Munich Personal RePEc Archive

Large covariance estimation by thresholding principal orthogonal complements

Fan, Jianqing and Liao, Yuan and Mincheva, Martina (2011): Large covariance estimation by thresholding principal orthogonal complements.

[img]
Preview
PDF
MPRA_paper_38697.pdf

Download (620kB) | Preview

Abstract

This paper deals with estimation of high-dimensional covariance with a conditional sparsity structure, which is the composition of a low-rank matrix plus a sparse matrix. By assuming sparse error covariance matrix in a multi-factor model, we allow the presence of the cross-sectional correlation even after taking out common but unobservable factors. We introduce the Principal Orthogonal complEment Thresholding (POET) method to explore such an approximate factor structure. The POET estimator includes the sample covariance matrix, the factor-based covariance matrix (Fan, Fan and Lv, 2008), the thresholding estimator (Bickel and Levina, 2008) and the adaptive thresholding estimator (Cai and Liu, 2011) as specic examples. We provide mathematical insights when the factor analysis is approximately the same as the principal component analysis for high dimensional data. The rates of convergence of the sparse residual covariance matrix and the conditional sparse covariance matrix are studied under various norms, including the spectral norm. It is shown that the impact of estimating the unknown factors vanishes as the dimensionality increases. The uniform rates of convergence for the unobserved factors and their factor loadings are derived. The asymptotic results are also veried by extensive simulation studies.

UB_LMU-Logo
MPRA is a RePEc service hosted by
the Munich University Library in Germany.