
%  
% See the following paper 
% A Multifractal Model of Asset Returns by B Mandelbrot - 1997  
% 
%%  Empirical example to show estimation technique with price data: 
%   Notation: qHq refers to c(q) from the paper. 
% 
clear all 
load('GLD Data.csv')    %   Price data, 10 second frequency, Feb 13 2012 
price = GLD_Data(:,10); %   set price equal to ask 
empiric_qHq= qHqFunction(price) 
%   Result: c(q) curve for empirical data 
save('empiric_qHq.mat','empiric_qHq')   %   this is c(q) for GLD data 

  
%   Next, calculate T(q,tau) curve for empirical data. 
n = length(price); 
offsetd = zeros(1,1); 
counter = 1;    %   Used to calculate X(q,a) 
step = 2;   %   Track current value of offset distance dt 
top = 50;    %   Upper bound for dt (tau) in loop  
%   Assemble data into tau-offset format 
for j = 2:top 
    step = j; 
    counter = 1; 
    while counter*step+1<n, 
        pctchange = log(price(1+counter*step)/price(1+step*(counter-1))); 
        offsetd(counter,j-1) = pctchange; 
        counter = counter + 1; 
    end 
end 
%   Create matrix to store values of dt, each row is a value of dt 
for i = 1:top-1 
    regstep(i) = i; 
end 
%   Calculate the Q-power of price changes, for each level of dt  
qvec = [1,1.5,2,2.5,3,4,5]; 
for l = 1:length(qvec)  %loop over Q 
    for m = 1:top-1     %loop over step size dt 
       temps = sum(offsetd(:,m) ~=0,1); %sample mean for nonzero entries 
       moment = qvec(l); 
       regdata(m,l) = sum(abs(offsetd(:,m)).^(moment) / temps); %crucial        
       Tcurve(m,1) = regstep(m); 
       Tcurve(m,l+1) = regdata(m,l) 
    end  
end 
%   Result: calculate T(q,tau) curve. 
save('empiric_Tcurve.mat','Tcurve')   %   this is c(q) for GLD data 

  
%   Next, calculate c''(q) curve for empirical data 



Hprime_empiric = [0,0]; 
Hmat_empiric = empiric_qHq; 
h = Hmat_empiric (2,1)-Hmat_empiric (1,1); 
%   Calculate numerical derivative  
for i = 2:length(Hmat_empiric (:,1))-1 
    Hprime_empiric(i-1,1) = Hmat_empiric(i,1); 
    Hprime_empiric(i-1,2) = (1/(2*h))*(Hmat_empiric(i+1,2)... 
        - Hmat_empiric(i-1,2)); 
end 

  
Hdprime_empiric = [0,0]; 
for i = 2:length(Hprime_empiric(:,1))-1 
    Hdprime_empiric(i-1,1) = Hprime_empiric(i,1); 
    Hdprime_empiric(i-1,2) = (1/(2*h))*(Hprime_empiric(i+1,2)... 
        - Hprime_empiric(i-1,2)); 
end 

  
save('Hdprime_empiric.mat','Hdprime_empiric') 
%   this is c''(q) for GLD data 

  
 %%  Simulation of monfractal to calculate variability in c(q) q-Hq curve  
clear all 
%   Key Parameters 
H = .5;     % Hurst Exponent 
ln_mu = 0.05;  % Drift from GBM equation 
ln_sigma = 0.1;    %   Vol from GBM equation 

  
%   Secondary Parameters 
numsim = 1000; %    Number of paths to be simulated  
toptau = 50;   %    Largest offset used when calculating percentage changes 
b = 2;  %   Number of subdivisions 
k = 10;     %   Length of interval 

  
%   Calls to create data 
temp0 = mmar(b, k, H, ln_mu, ln_sigma); 
temp1 = diff(temp0);     %  Lose one observation here 
for i = 1: length(temp0)-1 
    temp2 = cumsum(temp1(1:i));  
    tempdata(i) = exp( temp2(i)/100);   %   Multiplicative process  
end 
tempans = qHqFunction(tempdata); 
numpoints = length(tempans); 
tempresample = tempans;     %   First c(q) curve under simulation 
%   First c(q) curve assigns observation points {q} for results matrix 

  
for i = 2:numsim 
    %   Create geometric data from additive 
    temp0 = mmar(b, k, H, ln_mu, ln_sigma); 
    temp1 = diff(temp0);     %lose one observation here 

     
    for j = 1: length(temp0)-1 
        temp2 = cumsum(temp1(1:j));  
        tempdata(j) = exp( temp2(j)/100); 
    end 
    tempans = qHqFunction(tempdata); 



    tempresample(:,i+1) = tempans(:,2); 
end 
%   The simulated c(q) curves have been created and saved as tempresample() 
H_sim1000=tempresample 
save('Hcurve_sim1000.mat','H_sim1000')   %   this is c(q) for GLD data 
%   Calculate average and variance in points along the c(q) curve as: 
mean_qHq = tempresample(:,1); 
stddev_qHq = tempresample(:,1); 
for i = 1:numpoints 
    mean_qHq(i,2) = mean(tempresample(i,2:numsim)); 
    stddev_qHq(i,2) = std(tempresample(i,2:numsim)); 
end 
save('monosim_varCcurve.mat','stddev_qHq')   %   this is c(q) for GLD data 
%   this replicates results from Fisher, Calvet 

  
%%   Next: Calculate c''(q) for all simulated curves      
Hprime = [0,0]; 
Hmat = tempresample; 
h = Hmat(2,1)-Hmat(1,1); 
for i = 2:length(Hmat(:,1))-1 
    Hprime(i-1,1) = Hmat(i,1); 
    Hprime(i-1,2) = (1/(2*h))*(Hmat(i+1,2) - Hmat(i-1,2)); 
end 
for j = 3:length(Hmat(1,:)) 
    for i = 2:length(Hmat(:,1))-1 
        Hprime(i-1,j) = (1/(2*h))*(Hmat(i+1,j) - Hmat(i-1,j)); 
    end 
end 
% 
Hdprime = [0,0]; 
for i = 2:length(Hprime(:,1))-1 
    Hdprime(i-1,1) = Hprime(i,1); 
    Hdprime(i-1,2) = (1/(2*h))*(Hprime(i+1,2) - Hprime(i-1,2)); 
end 
for j = 3:length(Hprime(1,:)) 
    for i = 2:length(Hprime(:,1))-1 
        Hdprime(i-1,j) = (1/(2*h))*(Hprime(i+1,j) - Hprime(i-1,j)); 
    end 
end 
save('Hdprime_sim1000.mat','Hdprime') 
%   This saves all of the simulations for numsim=1000. 
save_temp = Hdprime(:,1:51) 
save('Hdprime_sim50.mat','save_temp') 
%   Result: compare c'' for empiric and simulated data 

  
%%  Goodness of fit test 
%   psuedo code: get second derivative of c(q) and at each point in domain 
%   calculate the absolute value of c''.  This represents the distance from  
%   zero.  The measure for goodness of fit is the total of the distances. 
%   I interpret the top 5th percentile as the critical value. 

  
clear all 
load('Hdprime_empiric.mat') 
load('Hdprime_sim1000.mat') 

  
%   Calculate goodness of fit statistic for Hdprime 



numsim = length(Hdprime(1,:))-1; 
numq = length(Hdprime(:,1)); 
D = 0; 
for i = 1:numsim 
    gfit = 0; 
    for j = 1:numq 
        gfit = gfit + abs(Hdprime(j,i+1)); 
        %gfit = gfit + abs(Hdprime(j,i+1) - Hdprime_avg(j,2)); 
        %   Another possible test statistic 
    end 
    D(i,1)=gfit; 
end 
crit = sort(D); 
%   Result: critical values for test statistic 
D95=crit(1000-50)/length(Hdprime_empiric)    
%   This gives the 95% rejection value: 0.0347 
D99=crit(1000-10)/length(Hdprime_empiric)  
%   This gives the 99% rejection value: 0.0406 

  

    
%   Result: report distribution of test stat D. 
[n,xout]=hist(D,25); 
[xout' n']      %these are values of histogram 

  
%   Result: apply test stat to GLD empirical data. 
gfit = 0 
for j =1:length(Hdprime_empiric) 
    gfit = gfit + abs( Hdprime_empiric(j,2)); 
    %gfit = gfit + abs( Hdprime_empiric(j,2) - Hdprime_avg(j,2)); 
end 
D_empiric = gfit    %   Observed stat is 1.7951, larger than critical value 

  
%%  Simulation to calculate Power Curves  
%   For several values of (Hurst exponent H) simulate many paths.  For each 
%   path, calculate number of times that observed test statistic is larger 
%   than critical value.  When larger, represents correct rejection of null 
%    
% 
clear all 
%   load('Hdprime_avg.mat');    %   Alternative test possible 
keyvec = 0; 

  
for h_index = 0.5:.01:0.95    %   Key Parameters 
    H = h_index;     % Hurst Exponent 
    ln_mu = 0.05;  % Drift from GBM equation 
    ln_sigma = 0.1;    %   Vol from GBM equation 

  
    %   Secondary Parameters 
    numsim = 100;  
    b = 2; 
    k = 10; 

  
    %   Calls to create data 
    temp0 = mmar(b, k, H, ln_mu, ln_sigma); 
    temp1 = diff(temp0);     %lose one observation here 



    for i = 1: length(temp0)-1 
        temp2 = cumsum(temp1(1:i));  
        tempdata(i) = exp( temp2(i)/100); 
    end 

  
    %   Calls to create c(q) curve for each simulated path 
    tempans = qHqFunction(tempdata); 
    numpoints = length(tempans); 
    tempresample = tempans; 
    %plot(tempans(:,1),tempans(:,2)) 

  
    for i = 2:numsim 
        %   Create geometric data from additive 
        temp0 = mmar(b, k, H, ln_mu, ln_sigma); 
        temp1 = diff(temp0);     %lose one observation here 

  
        for j = 1: length(temp0)-1 
            temp2 = cumsum(temp1(1:j));  
            tempdata(j) = exp( temp2(j)/100); 
        end 
        tempans = qHqFunction(tempdata); 
        tempresample(:,i+1) = tempans(:,2); 
    end 

  
    %    
    Hprime = [0,0]; 
    Hmat = tempresample; 
    h = Hmat(2,1)-Hmat(1,1); 
    for i = 2:length(Hmat(:,1))-1 
        Hprime(i-1,1) = Hmat(i,1); 
        Hprime(i-1,2) = (1/(2*h))*(Hmat(i+1,2) - Hmat(i-1,2)); 
    end 

  
    for j = 3:length(Hmat(1,:)) 
        for i = 2:length(Hmat(:,1))-1 
            Hprime(i-1,j) = (1/(2*h))*(Hmat(i+1,j) - Hmat(i-1,j)); 
        end 
    end 
    % 
    Hdprime = [0,0]; 
    for i = 2:length(Hprime(:,1))-1 
        Hdprime(i-1,1) = Hprime(i,1); 
        Hdprime(i-1,2) = (1/(2*h))*(Hprime(i+1,2) - Hprime(i-1,2)); 
    end 

  
    for j = 3:length(Hprime(1,:)) 
        for i = 2:length(Hprime(:,1))-1 
            Hdprime(i-1,j) = (1/(2*h))*(Hprime(i+1,j) - Hprime(i-1,j)); 
        end 
    end 

  
    %   Calculate goodness of fit statistic for Hdprime 
    numsim = length(Hdprime(1,:))-1; 
    numq = length(Hdprime(:,1)); 
    D = 0; 



    for i = 1:numsim 
        gfit = 0; 
        for j = 1:numq 
            gfit = gfit + abs(Hdprime(j,i+1)); 
        end 
        D(i,1)=gfit 
    end 
    key = sum(D>=1.3911);%  %   This is power 
    int_index = floor(h_index*100-49);% h_index*20 - 9 % for 0.5:.01:0.95 
    keyvec(int_index,1)=h_index; 
    keyvec(int_index,2)=key; 
end 
%   The power of the test for each value of H is contained in keyvec. 
powercurve = keyvec 
save('PowerCurve_100sim.mat','powercurve') 

  
%%  This concludes program 

 

  



%Function calculates a diagnostic tool for the MMAR. 
%   Equation of interest is log(X(q,dt)) = const + H(q) log(dt), 
%   where dt is step size, and X(q,dt) is the average of: 
%   abs(X(t)/X(t-dt)-1)^q.    
%   Function returns estimate of H(q) for range of q-values. 
%    
% 
% See the following paper 
% A Multifractal Model of Asset Returns by B Mandelbrot - 1997  
% 
% 
function [ qHmat] = qHqFucntion(price) 
%   Basic Parameters 
n = length(price); 
offsetd = zeros(1,1); 
counter = 1;    %   Used to calculate X(q,a) 
step = 2;   %   Track current value of offset distance dt 
top = 50;    %   Upper bound for dt (tau) in loop  

  
%   Assemble data into tau-offset format 
for j = 2:top 
    step = j; 
    counter = 1; 
    while counter*step+1<n, 
        %Note: I use log approx for percent change. 
        %pctchange = price(1+counter*step)/price(1+step*(counter-1))-1; 
        pctchange = log(price(1+counter*step)/price(1+step*(counter-1))); 
        offsetd(counter,j-1) = pctchange; 
        counter = counter + 1; 
    end 
end 

  

  
%   Create matrix to store values of dt, each row is a value of dt 
for i = 1:top-1 
    regstep(i) = i; 
end 

  
%   Calculate the Q-power of price changes, for each level of dt  
q = 0.375; 
qstop = 5.5; 
qstep = 0.125; 
numstep = qstop/qstep; 
regdata=zeros(numstep,top-1); 

  
for l = 1:numstep       %loop over Q 
    for m = 1:top-1     %loop over step size dt 
       temps = sum(offsetd(:,m) ~=0,1); %sample mean for nonzero entries 
       moment = q; 
       regdata(m,l) = sum(abs(offsetd(:,m)).^(moment) / temps); %crucial        
    end  
    %   do regression: log(regdata(step,Q)) against log(step) for fixed Q. 
    tempreg = polyfit(log(regstep), log(regdata(:,l)'),1); 
    finalanswer(l,1) = q; 
    finalanswer(l,2) = tempreg(1); 

     



    q = q+qstep;     
end 

  
qHmat = finalanswer; 
%%  Graphing functionality: 

  
%hold on  
for i = 1:numstep 
    %   Use one of the following at a time: 
    %plot( log(1:top-1), log(regdata(:,i))) 
        % Stacked curves S(t,q) vs t.  As in Matteo (2007). 
    %semilogx(log(regdata(:,i)) - log(regdata(1,i)))  
        % Curves with same intercept as in Calvet and Fisher (2002). 
end 

  
end 

 

 


