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Abstract

This paper deals with estimation of high-dimensional covariance with a conditional

sparsity structure, which is the composition of a low-rank matrix plus a sparse matrix.

By assuming sparse error covariance matrix in a multi-factor model, we allow the pres-

ence of the cross-sectional correlation even after taking out common but unobservable

factors. We introduce the Principal Orthogonal complEment Thresholding (POET)

method to explore such an approximate factor structure. The POET estimator in-

cludes the sample covariance matrix, the factor-based covariance matrix (Fan, Fan,

and Lv, 2008), the thresholding estimator (Bickel and Levina, 2008) and the adaptive

thresholding estimator (Cai and Liu, 2011) as specific examples. We provide mathe-

matical insights when the factor analysis is approximately the same as the principal

component analysis for high dimensional data. The rates of convergence of the sparse

residual covariance matrix and the conditional sparse covariance matrix are studied

under various norms, including the spectral norm. It is shown that the impact of es-

timating the unknown factors vanishes as the dimensionality increases. The uniform

rates of convergence for the unobserved factors and their factor loadings are derived.

The asymptotic results are also verified by extensive simulation studies.
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1 Introduction

Information and technology make large data sets widely available for scientific discovery.

Much statistical analysis of such high-dimensional data involves the estimation of covariance

matrix or its inverse (precision matrix). Examples include portfolio management and risk

assessment (Fan, Fan and Lv, 2008), high-dimensional classification such as Fisher discrimi-

nant (Hastie, Tibshirani and Friedman, 2009), graphic models (Meinshausen and Bühlmann,

2006), statistical inference such as controlling false discoveries in multiple testing (Leek and

Storey, 2008; Efron, 2010), finding quantitative trait loci based on longitudinal data (Yap,

Fan, and Wu, 2009; Xiong, et al., 2011), and testing the capital asset pricing model (Sentana,

2009), among others. See Section 4 for some of those applications. Yet, the dimensionality is

often either comparable to the sample size or even larger. In such a case, the sample covari-

ance is known to have a poor performance due to its diverse spectra, and some regularization

is needed.

Realizing the importance of estimating large covariance matrix and the challenges brought

by the high dimensionality, researchers have proposed various regularization techniques to

consistently estimate Σ in recent years. One of the key assumptions is that the covariance

matrix is sparse, namely, many entries are zero (Bickel and Levia, 2008, Rothman et al, 2009,

Lam and Fan 2009, Cai and Zhou, 2010, Cai and Liu, 2011). In many applications, however,

the sparsity assumption directly on Σ is not appropriate. For example, the financial returns

depend on the equity market risks, housing prices depend on the economic health, gene

expressions can be stimulated by cytokines, among others. Due to the presence of common

factors, it is unrealistic to assume that many outcomes are uncorrelated. An alternative

method is to assume a structure of factor model, as in Fan, Fan and Lv (2008). However,

they restrict themselves to the strict factor models with known factors.

A natural extension is the conditional sparsity. Given the common factors, the outcomes

are sparse. This approximate factor model is frequently used in economics and financial

studies (Chamberlain and Rothschild, 1983; Fama and French 1993; Bai and Ng, 2002). A

factor model typically takes the following form:

yit = b′
ift + uit, (1.1)

where yit is the observed datum for the ith (i = 1, ..., p) variable at time t = 1, ..., T ; bi is a

vector of factor loadings; ft is a K × 1 vector of common factors, and uit is the idiosyncratic

error component, uncorrelated with ft. In a data-rich environment, p can diverge at a rate
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faster than T . The factor model (1.1) can be put in the matrix form as

yt = Bft + ut. (1.2)

where yt = (y1t, ..., ypt)
′, B = (b1, ...,bp)

′ and ut = (u1t, ..., upt)
′. Under model (1.1), the

covariance matrix Σ is given by

Σ = Bcov(ft)B
′ +Σu, (1.3)

where Σu is the covariance matrix of ut. We assume that Σu is sparse (instead of diagnonal)

and refer to the model as the approximate factor model.

The conditional sparsity of form (1.2) was explored by Fan, Liao and Mincheva (2011) in

estimating the covariance matrix, when the factors {ft} are observable. This allows them to

use the regression analysis to estimate {ut}Tt=1. This paper deals with the situation in which

the factors are unobservable and have to be inferred. Our approach is very simple. Run

the singular value decomposition on the sample covariance matrix Σ̂, keep the covariance

matrix formed by the first K principal components, and apply the thresholding procedure

to the remaining covariance matrix. This results in a Principal Orthogonal complEment

Thresholding (POET) estimator. See Section 2 for additional details. We will investigate

various properties of POET under the assumptions that the data are serial dependence,

which include independent observation as a specific example.

High-dimensional approximate factor model (1.2) is innately related to the principal

component analysis, as clearly elucidated in Section 2. This is a distinguished feature not

shared by the finite-dimensionality. Bai (2003) established the large sample properties of the

principal components as the estimators of the factor loading as well as the estimated common

factors when they are unobservable. Forni, Hallin, Lippi and Reichlin (2000) established

consistency for the estimated common components b′
ift. In addition, Doz, Giannone and

Reichlin (2006) proposed quasi-maximum likelihood estimations and investigated the effect

of misspecification on the estimation of common factors, and Wang (2010) studied the large

sample theory of high dimensional factor models with a multi-level factor structure. Stock

and Watson (2002) considered time-varying factor loadings. See Bai and Shi (2011) for a

recent review.

There has been an extensive literature in recent years that deals with sparse principal

components, which have been widely used to enhance the convergence of the principal com-

ponents in high-dimensional space. d’Aspremont, Bach and El Ghaoui (2008) proposed a

semidefinite relaxation to this problem and derive a greedy algorithm that computes a full

set of good solutions for all target numbers of non-vanishing coefficients. Shen and Huang
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(2008) proposed the sPCA-rSVD algorithm and Witten, Tibshirani, and Hastie (2009) used

the sPC algorithm for computing regularized principal component. The idea is further ex-

tended by Ma (2011) who iteratively applied thresholding and the QR decomposition to find

sparse principal components and derived the rates of convergence of sparse principal compo-

nents. Johnstone and Lu (2009) screened the variables first by a marginal variance and then

applied the PCA to the screened variables to obtain a sparse principal component. They

proved the consistency of such a method. Amini and Wainwright (2009) analyzed semidef-

inite relaxations for sparse principal components. Zhang and El Ghaoui (2011) proposed a

fast block coordinate ascent algorithm for computing sparse PCA.

The rest of the paper is organized as follows. Section 2 gives our estimation procedures

and builds the relationship between the principal components analysis and the factor analysis

in high-dimensional space. Section 3 provides the asymptotic theory for various estimated

quantities. Specific applications of regularized covariance matrix are given in Section 4.

Numerical results are reported in Section 5. Finally, Section 6 presents a real data example.

All proofs are given in the appendix. Throughout the paper, we use λmin(A) and λmax(A)

to denote the minimum and maximum eigenvalues of a matrix A. We also denote by ‖A‖F ,
‖A‖, ‖A‖1 and ‖A‖max the Frobenius norm, spectral norm (also called operator norm),

L1-norm, and elementwise norm of a matrix A respectively, defined respectively as ‖A‖F =

tr1/2(A′A), ‖A‖ = λ
1/2
max(A

′A), ‖A‖1 = maxj
∑

i |aij| and ‖A‖max = maxi,j |aij|. Note that

when A is a vector, ‖A‖ is equal to the Euclidean norm.

2 Regularized Covariance Matrix via PCA

2.1 POET

Sparsity assumption directly on Σ is inappropriate in many applications due to the

presence of unobserved factors. Instead, we propose a nonparametric estimator of Σ based

on the principal components analysis. Let λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p be the ordered eigenvalues of

the sample covariance matrix Σ̂ and {ξ̂i}pi=1 be their corresponding eigenvectors. Then the

sample covariance has the following spectral decomposition:

Σ̂ =
K∑

i=1

λ̂iξ̂iξ̂
′
i + R̂, (2.1)

where R̂ =
∑p

i=K+1 λ̂iξ̂iξ̂
′
i = (r̂ij)p×p is the principal orthogonal complement, and K is the

number of principal components.
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Now we apply thresholding on R̂ (Bickel and Levina, 2008). Define

R̂
T
= (r̂Tij)p×p, r̂Tij = r̂ijI(|r̂ij| ≥ τij), (2.2)

where τij > 0 is an entry-dependent adaptive threshold (Cai and Liu, 2011). In particular,

the constant thresholding τij = δ is allowed. An example of the adaptive thresholding is

τij = τ(r̂iir̂jj)
1/2, for a given τ > 0 (2.3)

where r̂ii is the ith diagonal element of R̂. This corresponds to applying the thresholding

with parameter τ to the correlation matrix of R̂. Moreover, instead of the hard-thresholding,

one can also use more general thresholding functions of Antoniadis and Fan (2001), as in

Rothman et al. (2009) and Cai and Liu (2011).

The estimator of Σ is then defined as:

Σ̂T =
K∑

i=1

λ̂iξ̂iξ̂
′
i + R̂

T
. (2.4)

We will call the estimator as Principal Orthogonal complEment thresholding (POET) esti-

mator. It is obtained by thresholding the remaining components of the sample covariance

matrix, after taking out the first K principal components. In practice, the number of prin-

cipal components can be estimated based on the sample covariance matrix. Determining K

in a data-driven way is an important topic, and is well understood in the literature. See, for

example, Hallin and Lǐska (2007), Kapetanios (2010), Onatski (2010), etc, in latent factor

models.

With the choice of τij in (2.3), our estimator encompasses many popular estimators as

its specific cases. When τ = 0, the estimator will be the sample covariance matrix and

when τ = 1, the estimator becomes that based on the strict factor model. When K = 0,

our estimator is the same as the threhsolding estimator of Bickel and Levina (2008) or the

adaptive thresholding estimator of Cai and Liu (2011) with a slight modification of the

thresholding parameter that takes the standard error of the sample covariance.

2.2 High dimensional PCA and factor model

We now elucidate why PCA can be used for the factor analysis. The main reason is that

when dimensionality p is large, the covariance matrix Σ has very spiked eigenvalues. For
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Σu = (σij)p×p as in (1.3), define

mp = max
i≤p

∑

j≤p

I(σij 6= 0). (2.5)

which is assumed to grow slowly in p. Hence Σu is a sparse covariance matrix. The rationale

behind this assumption is that, after the common factors are taken out, many pairs of the

cross-sectional units become uncorrelated. As we now demonstrate, we need the following

lemma.

Lemma 2.1. Let {λi}pi=1 be eigenvalues of Σ in descending order and {ξi}pi=1 be their as-

sociated eigenvectors. Correspondingly, let {λ̂i}pi=1 be eigenvalues of Σ̂ in descending order

and {ξ̂i}pi=1 be their associated eigenvectors.

1. (Weyl’s Theorem) |λ̂i − λi| ≤ ‖Σ̂−Σ‖.

2. (sin θ Theorem, Davis and Kahn, 1970)

‖ξ̂i − ξi‖ ≤
√
2‖Σ̂−Σ‖

min(|λ̂i−1 − λi|, |λi − λ̂i+1|)
.

When the factor loadings {bi}pi=1 are a random sample from a certain population, we

then have

p−1

p∑

i=1

bib
′
i = p−1B′B → Ebib

′
i, as p → ∞, (2.6)

under some mild conditions. Note that the linear space spanned by the first K principal

components of Bcov(ft)B
′ is the same as that spanned by the columns of B when cov(ft)

is non-degenerate. Thus, we can assume without loss of generality that the columns of

B are orthogonal and cov(ft) = IK , the identity matrix. The assumptions correspond to

the identifiability condition in decomposition (1.3). Let b̃1, · · · , b̃K be the columns of B,

ordered such that {‖b̃j‖}Kj=1 is in a non-increasing order. Then, {b̃j/‖b̃j‖}Kj=1 are principal

components of the matrix BB′ with eigenvalues {‖b̃j‖}Kj=1 and the rest zero.

Let {λ̄j}Kj=1 be the eigenvalues (in non-increasing order) of p−1B′B, which are bounded

from below and above by (2.6), assuming K ≪ p. Since the non-vanishing eigenvalues of

the matrix BB′ are the same as those of B′B, the non-vanishing eigenvalues of the matrix

BB′ are {pλ̄j}Kj=1, and pλ̄j = ‖b̃j‖. Correspondingly, let {λi}pi=1 be the values of Σ in a

descending order and {ξj}pj=1 be their corresponding eigenvectors. Then, an application of

Weyl’s theorem yields that
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Proposition 2.1. For the factor model (1.3) with the normalization condition

cov(ft) = IK and B′B is diagonal, (2.7)

we have

|λj − ‖b̃j‖| ≤ ‖Σu‖, for j ≤ K, |λj| ≤ ‖Σu‖, for j > K.

If in addition (2.6) holds with λmin(Ebib
′
i) bounded away from zero, then ‖b̃j‖/p is bounded

away from zero for all large p.

The above proposition reveals that the first K eigenvalues of Σ is of order p, whereas

the rest is only of order ‖Σu‖. Under the sparsity assumption (2.5), with the notation

Σu = (σu,ij), we have

‖Σu‖ ≤ ‖Σu‖1 ≤ mp max
i

σu,ii.

Thus, when mp = o(p) and maxi σu,ii is bounded, we have distinguished eigenvalues between

the principal components and the rest of the components. More generally,

‖Σu‖ ≤ ‖Σu‖1 ≤ max
i

p∑

j=1

|σu,ij|q(σu,iiσu,jj)
(1−q)/2, for q ≤ 1. (2.8)

If we assume that the right-hand side of (2.8) is bounded by cp ≪ p, then the conclusion

continues to hold. This generalizes the notion of sparsity defined by (2.5), which corresponds

to q = 0 and was used in Bickel and Levina (2008) and Cai and Liu (2011).

Using Proposition 2.1 and the sin θ theorem of Davis and Kahn (1970), we have the

following

Proposition 2.2. Under the normalization (2.7), if {‖b̃j‖}Kj=1 are distinct , then

‖ξj − b̃j/‖b̃j‖‖ = O(p−1‖Σu‖), for j ≤ K

Proposition 2.2 reveals that when p is large, the principal components {ξj}Kj=1 are close

to the normalized vector {b̃j}Kj=1. The space spanned by the first K principal components

are close to the space spanned by the columns of the factor loading matrix B. This provides

the mathematics for using the principal components as proxy of the space spanned by the

columns of the loading matrix. Our conditions for the consistency of principal components

are much weaker than those in Jung and Marron (2009).

A penalized least-squares approach for the low-rank plus sparse matrix is to minimize,
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with respect to B and S, the objective function

‖Σ̂−BB′ − S‖2F + λrank(B) +
∑

i 6=j

pλ(|sij|). (2.9)

For example, Luo (2011) takes pλ(|θ|) = λ|θ| (but including the penalty in the diagnonal

term) and relax the penalty on rank(B) by its nuclear norm (the L1-norm of singular values).

The advantage of our approach is that no optimization is needed. Even when the rank of B

is known, and pλ(|θ|) = λ2 − (λ− |θ|)2+ (Antoniadis and Fan, 2001) is the hard thresholding

penalty, the minimization of (2.9) still consists of two-step iterations: Given B, S is the

thresholded matrix Σ̂ − BB′, and given S, B is the un-normalized principal components

of Σ̂ − S. With the POET, the above iterations are avoided and Propositions 2.1 and 2.2

provide some mathematical justifications.

2.3 Least squares point of view

The POET (2.4) has an equivalent representation using a constrained least squares

method, due to the low-rank decomposition (1.3). In the latent factor model (1.1), the

least squares method seeks for Λ̂ = (b̂1, ..., b̂p)
′ and f̂t such that

(Λ̂, f̂t) = arg min
bi,ft

p∑

i=1

T∑

t=1

(yit − b′
ift)

2, (2.10)

subject to the normalization

1

T

T∑

t=1

f̂t̂f
′
t = IK , and

1

p

p∑

i=1

b̂ib̂
′
i is diagonal. (2.11)

The constraints (2.11) correspond to the normalization (2.7). Here, through inclusion of the

intercept terms ai in (2.10) if necessary, we assume that the mean of each variable {yit}Tt=1 has

been removed so have been the factors {ft}Tt=1. Putting in the matrix form, the optimization

problem can be written as

arg min
B,F

‖Y−BF′‖2F
F′F = IK , B′B is diagonal. (2.12)

where Y = (y1, ...,yT ) and F′ = (f1, · · · , fT ). For each given F, the least-squares estimator

is Λ = T−1YF, using the constraint (2.11) on the factors. Substituting this into (2.12), the
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object function now becomes

‖Y− T−1YFF′‖2F = tr[(IT − T−1FF′)Y′Y].

The minimizer is now clear: the columns of F̂ are the eigenvectors corresponding to the K

largest eigenvalues of the T × T matrix T−1Y′Y and Λ̂ = T−1YF̂.

We will show that under some mild regularity conditions, as p and T → ∞, b̂
′
îft consis-

tently estimates b′
ift for each i and t. Since Σu is assumed to be sparse, we can construct an

estimator of Σu using the adaptive thresholding method by Cai and Liu (2011) as follows.

For some pre-determined decreasing sequence ωT > 0, let

ûit = yit − b̂
′
îft, σ̂ij =

1

T

T∑

t=1

ûitûjt, and θ̂ij =
1

T

T∑

t=1

(ûitûjt − σ̂ij)
2 .

Define Σ̂u = (ûit),

Σ̂T
u = (σ̂T

ij )p×p, and σ̂T
ij = σ̂ijI(|σ̂ij| ≥

√
θ̂ijωT ). (2.13)

Analogous to the decomposition (1.3), we obtain the following substitution estimators

Σ̃T = Λ̂Λ̂
′
+ Σ̂T

u , (2.14)

and

(Σ̃T )−1 = (Σ̂T
u )

−1 − (Σ̂T
u )

−1Λ̂[IK + Λ̂
′
(Σ̂T

u )
−1Λ̂]−1Λ̂

T
(Σ̂T

u )
−1, (2.15)

by the Sherman-Morrison-Woodbury formula, noting that 1
T

∑T
t=1 f̂t̂f

′
t = IK .

The following theorem shows that the two estimators based on either regularized PCA

or least squares substitution are equivalent.

Theorem 2.1. If the entry-dependent threshold in (2.2) is the same as the thresholding

parameter used in (2.13). Then, Σ̂u = R̂ and the estimator (2.4) is equivalent to the

substitution estimator (2.14), that is,

Σ̂T = Σ̃T , and Σ̂T
u = R̂

T
.
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3 Asymptotic Properties

3.1 Assumptions

This section gives the assumptions for the convergence of Σ̂T − Σ as well as (Σ̂T )−1 −
Σ−1 under model (1.2), in which only {yt}Tt=1 is observable. Recall that we impose the

identifiability condition (2.7). We make the following assumptions.

Assumption 3.1. (i) {ut}t≥1 is stationary and ergodic with mean vector zero and covariance

matrix Σu.

(ii) There exit constants c1, c2 > 0 such that c1 < λmin(Σu) ≤ λmax(Σu) < c2.

(iii) There exist r1 > 0 and b1 > 0, such that for any s > 0 and i ≤ p,

P (|uit| > s) ≤ exp(−(s/b1)
r1).

Condition (ii) requires that Σu is well-conditioned as in Chamberlain and Rothschild

(1983). As noted in Bickel and Levina (2004), this condition is satisfied if for each t, {uit}∞i=1

is a stationary and ergodic process with spectral density that is bounded away from both

zero and infinity. Condition (iii) requires the distributions of the idiosyncratic terms to have

exponential-type tails, which allows us to apply the large deviation theory to 1
T

∑T
t=1 uitujt−

σu,ij.

Assumption 3.2. (i) {ft}t≥1 is stationary and ergodic.

(ii) {ut}t≥1 and {ft}t≥1 are independent.

We introduce the strong mixing conditions to conduct asymptotic analysis of the least

square estimates. Let F0
−∞ and F∞

T denote the σ-algebras generated by {(ft,ut) : −∞ ≤
t ≤ 0} and {(ft,ut) : T ≤ t ≤ ∞} respectively. In addition, define the mixing coefficient

α(T ) = sup
A∈F0

−∞
,B∈F∞

T

|P (A)P (B)− P (AB)|. (3.1)

Assumption 3.3. (i) Exponential tail: There exist b2 > 0 and r2 > 0 such that for all i, t,

and s > 0,

P (|fit| > s) ≤ exp(−(s/b2)
r2).

(ii) Strong mixing: There exists r3 > 0 such that 3r−1
1 + 1.5r−1

2 + r−1
3 > 1, and C > 0

satisfying: for all T ∈ Z
+,

α(T ) ≤ exp(−CT r3).
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In addition,

max
t≤T

T∑

s=1

|Eu′
sut|/p = O(1).

In addition, we impose the following regularity conditions.

Assumption 3.4. There exists M > 0 such that for all i ≤ p and t ≤ T ,

(i) ‖bi‖max < M , and E‖ft‖4 < K2M ,

(ii) E[p−1/2(u′
sut − Eu′

sut)]
4 < M ,

(iii) E‖(pK)−1/2
∑p

i=1 biuit‖4 < M .

This assumption provides regularity conditions in order to consistently estimate the

transformed common factors as well as the factor loadings. Conditions (ii) and (iii) are

satisfied, for example, if {uit}∞i=1 and {bikuit}∞i=1 are stationary and ergodic processes with

finite fourth moment for each t, k. For simplicity, we only consider nonrandom factor load-

ings and a known number of factors. Note that the conditions here are weaker than those

in Bai (2003), as there is no need to establish the asymptotic normality in order to estimate

the covariance matrix.

The following assumption requires that the factors should be pervasive, that is, impact

every individual time series (Harding, 2009). See also (2.6).

Assumption 3.5. ‖p−1B′B−Ω‖ = o(1) for some K×K symmetric positive definite matrix

Ω such that λmin(Ω) is bounded away from both zero and infinity.

3.2 Convergence of the idiosyncratic covariance

Estimating the covariance matrix Σu of the idiosyncratic components {ut} is important

for many statistical inference purposes. For example, it is needed for large sample inference

of the unknown factors and loadings in Bai (2003), Wang (2010), for testing the capital asset

pricing model in Sentana (2009), and large-scale testing in Fan, Han and Gu (2012). See

Section 4 for the last two applications.

We estimate Σu by applying the adaptive thresholding given by (2.13). By Theorem 2.1,

it is also the same as R̂
T

given by (2.2). We apply the POET estimator with adaptive

threshold:

τij = C

√
θ̂ijωT , (3.2)

where C > 0 is a sufficiently large constant, and throughout the paper we denote

ωT =
K
√
log p+K2

√
T

+
K3

√
p
+

√
log p

T
and δT = mpωT . (3.3)
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The following theorem shows that Σ̂T
u is asymptotically nonsingular as T and p → ∞. The

rate of convergence under the spectral norm is also derived. Let γ−1 = 3r−1
1 + 1.5r−1

2 + r−1
3 .

Theorem 3.1. Suppose max{(log p)6/γ−1, K4(log(pT ))2} = o(T ), and T 1/4K3 = o(
√
p).

Under Assumptions 3.1-3.5, the POET estimator defined in (2.13) satisfies

‖Σ̂T
u −Σu‖ = Op (δT ) .

If further δT = o(1), then Σ̂T
u is invertible with probability approaching one, and

‖(Σ̂T
u )

−1 −Σ−1
u ‖ = Op (δT ) .

When estimating Σu, p is allowed to grow exponentially fast in T , that is, there exists

a > 0, as long as log p = O(T a), Σ̂T
u can be made consistent under the spectral norm. In

addition, Σ̂T
u is invertible while the classical sample covariance matrix based on the residuals

is not when p > T.

Remark 3.1. Fan, Liao and Mincheva (2011) showed that when {ft}Tt=1 are observable, the

rate of convergence of the adaptive thresholding estimator is given by

‖Σ̂T
u −Σu‖ = Op

(
mpK

√
log p

T

)
= ‖(Σ̂T

u )
−1 −Σ−1

u ‖.

Hence when the common factors are unobservable, the rate of convergence has an additional

term mpK
3/
√
p, coming from the impact of estimating the unknown factors. This impact

vanishes when p log p ≫ K4T. As p increases, more information about the common factors

is collected, which results in more accurate estimation of the common factors {ft}Tt=1. The

estimation error becomes negligible when p is significantly larger than T . If in addition K

is bounded, the rate of convergence achieves the minimax rate as in Cai and Zhou (2010).

3.3 Convergence of the POET estimator

As was found by Fan et al. (2008), deriving the rate of convergence under the spectral

norm for Σ̂T −Σ is inappropriate. We illustrate this using a simple example.

Example 3.1. Consider an ideal case where we know bi = (1, 0, ..., 0)′ for each i = 1, ..., p,

Σu = Ip, and {ft}Tt=1 are observable. Then when estimating Σ, we only need to estimate

cov(ft) using the sample covariance matrix ĉov(ft), and obtain an estimator for Σ:

Σ̂ = Bĉov(ft)B
′ + Ip.
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Simple calculations yield to

‖Σ̂−Σ‖ = | 1
T

T∑

t=1

(f1t − f̄1)
2 − var(f1t)| · ‖1p1

′
p‖,

where 1p denotes the p-dimensional column vector of ones with ‖1p1
′
p‖ = p. Therefore,

‖Σ̂−Σ‖ = Op(p/
√
T ), which is op(1) only if p = o(

√
T ). �

Alternatively, Fan et al. (2008) suggested to use the weighted quadratic loss to study the

rate of convergence in high dimensional factor models:

‖A‖Σ = p−1/2‖Σ−1/2AΣ−1/2‖F .

which is closely related to the entropy loss, introduced by James and Stein (1961). Here p−1/2

is a normalization factor such that ‖Σ‖Σ = 1. Technically, the impact of high dimensionality

on the convergence rate of Σ̂−Σ is via the number of factor loadings in B. It was shown by

Fan et al. (2008) that B appears in ‖Σ̂−Σ‖Σ through B′Σ−1B, and that λmax(B
′Σ−1B) is

bounded, which successfully cancels out the curse of high dimensionality introduced by B.

The following theorem gives the rate of convergence under various norms.

Theorem 3.2. Under the assumptions of Theorem 3.1, the POET estimator defined in (2.4)

satisfies

‖Σ̂T −Σ‖Σ = Op

(
K
√
p log p

T
+

K2
√
log p√
T

+ δT

)
,

‖Σ̂T −Σ‖max = Op(K
3

√
logK

T
+ ωT ).

In addition, if δT = o(1), then Σ̂T is nonsingular with probability approaching one, with

‖(Σ̂T )−1 −Σ−1‖ = Op (δT ) .

In practical applications, K is typically small compared to p and T . It can even be

thought of as a constant. For example, in the Fama-French model, K = 3. Our result also

covers the case of K = 0, when the target covariance Σ = Σu is a sparse matrix. The POET

estimator is then the same as either the thresholding estimator of Bickel and Levina (2008)

or the adaptive thresholding estimator of Cai and Liu (2011). Theorem 3.2 then implies

‖Σ̂T −Σ‖Σ = Op

(√
log p

T

)
= ‖(Σ̂T )−1 −Σ−1‖.
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Remark 3.2. When estimating Σ−1, p is allowed to grow exponentially fast in T , and the

estimator has the same rate of convergence as the estimator Σ̂u in Theorem 3.1. When p

becomes much larger than T , the precision matrix can be estimated as if the factors were

observable. This fact was also shown in the asymptotic expansions obtained by Bai (2003)

when K is finite and Σu is diagonal. Therefore in the approximate factor model, we can do

a much better job in estimating Σ−1 than estimating Σ. The intuition follows from the fact

that Σ−1 has bounded eigenvalues whereas Σ−1 has diverging eigenvalues.

3.4 Convergence of unknown factors and factor loadings

Many applications of the factor models contain the latent factors, and as a result, the

common factors need to be estimated by the method of principal components. In this case,

the factor loadings in B and the common factors ft are not separably identifiable, as for any

nonsingular K × K matrix H, Bft = BH−1Hft. Hence (B, ft) cannot be identified from

(BH−1,Hft). However, this ambiguity is eliminated by the identifiability condition (2.7),

subject to a permutation. Note that the linear space spanned by B is the same as that by

BH−1. In practice, it often does not matter which one to be used.

Let V denote the K×K diagonal matrix of the first K largest eigenvalues of the sample

covariance matrix in decreasing order. Recall that F′ = (f1, ..., fT ) and let

H =
1

T
V−1F̂

′
FB′B.

Then for t = 1, ..., T ,

Hft =
1

T
V−1F̂

′
(Bf1, ...,BfT )

′Bft.

Note that Hft depends only on the data V−1F̂
′
and identifiable part of parameters {Bft}Tt=1.

Therefore, there is no identifiability issue in Hft no matter the identifiability condition (2.7)

is imposed.

Bai (2003) showed that when K is fixed and Σu is diagnonal, b̂i and f̂t are consistent

estimators of H′−1bi and Hft respectively. The following theorem allows K to grow slowly

and Σu to be a sparse non-diagonal matrix.

Theorem 3.3. Under the assumptions of Theorem 3.1,

max
i≤p

‖b̂i − (H′)−1bi‖ = Op

(
ωT√
K

)
,

and

max
t≤T

‖̂ft −Hft‖ = Op(δ
∗
T ),
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where δ∗T =
√
K/T +K3/2T 1/4/

√
p.

As a consequence of Theorem 3.3, we obtain the following

Corollary 3.1. Under the assumptions of Theorem 3.1,

max
i≤p,t≤T

‖b̂′
îft − b′

ift‖ = Op

(√
Kδ∗T + ωT (log T )

1/r2
)
.

4 Applications

We give four examples which are immediate applications of the results in Theorems 3.1–

3.3.

Example 4.1 (Large-scale hypothesis testing). Controlling the false discovery rate in large-

scale hypothesis testing based on correlated test statistics is an important and challenging

problem in statistics (Leek and Storey, 2008; Efron, 2010). Suppose that the test statistic

for each of the hypothesis

Hi0 : µi = 0 vs. Hi1 : µi 6= 0

is Zi ∼ N(µi, 1). These test statistics Z are correlated and follow N(µ,Σ) with unknown

covariance matrix Σ. For a given critical value x, the false discovery proportion is then

defined as FDP(x) = V (x)/R(x) where

V (x) = p−1
∑

µi=0

I(|Zi| > x) and R(x) = p−1

p∑

i=1

I(|Zi| > x)

are the total number of false discoveries and the total number of discoveries, respectively. Our

interest is to estimate FDP(x) for each given x. Note that R(x) is an observable quantity.

Only V (x) needs to be estimated.

If the covariance Σ admits the approximate factor structure (1.3), then the test statistics

can be stochastically decomposed as

Z = µ+Bf+ u, where Σu is sparse. (4.1)

By the principal factor approximation (Theorem 1, Fan, Han, Gu, 2012)

V (x) =

p∑

i=1

{Φ(ai(zx/2 + ηi)) + Φ(ai(zx/2 − ηi))}+ oP (p), (4.2)
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when mp = o(p) and the number of true significant hypothesis {i : µi 6= 0} is o(p), where zx

is the upper x-quantile of the standard normal distribution, ηi = (Bf)i and ai = var(ui).

Now suppose that we have n repeated measurements from the model (4.1). Then, by

Corollary 3.1, {ηi} can be uniformly estimated, and hence p−1V (x) can be consistently

estimated and hence FDP(x). Efron (2010) obtained these repeated test statistics based on

the bootstrap sample from the original raw data. Our theory gives a formal justification to

the seminal work of Efron (2007, 2010).

Example 4.2 (Risk management). The maximum elementwise estimation error ‖Σ̂T −Σ‖max

appears in risk assessment as in Fan, Zhang and Yu (2008). For a fixed portfolio allocation

vector w, the true portfolio variance and the estimated one are given by w′Σw and w′Σ̂T w

respectively. The estimation error is bounded by

|w′Σ̂T w−w′Σw| ≤ ‖Σ̂T −Σ‖max‖w‖21,

where ‖w‖1, the l1 norm of w, is the gross exposure of the portfolio. Usually a constraint

is placed on the total percentage of the short positions, in which case we have a restriction

‖w‖1 ≤ c for some c > 0. In particular, c = 1 corresponds to a portfolio with no-short

positions (all weights are nonnegative). Theorem 3.2 quantifies the maximum approximation

error.

Example 4.3 (Panel regression with a factor structure in the errors). Consider the following

panel regression model

Yit = x′
itβ + εit, i ≤ p, t ≤ T,

εit = b′
ift + uit,

where xit is a vector of observable regressors with fixed dimension. The regression error εit

has a factor structure, but bi, ft and uit are all unobservable. Assuming xit to be independent

of εit, we are interested in the common regression coefficients β. The above panel regression

model has been considered by many researchers, such as Ahn, Lee and Schmidt (2001),

Pesaran (2006), etc, which has broad applications in social sciences. For example, in the

income studies, Yit represents the income of individual i at age t, xit is a vector of observable

characteristics that are associated with income. Here bi represents a vector of unmeasured

skills, such as innate ability, motivation, and hardworking; ft is a vector of unobservable

prices for the unmeasured skills, which is assumed to be time-varying.

Although OLS (ordinary least squares) produces a consistent estimator of β, a more

efficient estimation would be obtained by GLS (generalized least squares). The GLS method
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depends on an estimator of Σ−1
ǫ , the inverse of the covariance matrix of εt = (ε1t, ..., εpt)

′,

which should be consistent under the spectral norm. In a large panel model, p can be larger

than T . As a result, the traditional GLS, which estimates Σ−1
ǫ based on the sample residual

covariance, is infeasible.

By assuming the covariance matrix of (u1t, ..., upt) to be sparse, we can successfully solve

this problem by applying Theorem 3.2. Although εit is unobservable, it can be replaced

by the regression residuals ε̂it, obtained via first regressing Yit on xit. We then apply the

POET estimator to T−1
∑T

t=1 ε̂tε̂
′
t, as described in Section 2.1. By Theorem 3.2, the inverse

of the resulting estimator is a consistent estimator of Σ−1
ǫ under the spectral norm. A

slight difference lies in the fact that when we apply POET, T−1
∑T

t=1 εtε
′
t is replaced with

T−1
∑T

t=1 ε̂tε̂
′
t, which introduces an additional term Op(

√
log p
T

) in the estimation error.

Example 4.4 (Testing for asset pricing theory). A celebrated financial economic theory is

the capital asset pricing model (CAPM, Sharpe 1964) that makes William Sharpe win the

Nobel prize in Economics in 1990, whose extension is the multi-factor model (Ross, 1976,

Chamberlain and Rothschild, 1983). It states that in a frictionless market, the excessive

returns of any financial asset equals to the excessive returns of the risk factors plus idiosyn-

cratic noises that are only related to the asset itself. In the multi-period model, the excess

return yit of firm i at time t follows model (1.1), in which ft is the excess returns of the risk

factors at time t and uit is the idiosyncratic noise. To test the null hypothesis (1.2), one

embeds the model into the multivariate linear model

yt = µ+Bft + ut, t = 1, · · · , T (4.3)

and wishes to test H0 : µ = 0. The F-test statistic involves the estimation of the covariance

matrix Σu, whose estimates are degenerate without regularization when p ≥ T even if ft are

observable risk factors. Therefore, in the literature (Sentana, 2009, and references therein),

one focuses on the case p ≪ T . The typical choices of parameters are T = 60 monthly

data and the number of assets p = 5, 10 or 25. However, the CAPM should hold for all

tradeable assets, not just a small fraction of assets. With our regularized technique, non-

degenerate estimate Σ̂T
u can be obtained and the F-test or likelihood-ratio test statistics can

be employed even when p ≫ T .

5 Monte Carlo Experiments

In this section, we will examine the performance of the POET method in the finite

sample. We will also demonstrate the effect this estimator on the asset allocation and risk
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assessment.

Similarly to Fan, et al. (2008, 2011), we simulated from a standard Fama-French

three-factor model, assuming a sparse error covariance matrix and three unobserved fac-

tors. Throughout this section, the time span is fixed at T = 300, and the dimensionality p

increases from 1 to 600.

We assume that the excess returns of each of p stocks over the risk-free interest rate

follow the following model:

yit = bi1f1t + bi2f2t + bi3f3t + uit.

The factor loadings are drawn from trivariate normal distributions b ∼ N3(µB,ΣB), the

idiosyncratic errors from ut ∼ Np(0,Σu), and the factor returns ft follow an VAR(1) model.

To make the simulation more realistic, model parameters are calibrated from the financial

returns, as detailed in the following section.

5.1 Calibration

To calibrate the model, we use the data on annualized returns of 100 industrial portfolios

from the website of Kenneth French, and the data on 3-month Treasury bill rates from the

CRSP database. These industrial portfolios are formed as the intersection of 10 portfolios

based on size (market equity) and 10 portfolios based on book equity to market equity ratio.

Their excess returns (ỹt) are computed for the period from Jan 1st, 2009 to Dec 31st, 2010.

Here, we present a short outline of the calibration procedure.

1. Given {ỹt}500t=1 as the input data, we calculate a 100× 3 matrix B̃, and 500× 3 matrix

F̃, using the principal components method described in Section 3.1.

2. We calculate the sample mean vector µB and sample covariance matrix ΣB of the

rows of B̃, which are reported in Table 1. The factor loadings bi = (bi1, bi2, bi3)
T for

i = 1, ..., p are drawn from N3(µB,ΣB).

Table 1: Mean and covariance matrix used to generate b
µB ΣB

0.0047 0.0767 -0.00004 0.0087
0.0007 -0.00004 0.0841 0.0013
-1.8078 0.0087 0.0013 0.1649
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3. Assume that the factors ft follow the stationary vector autoregressive model, ft =

µ+Φft−1+ εt, a VAR(1) model. Then obtain the multivariate least squares estimator

for µ and Φ, and estimate Σǫ, by autoregressing the columns of F̃. Note that all

eigenvalues of Φ fall within the unit circle, so our model is stationary. The covariance

matrix cov(ft) can be obtained by solving the linear equation below,

cov(ft) = Φcov(ft)Φ
′ +Σǫ.

The estimated parameters are depicted in Table 2. We then obtain the data generating

process of ft.

Table 2: Parameters of ft generating process
µ cov(ft) Φ

-0.0050 1.0037 0.0011 -0.0009 -0.0712 0.0468 0.1413
0.0335 0.0011 0.9999 0.0042 -0.0764 -0.0008 0.0646
-0.0756 -0.0009 0.0042 0.9973 0.0195 -0.0071 -0.0544

4. For each value of p, we generate a sparse covariance matrix Σu of the form:

Σu = DΣ0D.

Here, Σ0 is the error correlation matrix, and D is the diagonal matrix of the standard

deviations of the errors. We set D = diag(σ1, ..., σp), where each σi is generated

independently from a Gamma distribution G(α, β), and α and β are chosen to match

the sample mean and sample standard deviation of the standard deviations of the

errors. A similar approach to Fan et al. (2011) has been used in this calibration step.

The off-diagonal entries of Σ0 are generated independently from a normal distribution,

with mean and standard deviation equal to the sample mean and sample standard

deviation of the sample correlations among the estimated residuals, conditional on

their absolute values being no larger than 0.95. We then employ hard thresholding to

make Σ0 be sparse, where the threshold is found as the smallest constant that provides

the positive definiteness of Σ0. More precisely, start with threshold value 1, which gives

Σ0 = Ip and then decrease the threshold values in grid until positive definiteness is

violated.
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5.2 Simulation

For the simulation, we fix T = 300, and let p increase from 1 to 600. For each fixed p, we

repeat the following steps N = 200 times, and record the means and the standard deviations

of each respective norm.

1. Generate independently {bi}pi=1 ∼ N3(µB,ΣB), and set B = (b1, ...,bp)
′.

2. Generate independently {ut}Tt=1 ∼ Np(0,Σu).

3. Generate {ft}Tt=1 as a vector autoregressive sequence of the form ft = µ+ Φft−1 + εt.

4. Calculate {yt}Tt=1 from yt = Bft + ut.

5. Calculate Λ̂ and F̂ based on {yt}Tt=1, using the PCA method described in Section 2.3.

6. Set ωT = 2(K
√

log p
T

+ K3

√
p
) with K = 3 to be the threshold for creating Σ̂T

u . Calculate

Σ̂T and (Σ̂T )−1 using the POET method.

7. Calculate the sample covariance matrix Σ̂sam.

In the graphs below, we plot the averages and standard deviations of the distance from

Σ̂T and Σ̂sam to the true covariance matrix Σ, under norms ‖.‖Σ, ‖.‖ and ‖.‖max. We also

plot the means and standard deviations of the distances from (Σ̂T )−1 and Σ̂−1
sam to Σ−1

under the spectral norm. We plot values of p from 20 to 600 in increments of 20. Due to

invertibility, the spectral norm for Σ̂−1
sam is plotted only up to p = 280. Also, we zoom into

these graphs by plotting the values of p from 1 to 100, this time in increments of 1. Notice

that we also plot the distance from Σ̂T
obs to Σ̂ for comparison, where Σ̂T

obs is the estimated

covariance matrix proposed by Fan et al. (2011), assuming the factors are observable.

5.3 Results

From the simulation results, reported in Figures 1-4, we observe that our estimator under

the unobservable factor model performs just as well as the estimator in Fan et al. (2011)

under the observable factor model, when p is large enough. The cost of not knowing the

factors is approximately of order Op(1/
√
p). It can be seen in Figures 1 and 2 that this

cost vanishes for p > 300. To give a better insight of the impact of estimating the unknown

factors for small p, a separate set of simulations is conducted for p ≤ 100. As we can see from

Figures 1 (bottom panel) and 2 (middle and bottom panels), the impact decreases quickly.

In addition, when estimating Σ−1, it is hard to distinguish the estimators with known and

unknown factors, whose performances are quite stable compared to the sample covariance
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Figure 1: Averages (left panel) and standard deviations (right panel) of ‖Σ̂T − Σ‖Σ with

with known factors (solid red curve), unknown factors (solid blue curve), and ‖Σ̂sam −Σ‖Σ
(dashed curve) over 200 simulations, as a function of the dimensionality p. Top panel: p
ranges in 20 to 600 with increment 20; bottom panel: p ranges in 1 to 100 with increment 1.
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Figure 2: Averages (left panel) and standard deviations (right panel) of ‖(Σ̂T )−1 − Σ−1‖
with known (solid red curve) and unknown (solid blue curve) factors and ‖(Σ̂sam)

−1 −Σ−1‖
(dashed curve) over 200 simulations, as a function of the dimensionality p. Top panel: p
ranges in 20 to 600 with increment 20; middle panel: p ranges in 1 to 100 with increment 1;
Bottom panel: the same as the top panel with dashed curve excluded.
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Figure 3: Averages (left panel) and standard deviations (right panel) ‖Σ̂T − Σ‖max with

known (solid red curve) and unknown (solid blue curve) factors and ‖Σ̂sam−Σ‖max (dashed
curve) over 200 simulations, as a function of the dimensionality p. They are nearly indif-
ferentable.
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matrix. Also, the maximum absolute elementwise error (Figure 3) of our estimator performs

very similarly to that of the sample covariance matrix, which coincides with our asymptotic

result. Figure 4 shows that the performances of the three methods are indistinguishable in

spectral norm, as expected.

Figure 4: Averages of ‖Σ̂T − Σ‖ with known (solid red curve) and unknown (solid blue

curve) factors and ‖Σ̂sam − Σ‖ (dashed curve) over 200 simulations, as a function of the
dimensionality p. The three curves are plotted, but hardly distinguishable.
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5.4 Portfolio allocation

We demonstrate the improvement of our method compared to the sample covariance

and that based on the strict factor model, in a problem of portfolio allocation for risk

minimization purposes.

Let Σ̂ be a generic estimator of the covariance matrix of yt, andw be the allocation vector

of a portfolio consisting of the corresponding p financial securities. Then the theoretical and

the empirical risk of the given portfolio would be R(w) = w′Σw and R̂(w) = w′Σ̂w,

respectively. Now, define

ŵ = argminw′
1=1w

′Σ̂w,
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the estimated (minimum variance) portfolio. Then the actual risk of the estimated portfolio

is defined as R(ŵ) = ŵ′Σŵ, and the estimated risk (also called empirical risk) is equal to

R̂(ŵ) = ŵ′Σ̂ŵ. In practice, the actual risk is unknown, and only the empirical risk can be

calculated.

For each fixed p, the population Σ was generated in the same way as described in Section

4.1, with a sparse but not diagonal error covariance. We use three different methods to

estimate Σ and obtain ŵ: strict factor model Σ̂diag (estimate Σu using a diagonal matrix),

our POET estimator Σ̂T , both are with unknown factors, and sample covariance Σ̂sam. We

then calculate the corresponding actual and empirical risks.

It is interesting to examine the accuracy and the performance of the actual risk of our

portfolio ŵ in comparison to the oracle risk R∗ = minw′1=1 w
′Σw, which is the theoretical

risk of the portfolio we would have created if we knew the true covariance matrix Σ. We

thus compare the regret R(ŵ) − R∗, which is always nonnegative, for three estimators of

Σ̂. They are summarized by using the box plots over the 200 simulations. The results are

reported in Figure 5. In practice, we are also concerned about the difference between the

actual and empirical risk of the chosen portfolio ŵ. Hence, in Figure 6, we also compare

the average difference |R(ŵ) − R̂(ŵ)| over 200 simulations. When ŵ is obtained based on

the strict factor model, both the differences between actual and oracle risk, and between

actual and empirical risk are persistently greater than the corresponding differences for the

approximate factor estimator.

Figure 5: Box plots of regrets R(ŵ) − R∗ for p = 80 and 140. In each panel, the box plots

from left to right correspond to ŵ obtained using Σ̂ based on approximate factor model,
strict factor model, and sample covariance, respectively.
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Figure 6: Error of risk estimation |R(ŵ)−R̂(ŵ)| as p increases. ŵ and R̂ are obtained based

on three estimators of Σ̂. Blue line: approximate factor model Σ̂T ; red line: strict factor
model Σ̂diag; dotted line: sample covariance Σ̂sam.
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6 Real Data Example

We demonstrate an application of the approximate factor model on real data. The data

was obtained from the CRSP database, and consists of p = 50 stocks and their annualized

daily returns for the period Jan.1st, 2010-Dec.31st2010 (T = 252). The stocks are chosen from

5 different industry sectors, (more specifically, Consumer Goods-Textile & Apparel Clothing,

Financial-Credit Services, Healthare-Hospitals, Services-Restaurants, Utilities-Water utili-

ties), with 10 stocks from each sector.

The largest eignevalues of the sample covariance equal 0.0102, 0.0045 and 0.0039, while

the rest are bounded by 0.0020. Hence we consider K = 1, 2, 3 factors respectively. The

threshold has been chosen using a leave-one-out cross-validation procedure.

Figure 7 shows the heatmap of the thresholded error correlation matrix. We compare the

level of sparsity (percentage of non-zero off-diagonal elements) for the diagonal 5 blocks of

size 10× 10, versus the sparsity of the rest of the matrix. For K = 2, our method results in

25.8% non-zero off-diagonal elements in the 5 diagonal blocks, as opposed to 7.3% non-zero

elements in the rest of the covariance matrix. Note that, out of the non-zero elements in the

central 5 blocks, 100% are positive, as opposed to a distribution of 60.3% positive and 39.7%

negative amongst the non-zero elements in off-diagonal blocks. There is a strong positive

correlation between the returns of companies in the same industry after the common factors

are taken out, and the thresholding has preserved them. The results for K = 1 and K = 3

show the same characteristics. These provide stark evidence that the strict factor model is

not appropriate.

7 Conclusion

We study the problem of estimating a high dimensional covariance matrix with condi-

tional sparsity. Realizing unconditional sparsity assumption is inappropriate in many appli-
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Figure 7: Heatmap of thresholded error correlation matrix for number of factors K = 1,
K = 2 and K = 3.

cations, we introduce a factor model that has a conditional sparsity feature, and propose the

POET estimator to take advantage of the structure. This expands considerably the scope of

the model based on the strict factor model, which assumes independent idiosyncratic noise

and is too restrictive in practice. By assuming sparse error covariance matrix, we allow for

the presence of the cross-sectional correlation even after taking out common factors. The

sparse covariance is estimated by the adaptive thresholding technique.

It is found that the rates of convergence of the estimators have an extra term approxi-

mately Op(p
−1/2) in addition to the results based on observable factors by Fan et al. (2008)

and Fan et al. (2011), which arises from the effect of estimating the unobservable factors. As

we can see, this effect vanishes as the dimensionality increases, as there are more information

available about the common factors. When p gets large enough, the effect of estimating the

unknown factors is negligible, and we estimate the covariance matrices as if we knew the

factors. This fact was also shown in the asymptotic expansions obtained by Bai (2003).

The sparse covariance is estimated using the adaptive hard thresholding. Recently, Cai

and Liu (2011) studied a more general thresholding function of Antoniadis and Fan (2001),

which admits the form σ̂ij(θij) = s(σij), and also allows for soft-thresholding. It is easy to

apply the more general thresholding here as well, and the rate of convergence of the resulting

covariance matrix estimators should be straightforward to derive.

A Proofs for Section 2

Proof of Theorem 2.1

Proof. The sample covariance matrix of the residuals using least squares method is given by

Σ̂u =
1

T
(Y− Λ̂F̂

′
)(Y′ − F̂Λ̂

′
)
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=
1

T
YY′ − Λ̂Λ̂

′
.

where we used the normalization condition 1
T
F̂

′
F̂ = IK .

If we show that Λ̂Λ̂
′
=
∑K

i=1 λ̂iξ̂iξ̂
′
i, then from the decompositions of the sample covari-

ance

1

T
YY′ = Λ̂Λ̂

′
+ Σ̂u =

K∑

i=1

λ̂iξ̂iξ̂
′
i + R̂,

we have R̂ = Σ̂u. Consequently, applying thresholding on Σ̂u is equivalent to applying

thresholding on R̂, which gives the desired result.

We now show Λ̂Λ̂
′
=
∑K

i=1 λ̂iξ̂iξ̂
′
i indeed holds. Consider again the least squares problem

(2.10) but with the following alternative normalization constraints:

1

p

p∑

i=1

bib
′
i = IK ,

1

T

T∑

t=1

ftf
′
t is diagonal.

Let (Λ̃, F̃) be the solution to the new optimization problem. Switching the roles of B and

F, then the solution of (2.12) is Λ̃ = (ξ̂1, · · · , ξ̂K) and F̃ = p−1Y′Λ̃. In addition,

T−1F̃
′
F̃ = diag(λ̂1, · · · , λ̂K).

From Λ̂F̂ = Λ̃F̃, it follows that

Λ̂Λ̂
′

=
1

T
Λ̂F̂

′
F̂Λ̂

=
1

T
Λ̃F̃

′
F̃Λ̃

′

=
K∑

i=1

λ̂iξ̂iξ̂
′
i.

Q.E.D.

B Proofs for Section 3

We will proceed by subsequently showing Theorems 3.3, 3.1 and 3.2.
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B.1 Preliminary lemmas

The following results are to be used subsequently. The proofs of Lemmas B.1 and B.2

are found in Fan, Liao and Martina (2011).

Lemma B.1. Suppose A,B are symmetric semi-positive definite matrices, and λmin(B) > cT

for a sequence cT > 0. If ‖A−B‖ = op(cT ), then λmin(A) > cT/2, and

‖A−1 −B−1‖ = Op(c
−2
T )‖A−B‖.

Lemma B.2. Suppose that the random variables Z1, Z2 both satisfy the exponential-type tail

condition: There exist r1, r2 ∈ (0, 1) and b1, b2 > 0, such that ∀s > 0,

P (|Zi| > s) ≤ exp(−(s/bi)
ri), i = 1, 2.

Then for some r3 and b3 > 0, and any s > 0,

P (|Z1Z2| > s) ≤ exp(1− (s/b3)
r3). (B.1)

Lemma B.3. Under the assumptions of Theorem 3.1,

(i) maxi,j≤K | 1
T

∑T
t=1 fitfjt − Efitfjt| = Op(

√
(logK)/T ).

(ii) maxi,j≤p | 1T
∑T

t=1 uitujt − Euitujt| = Op(
√
(log p)/T )

(iii) maxi≤K,j≤p | 1T
∑T

t=1 fitujt| = Op(
√

(log p)/T )

Proof. The proof follows from the Bernstein inequality for weakly dependent data (Merlevède

et al. (2009, Theorem 1). See Lemmas A.3 and B.1 of Fan, Liao and Mincheva (2011).

Lemma B.4. Let λ̂K denote the Kth largest eigenvalue of Σ̂ = 1
T

∑T
t=1 yty

′
t, then λ̂K > C1p

with probability approaching one for some C1 > 0.

Proof. First of all, by Proposition 2.1, under Assumption 3.5, the Kth largest eigenvalue λK

of Σ satisfies:

λK ≥ ‖bK‖ − |λK − ‖bK‖| ≥ pλmin(Ω)− ‖Σu‖
≥ pλmin(Ω)/2

for sufficiently large p. Using Weyl’s theorem, we need only to prove that ‖Σ̂−Σ‖ = op(p).

Without loss of generality, we prove the result under the identifiability condition (2.7). Using

model (1.2),

Σ̂ = T−1

T∑

t=1

(Bft + ut)(Bft + ut)
′.
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Using this and (1.3), Σ̂−Σ can be decomposed as the sum of the four terms:

D1 = (T−1B
T∑

t=1

ftf
′
t − IK)B

′,

D2 = T−1

T∑

t=1

(utu
′
t −Σu),

D3 = BT−1

T∑

t=1

ftu
′
t, D4 = D′

3

We now deal them term by term. We will repeatedly use the fact that for a p× p matrix A,

‖A‖ ≤ p‖A‖max.

First of all, by Lemma B.3,

‖T−1

T∑

t=1

ftf
′
t − IK‖ ≤ K‖T−1

T∑

t=1

ftf
′
t − IK‖max = Op(K

√
(logK)/T ),

which is op(p) if K log p = o(T ). Consequently, by Assumption 3.5, we have

‖D1‖ ≤ Op(K
√

(logK)/T )‖BB′‖ = Op(Kp
√
(logK)/T ).

We now deal with D2. It follows from Lemma B.3 that

‖D2‖ ≤ p‖T−1

T∑

t=1

(utu
′
t −Σu)‖max = Op(p

√
(log p)/T ).

Since ‖D4‖ = ‖D3‖, it remains to deal with D3, which is bounded by

‖D3‖ ≤ ‖T−1

T∑

t=1

ftu
′
t‖‖B‖ = Op(p

√
K(log p)/T ),

which is op(p) if K log p = o(T ).

Q.E.D.

Lemma B.5 (Theorem 2.1, Fan, Liao and Mincheva, 2011). Suppose there exists a posi-

tive sequence aT → 0 such that maxi≤p
1
T

∑T
t=1(uit − ûit)

2 = Op(a
2
T ). In addition, assume

maxi,t |uit − ûit| = op(1), and (log p)6/γ−1 = o(T ). Then under Assumption 3.1, Σ̂T
u defined
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as in (2.13) with ωT = C(
√

(log p)/T + aT ) for sufficiently large C > 0 satisfies: (i)

‖Σ̂T
u −Σu‖ = Op(mTωT ).

(ii) If mTωT = o(1), then Σ̂T
u is positive definite with probability approaching one, and

‖(Σ̂T
u )

−1 −Σ−1
u ‖ = Op(mTωT ).

B.2 Proof of Theorem 3.3

Using (A.1) in Bai (2003), we have the following identity:

f̂t −Hft = V−1

(
1

T

T∑

s=1

f̂sE(u′
sut)/p+

1

T

T∑

s=1

f̂sζst +
1

T

T∑

s=1

f̂sηst +
1

T

T∑

s=1

f̂sξst

)
(B.2)

where ζst = u′
sut/p − E(u′

sut)/p, ηst = f′s
∑p

i=1 biuit/p, and ξst = f′t
∑p

i=1 biuis/p. We first

prove some preliminary results in the following Lemmas. Denote by f̂t = (f̂1t, ..., f̂Kt)
′.

Lemma B.6. (i) maxi≤K
1
T

∑T
t=1(

1
T

∑T
s=1 f̂isE(u′

sut)/p)
2 = Op(T

−1),

(ii) maxi≤K
1
T

∑T
t=1(

1
T

∑T
s=1 f̂isζst)

2 = Op(p
−1),

(iii) maxi≤K
1
T

∑T
t=1(

1
T

∑T
s=1 f̂isηst)

2 = Op(K
2p−1),

(iv) maxi≤K
1
T

∑T
t=1(

1
T

∑T
s=1 f̂isξst)

2 = Op(K
2p−1).

Proof. (i) We have ∀i ≤ K,
∑T

s=1 f̂
2
is = T . By the Cauchy-Schwarz inequality,

max
i≤K

1

T

T∑

t=1

(
1

T

T∑

s=1

f̂isE(u′
sut)/p)

2 ≤ 1

T

T∑

t=1

1

T

T∑

s=1

(Eu′
sut/p)

2

≤ max
t≤T

1

T

T∑

s=1

(Eu′
sut/p)

2

≤ max
s,t

|Eu′
sut/p|max

t≤T

1

T

T∑

s=1

|Eu′
sut/p|

By Assumption 3.3, maxt≤T

∑T
s=1 |Eu′

sut/p| = O(1), which then yields the result.

(ii) By the Cauchy-Schwarz inequality,

max
i≤K

1

T

T∑

t=1

(
1

T

T∑

s=1

f̂isζst)
2 = max

i

1

T 3

T∑

s=1

T∑

l=1

f̂isf̂il(
T∑

t=1

ζstζlt)

≤ max
i

1

T 3

√√√√∑

sl

(f̂isf̂il)2
∑

sl

(
T∑

t=1

ζstζlt)2
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≤ max
i

1

T 3

T∑

s=1

f̂ 2
is

√√√√∑

sl

(
T∑

t=1

ζstζlt)2

=
1

T 2

√√√√
T∑

s=1

T∑

l=1

(
T∑

t=1

ζstζlt)2.

Note that E(
∑T

s=1

∑T
l=1(
∑T

t=1 ζstζlt)
2) = T 2E(

∑T
t=1 ζstζlt)

2 ≤ T 4 maxst E|ζst|4. By Assump-

tion 3.4, maxst Eζ4st = O(p−2), which implies that
∑

s,l(
∑T

t=1 ζstζlt)
2 = Op(T

4/p2), and yields

the result.

(iii) By definition, ηst = f′s
∑p

i=1 biuit/p. We first bound ‖
∑p

i=1 biuit‖. Assumption 3.4

implies

E
1

T

T∑

t=1

‖
p∑

i=1

biuit‖2 = E‖
p∑

i=1

biuit‖2 = O(pK).

Therefore, by the Cauchy-Schwarz inequality,

max
i≤K

1

T

T∑

t=1

(
1

T

T∑

s=1

f̂isηst)
2 ≤ max

i
‖ 1
T

T∑

s=1

f̂isf
′
s‖2

1

T

T∑

t=1

‖
p∑

j=1

bjujt
1

p
‖2

≤ max
i

1

Tp2

T∑

t=1

‖
p∑

j=1

bjujt‖2
(

1

T

T∑

s=1

f̂ 2
is

1

T

T∑

s=1

‖fs‖2
)

= Op

(
K2

p

)
.

(iv) Similar to part (iii), noting that ξst is a scalar, we have:

max
i≤K

1

T

T∑

t=1

(
1

T

T∑

s=1

f̂isξst)
2 = max

i

1

T

T∑

t=1

∣∣∣∣
1

T

T∑

s=1

f′t

p∑

j=1

bjujs
1

p
f̂is

∣∣∣∣
2

≤ max
i

1

T

T∑

t=1

‖ft‖2 ·
∥∥∥∥
1

T

T∑

s=1

p∑

j=1

bjujs
1

p
f̂is

∥∥∥∥
2

≤ Op(K)max
i

1

T

T∑

s=1

∥∥∥∥
p∑

j=1

bjujs
1

p

∥∥∥∥
2

· 1
T

T∑

s=1

f̂ 2
is

≤ Op

(
K2

p

)
,

where the third line follows from the Cauchy-Schwarz inequality. Q.E.D.

Lemma B.7. (i) maxt≤T ‖ 1
Tp

∑T
s=1 f̂sE(u′

sut)‖ = Op(
√

K/T ),

(ii) maxt≤T ‖ 1
T

∑T
s=1 f̂sζst‖ = Op(

√
KT 1/4/

√
p),

(iii) maxt≤T ‖ 1
T

∑T
s=1 f̂sηst‖ = Op(K

3/2T 1/4/
√
p),
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(iv) maxt≤T ‖ 1
T

∑T
s=1 f̂sξst‖ = Op(K

3/2T 1/4/
√
p).

Proof. (i) By the Cauchy-Schwarz inequality and the fact that 1
T

∑T
t=1 ‖̂ft‖2 = K,

max
t≤T

‖ 1

Tp

T∑

s=1

f̂sE(u′
sut)‖ ≤ max

t≤T

√√√√ 1

T

T∑

s=1

‖̂fs‖2
1

T

T∑

s=1

(Eu′
sut/p)2

≤
√
Kmax

t≤T

√√√√ 1

T

T∑

s=1

(Eu′
sut/p)2

≤
√
Kmax

s,t

√
|Eu′

sut/p|max
t≤T

√√√√ 1

T

T∑

s=1

|Eu′
sut/p|.

The result then follows from Assumption 3.3.

(ii) By the Cauchy-Schwarz inequality,

max
t≤T

‖ 1
T

T∑

s=1

f̂sζst‖ ≤ max
t≤T

1

T

√√√√
T∑

s=1

‖̂fs‖2
T∑

s=1

ζ2st ≤

√√√√Kmax
t

1

T

T∑

s=1

ζ2st.

It follows from Assumption 3.4 that

E(
1

T

T∑

s=1

ζ2st)
2 ≤ max

s,t≤T
Eζ4st = O(

1

p2
).

It then follows from the Chebyshev’s inequality and Bonferroni’s method that

maxt
1
T

∑T
s=1 ζ

2
st = Op(

√
T/p).

(iii) By Assumption 3.4, E‖ 1√
p

∑p
i=1 biuit‖4 ≤ K2M . Chebyshev’s inequality and Bon-

ferroni’s method yield maxt≤T ‖∑p
i=1 biuit‖ = Op(T

1/4
√
pK) with probability one, which

then implies:

max
t≤T

∥∥∥∥
1

T

T∑

s=1

f̂sηst

∥∥∥∥ ≤
∥∥∥∥
1

T

T∑

s=1

f̂sf
′
s

∥∥∥∥max
t

∥∥∥∥
1

p

p∑

i=1

biuit

∥∥∥∥ = op

(
K3/2T 1/4

√
p

)
.

(iv) By the Cauchy-Schwarz inequality and Assumption 3.4, we have demonstrated that

∥∥∥∥
1

T

T∑

s=1

p∑

i=1

biuis
1

p
f̂s

∥∥∥∥ = Op

(
K√
p

)
.
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In addition, since E‖K−2ft‖4 < M , maxt≤T ‖ft‖ = Op(T
1/4K1/2). It follows that

max
t≤T

‖ 1
T

T∑

s=1

f̂sξst‖ ≤ max
t≤T

‖ft‖ ·
∥∥∥∥
1

T

T∑

s=1

p∑

i=1

biuis
1

p
f̂s

∥∥∥∥ = Op(
K3/2T 1/4

√
p

).

Q.E.D.

Lemma B.8. (i) maxi≤K
1
T

∑T
t=1(̂ft −Hft)

2
i = Op(1/T +K2/p).

(ii) 1
T

∑T
t=1 ‖̂ft −Hft‖2 = Op(K/T +K3/p).

(iii) maxt≤T ‖̂ft −Hft‖ = Op(
√

K/T +K3/2T 1/4/
√
p).

Proof. (i) By (B.2), the assumption that the entries of V are bounded away from zero, and

the fact that (a+ b+ c+ d)2 ≤ 4(a2 + b2 + c2 + d2), there exists a constant C > 0,

max
i≤K

1

T

T∑

t=1

(̂ft −Hft)
2
i ≤ Cmax

i≤K

1

T

T∑

t=1

(
1

T

T∑

s=1

f̂isE(u′
sut)/p)

2

+Cmax
i≤K

1

T

T∑

t=1

(
1

T

T∑

s=1

f̂isζst)
2 + Cmax

i≤K

1

T

T∑

t=1

(
1

T

T∑

s=1

f̂isηst)
2

+Cmax
i≤K

1

T

T∑

t=1

(
1

T

T∑

s=1

f̂isξst)
2.

Each of the four terms on the right hand side above are bounded in Lemma B.6, which then

yields the desired result.

(ii) It follows from part (i) and that

1

T

T∑

t=1

‖̂ft −Hft‖2 ≤ Kmax
i≤K

1

T

T∑

t=1

(̂ft −Hft)
2
i .

Part (iii) is implied by (B.2) and Lemma B.7. Q.E.D.

Lemma B.9. There exist positive constants c1, c2 such that with probability approaching one,

c1 < λmin(H
′H) < λmax(H

′H) < c2.

Proof. We first show that ‖H‖ = Op(1). In fact, λmax(V) = λmax(
1
pT

∑T
t=1 yty

′
t) = Op(1),

and

‖F‖ = λ1/2
max(FF

′) = λ1/2
max(

T∑

t=1

ftf
′
t) = Op(

√
T ).

In addition, ‖F̂‖ =
√
T . It then follows from the definition of H that ‖H‖ = Op(1).
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Now

F̂
′
FH/T = (F̂− FH)′FH/T +H′F′FH/T

= (F̂− FH)′FH/T +H′H+H′(F′F/T − IK)H. (B.3)

On the other hand, using F̂
′
F̂/T = IK , we have

F̂
′
FH/T = F̂

′
(FH− F̂)/T + F̂

′
F̂/T

= F̂
′
(FH− F̂)/T + IK . (B.4)

Thus combining (B.3) and (B.4) gives us

H′H = IK +C, (B.5)

where

C = F̂
′
(FH− F̂)/T − (F̂− FH)′FH/T −H′(F′F/T − IK)H.

It follows from Lemma B.8 and the triangular inequality that

‖C‖ ≤ ‖FH− F̂‖‖F‖/T (1 + ‖H‖) + ‖H‖2‖F̂′
F̂/T − IK‖

≤

√√√√ 1

T

T∑

t=1

‖Hft − f̂t‖2
‖F‖√
T
Op(1) +Op(1)‖F̂

′
F̂/T − IK‖

= Op(

√
K3

p
+

√
K2 logK

T
) = op(1).

It then follows from Weyl’s Theorem that λmin(H
′H) > 1/2 with probability approaching

one.

Q.E.D.

Proof of Theorem 3.3

The second part of this theorem was proved in Lemma B.8. We now derive the conver-

gence rate of maxi≤p ‖b̂i − (H′)−1bi‖.
Using the facts that b̂i =

1
T

∑T
t=1 yit̂ft, and that 1

T

∑T
t=1 f̂t̂f

′
t = Ik, we have

b̂i − (H′)−1bi =
1

T

T∑

t=1

Hftuit +
1

T

T∑

t=1

f̂t(ft −H−1̂ft)
′bi +

1

T

T∑

t=1

(̂ft −Hft)uit (B.6)

We bound the three terms on the right hand side respectively. It follows from Lemmas B.3
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and B.9 that

max
i≤p

∥∥∥∥
1

T

T∑

t=1

Hftuit

∥∥∥∥ ≤ ‖H‖max
i

√√√√
K∑

k=1

(
1

T

T∑

t=1

fktuit)2 = Op

(√
K log p

T

)
. (B.7)

For the second term, maxi ‖(H′)−1bi‖ = O(
√
K). Therefore, the Cauchy-Schwarz inequality

and Lemma B.8 imply

max
i≤p

‖ 1
T

T∑

t=1

f̂t(ft −H−1̂ft)
′bi‖ = max

i≤p
‖ 1
T

T∑

t=1

f̂t(Hft − f̂t)
′(H′)−1bi‖

≤ max
i

‖(H′)−1bi‖

√√√√ 1

T

T∑

t=1

‖̂ft‖2
1

T

T∑

t=1

‖Hft − f̂t‖2

= Op

(
K
√
K√
T

+
K2

√
K√
p

)
. (B.8)

Finally, as maxi
1
T

∑T
t=1 u

2
it ≤ maxi | 1T

∑T
t=1 u

2
it−Eu2

it|+maxi Eu2
it < M . Still by the Cauchy-

Schwarz inequality,

max
i

‖ 1
T

T∑

t=1

(̂ft −Hft)uit‖ ≤

√√√√ 1

T

T∑

t=1

‖Hft − f̂t‖2 max
i

1

T

∑

t

u2
it

= Op(

√
K√
T

+
K3/2

√
p
). (B.9)

The result follows from combining (B.6)-(B.9). Q.E.D.

Proof of Corollary 3.1

Under Assumption 3.3, it can be shown by Bonferroni’s method that

max
t≤T

‖ft‖ = Op(
√
K(log T )1/r2). (B.10)

By Theorem 3.3, and max{‖H‖, ‖H−1‖} = Op(1), ∀i, t,

‖b̂′
îft − b′

ift‖ ≤ ‖b̂i − (H′)−1bi‖‖̂ft −Hft‖+ ‖(H′)−1bi‖‖̂ft −Hft‖
+‖b̂i − (H′)−1bi‖‖Hft‖

= Op

(
δT√
Kmp

δ∗T

)
+Op

(√
Kδ∗T

)
+Op

(
δT√
Kmp

√
K(log T )1/r2

)

= Op

(√
Kδ∗T +

δT (log T )
1/r2

mp

)
.
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B.3 Proof of Theorem 3.1

Lemma B.10.

max
i≤p

1

T

T∑

t=1

|uit − ûit|2 = Op

(
K2 log p+K4

T
+

K6

p

)
,

max
i,t

|uit − ûit| = Op

(√
Kδ∗T +

δT (log T )
1/r2

mp

)
= op(1).

Proof. We have,

uit − ûit = b′
iH

−1(̂ft −Hft) + (b̂
′
i − b′

iH
−1)(̂ft −Hft) + (b̂

′
i − b′

iH
−1)Hft. (B.11)

Therefore, using the inequality (a+ b+ c)2 ≤ 4a2 + 4b2 + 4c2, we have:

max
i≤T

1

T

T∑

t=1

(uit − ûit)
2 ≤ 4max

i≤T
b′
iH

−1 1

T

T∑

t=1

(̂ft −Hft)(̂ft −Hft)
′(H′)−1bi

+4max
i≤T

(b̂
′
i − b′

iH
−1)

1

T

T∑

t=1

(̂ft −Hft)(̂ft −Hft)
′(b̂

′
i − b′

iH
−1)′

+4max
i≤T

(b̂
′
i − b′

iH
−1)H

1

T

T∑

t=1

ftf
′
tH

′(b̂
′
i − b′

iH
−1)′

≤ 4max
i

‖b′
iH

−1‖2 1
T

T∑

t=1

‖̂ft −Hft‖2

+4max
i

‖b̂′
i − b′

iH
−1‖2 1

T

T∑

t=1

‖̂ft −Hft‖2

+4max
i

‖b̂′
i − b′

iH
−1‖2 1

T

T∑

t=1

‖Hftf
′
tH

′‖F ,

It then follows from Theorem 3.3 and Lemma B.8 that

max
i≤T

1

T

T∑

t=1

(uit − ûit)
2 = Op(K

6/p+ (K2 log p+K4)/T ).

By (B.10), maxt≤T ‖ft‖ = Op(
√
K(log T )1/r2). Hence part (ii) follows from Theorem 3.3.

Q.E.D.

Proof of Theorem 3.1 The theorem follows immediately from Lemma B.5 and Lemma

B.10.
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B.4 Proof of Theorem 3.2

Define DT and CT as:

DT = IK −HH′, CT = Λ̂−BH−1.

Lemma B.11. ‖DT‖F = Op(K
√
logK/

√
T +K2/

√
p).

Proof. Applying the triangular inequality gives:

‖DT‖F ≤ ‖HH′ − ĉov(Hft)‖F + ‖ĉov(Hft)− IK‖F (B.12)

By Lemmas B.3 and B.9, the first term in (B.12) is

‖HH′ − ĉov(Hft)‖F ≤ ‖H‖2‖IK − ĉov(ft)‖F = Op

(
K

√
logK

T

)
.

The second term of (B.12) can be bounded, by the Cauchy-Schwarz inequalities and Lemma

B.8, as follows:

∥∥∥∥
1

T

T∑

t=1

Hft(Hft)
′ − 1

T

T∑

t=1

f̂t̂f
′
t

∥∥∥∥
F

≤
∥∥∥∥
1

T

∑

t

(Hft − f̂t)(Hft)
′
∥∥∥∥
F

+

∥∥∥∥
1

T

∑

t

f̂t(̂f
′
t − (Hft)

′)

∥∥∥∥
F

≤
√

1

T

∑

t

‖Hft − f̂t‖2
1

T

∑

t

‖Hft‖2 +
√

1

T

∑

t

‖Hft − f̂t‖2
1

T

∑

t

‖̂ft‖2

= Op

(
K√
T

+
K2

√
p

)
.

Q.E.D.

Lemma B.12. ‖BH−1DT (BH−1)′‖2Σ = O(K2(logK)/(pT ) +K4/p2).

Proof. First of all, note that

λmax((Hcov(ft)H
′)−1) = λmax((HH′)−1),

which is bounded away from infinity by Lemma B.9. Hence the same argument of the proof

of Theorem 2 in Fan, Fan and Lv (2008), with B and f replaced with BH−1 and Hft, yields

‖(BH−1)′Σ−1BH−1‖ ≤ 2‖(Hcov(ft)H
′)−1‖ = Op(1).
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The lemma then follows from Lemma B.11 and the fact that

‖BH−1DT (BH−1)′‖2Σ ≤ p−1tr[(DT (BH−1)′Σ−1BH−1)2]

≤ p−1‖DT‖2F‖(BH−1)′Σ−1BH−1‖2.

Q.E.D.

Lemma B.13. Let E = (u1, ...,uT ).

(i) ‖T−1EFH′‖2F = Op(pK(log p)/T ).

(ii) ‖T−1E(F̂− FH′)‖2F = Op(pK/T +K3).

(iii) ‖BH−1CT
′‖2Σ = Op(K

3/p+K(log p)/T ).

Proof. (i) ‖T−1EFH′‖2F ≤ ‖T−1EF‖2F‖H‖2. The result follows from ‖H‖ = Op(1) and that

‖T−1EF‖2F ≤ pK max
i≤p,j≤K

(
1

T

T∑

t=1

fjtuit)
2 = Op(Kp(log p)/T ).

(ii) We have, by the Cauchy-Schwarz inequality and Lemma B.8,

‖ 1
T
E(F̂− FH′)‖2F = ‖ 1

T

T∑

t=1

ut(̂ft −Hft)
′‖2F

≤ (pK)max
i≤p

1

T

T∑

t=1

u2
it max

j≤K

1

T

T∑

t=1

(̂ft −Hft)
2
j

= Op(
pK

T
+K3). (B.13)

(iii) First all, it is easy to see that, for any K × p matrix A,

p‖BH−1A‖2Σ = tr(H−1AΣ−1A′H
′−1B′Σ−1B)

≤ ‖H−1‖2‖B′Σ−1B‖‖Σ−1‖‖A‖2F
= Op(‖A‖2F ). (B.14)

In addition, we have the decomposition:

CT = − 1

T
EFH′ +

1

T
BH−1(HF′ − F̂

′
)F̂+

1

T
E(F̂− FH′). (B.15)

Therefore,

p‖BH−1(− 1

T
EFH′ +

1

T
E(F̂− FH′))′‖2Σ = Op(

pK log p

T
+K3). (B.16)
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In addition, using ‖B′Σ−1B‖ = O(1), and ‖F̂‖2 = λmax(
∑T

t=1 f̂t̂f
′
t) = T , we obtain

p‖BH−1(
1

T
BH−1(HF′ − F̂

′
)F̂)′‖2Σ

≤ 1

T 2
‖H−1‖4‖B′Σ−1B‖2‖F̂‖2‖HF′ − F̂

′‖2F

= Op(
K

T
+

K3

p
). (B.17)

The result then follows from (B.15)-(B.17). Q.E.D.

Lemma B.14.

‖CTCT
′‖2Σ = Op(pK

2(log p)2/T 2 +K4(log p)/T +K6/p).

Proof. Let A1 = − 1
T
EFH′, A2 = 1

T
BH−1(HF′ − F̂

′
)F̂, A3 = 1

T
E(F̂ − FH′). By (B.15),

CT = A1 +A2 +A3. In addition,

CTCT
′ = B11 + (B12 +B′

12 +B13 +B′
13 +B23 +B′

23) + B22 +B33,

where Bij = AiA
′
j. We bound each term Bij as follws. Straightforward calculation yields:

‖B11‖2Σ ≤ p−1‖Σ−1‖2
∥∥∥∥
1

T
EFH′

∥∥∥∥
4

F

= Op(
pK2(log p)2

T 2
)

‖B13‖2Σ ≤ p−1‖Σ−1‖2
∥∥∥∥
1

T
EFH′

∥∥∥∥
2

F

∥∥∥∥
1

T
E(F̂− FH′)

∥∥∥∥
2

F

= Op(
pK2 log p

T 2
+

K4 log p

T
),

‖B33‖2Σ ≤ p−1‖Σ−1‖2
∥∥∥∥
1

T
E(F̂− FH′)

∥∥∥∥
4

F

= Op(
pK2

T 2
+

K6

p
).

By the facts that ‖B′Σ−1B‖ = O(1), and ‖F̂‖2 = T , we have

‖B12‖2Σ ≤ p−1‖Σ−1‖‖B′Σ−1B‖
∥∥∥∥
1

T
EFH′

∥∥∥∥
2

F

∥∥∥∥
1

T
E(F̂− FH′)

∥∥∥∥
2

F

‖H−1‖2

= Op(
pK2 log p

T 2
+

K4 log p

T
),

‖B22‖2Σ ≤ p−1‖B′Σ−1B‖2
∥∥∥∥
1

T
H−1(HF′ − F̂

′
)F̂

∥∥∥∥
4

F

= Op(
K2

pT 2
+

K6

p3
),

‖B23‖2Σ ≤ p−1‖B′Σ−1B‖‖Σ−1‖‖H−1‖2
∥∥∥∥
1

T
E(F̂− FH′)

∥∥∥∥
2

F
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×
∥∥∥∥
1

T
(HF′ − F̂

′
)F̂

∥∥∥∥
2

F

= Op(
K2

T 2
+

K6

p2
+

K4

pT
).

Combining these results yields the lemma. Q.E.D.

Proof of Theorem 3.2 (i)

By Lemmas B.12-B.14,

‖Σ̂T −Σ‖2Σ ≤ C[‖BH−1DT (BH−1)′‖2Σ + ‖BH−1CT
′‖2Σ

+‖CTCT
′‖2Σ] + ‖Σ̂T

u −Σu‖2Σ
= ‖Σ̂T

u −Σu‖2Σ +Op(
pK2(log p)2

T 2
+

K4 log p

T
+

K6

p
).

The theorem follows directly from Theorem 3.1. Q.E.D.

Lemma B.15. (i) λmin((HH′)−1 + (BH−1)′Σ−1
u BH−1) ≥ cp for some c > 0.

(ii) ‖IK − (HH′)−1‖ = Op(K
√
(logK)/T +K2/

√
p).

(iii) ‖Λ̂′
(Σ̂T

u )
−1Λ̂− (BH−1)′Σ−1

u BH−1‖ = Op(pmpK
√

(log p)/T +
√
pmpK

3+pmpK
2/
√
T ).

Proof. (i) We have,

λmin((HH′)−1 + (BH−1)′Σ−1
u BH−1) ≥ λmin((BH−1)′Σ−1

u BH−1))

≥ λmin(Σ
−1
u )λmin((H

′)−1B′BH−1)

≥ λmin(Σ
−1
u )λmin(B

′B)λmin((HH′)−1)

≥ cp.

Part (ii) follows from Lemma B.11 and Lemma B.1. For part (iii), by Theorem 3.3,

‖Λ̂−BH−1‖2F =

p∑

i=1

‖b̂i − (H′)−1bi‖2 = Op(K
5 + pK log p/T + pK3/T ). (B.18)

Since ‖(Σ̂T
u )

−1‖ = Op(1), ‖B‖ = O(
√
p), and

‖Λ̂′
(Σ̂T

u )
−1Λ̂− (BH−1)′Σ−1

u BH−1‖ ≤ ‖(Λ̂−BH−1)′(Σ̂T
u )

−1(Λ̂−BH−1)‖
+2‖(Λ̂−BH−1)′(Σ̂T

u )
−1BH−1‖

+‖BH−1((Σ̂T
u )

−1 −Σ−1
u )BH−1‖. (B.19)

The desired result then follows from Theorem 3.1 and (B.18). Q.E.D.
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Proof of Theorem 3.2: ‖(Σ̂T )−1 −Σ−1‖.
Using the Sherman-Morrison-Woodbury formula, we have

‖Σ̂T −1 −Σ−1‖ ≤
6∑

i=1

Li,

where

L1 = ‖(Σ̂T
u )

−1 −Σ−1
u ‖

L2 = ‖((Σ̂T
u )

−1 −Σ−1
u )Λ̂[IK + Λ̂

′
(Σ̂T

u )
−1Λ̂]−1Λ̂

′
(Σ̂T

u )
−1‖

L3 = ‖((Σ̂T
u )

−1 −Σ−1
u )Λ̂[IK + Λ̂

′
(Σ̂T

u )
−1Λ̂]−1Λ̂

′
Σ−1

u ‖
L4 = ‖Σ−1

u (Λ̂−BH−1)[IK + Λ̂
′
(Σ̂T

u )
−1Λ̂]−1Λ̂

′
Σ−1

u ‖
L5 = ‖Σ−1

u (Λ̂−BH−1)[IK + Λ̂
′
(Σ̂T

u )
−1Λ̂]−1(H′)−1B′Σ−1

u ‖
L6 = ‖Σ−1

u BH−1([IK + Λ̂
′
(Σ̂T

u )
−1Λ̂]−1

−[cov(Hf)−1 + (H′)−1B′Σ−1
u BH−1]−1)(H′)−1B′Σ−1

u ‖. (B.20)

We bound each of the six terms respectively. First of all, L1 is bounded by Theorem 3.1.

Let G = [IK + Λ̂
′
(Σ̂T

u )
−1Λ̂]−1, then

L2 ≤ ‖(Σ̂T
u )

−1 −Σ−1
u ‖ · ‖Λ̂GΛ̂

′‖ · ‖(Σ̂T
u )

−1‖.

Note that Theorem 3.1 implies ‖(Σ̂T
u )

−1‖ = Op(1). Lemma B.15 implies

‖G‖ = Op(p
−1). (B.21)

This shows that L2 = Op(L1). Similarly L3 = Op(L1).

In addition, by (B.18),

L4 ≤ ‖Σ−1
u (Λ̂−BH−1)‖‖G‖‖Λ̂′

Σ−1
u ‖ = Op(

√
K5

p
+

√
K log p+K3

T
).

Similarly L5 = Op(L4). Finally, let

G1 = [(HH′)−1 + (BH−1)′Σ−1
u BH−1]−1.

By Lemma B.15, ‖G1‖ = Op(p
−1). Then

‖G−G1‖ = ‖G(G−1 −G−1
1 )G1‖

≤ Op(p
−2)‖(HH′)−1 − IK‖
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+Op(p
−2)‖(BH−1)′Σ−1

u BH−1 − Λ̂
′
(Σ̂T

u )
−1Λ̂‖

= Op

(
mTK

√
log p+mpK

3

p
√
T

+
mTK

2

p3/2

)
.

Consequently,

L6 ≤ ‖Σ−1
u BH−1‖2‖G−G1‖ = Op(

mTK
√
log p+mpK

2

√
T

+
mTK

3

√
p

).

Adding up L1-L6 gives the result.

Q.E.D.

Proof of Theorem 3.2: ‖Σ̂T −Σ‖max

Let ei,p denote a p-dimensional unit vector with one on the ith element and rest zero.

Lemma B.16. (i) ‖ 1
T
(HF′ − F̂)E′‖max = Op(1/

√
T +K/

√
p).

(ii) ‖Λ̂−BH−1‖max = Op(K
2/
√
p+

√
K(log p)/T +K/

√
T ).

(iii) ‖IK −HH′‖max = Op(K
√

logK/T +K/
√
p).

Proof. (i) By the Cauchy-Schwarz inequality and Lemma B.8,

‖ 1
T
(HF′ − F̂)E′‖max = ‖ 1

T

T∑

t=1

(Hft − f̂t)u
′
t‖max ≤ max

i,j

1

T
|

T∑

t=1

(Hft − f̂t)iujt|

≤ max
ij

√√√√ 1

T

T∑

t=1

(Hft − f̂t)2i
1

T

T∑

t=1

u2
jt

≤ Op(
1√
T

+
K√
p
)

√√√√max
j

1

T

T∑

t=1

u2
jt. (B.22)

Lemma B.3 implies maxi≤p
1
T

∑
t u

2
it = Op(1), which yields the result.

(ii) We have

‖Λ̂−BH−1‖max ≤ ‖ 1
T
EFH′‖max + ‖ 1

T
BH−1(HF′ − F̂

′
)F̂‖max

+‖ 1
T
E(F̂− FH′)‖max.

By Lemmas B.3, B.9,

‖ 1
T
EFH′‖max = max

i,j
|e′i,p

1

T
EFH′ej,K | ≤ max

i,j
‖e′i,p

1

T
EF‖‖H′ej,K‖
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≤ Op(max
i

‖e′i,p
1

T
EF‖) ≤ Op(

√
K)max

i,j
| 1
T

T∑

t=1

fjtuit|

= Op(

√
K log p

T
).

By Lemma B.8 and the Cauchy-Schwarz inequality,

‖ 1
T
BH−1(HF′ − F̂)F̂

′‖max = max
ij

|e′i,p
1

T
BH−1(HF′ − F̂

′
)F̂ej,K |

≤ max
ij

‖e′i,pBH−1‖‖ 1
T

T∑

t=1

(Hft − f̂t)f̂jt‖

≤ Op(
√
K)max

j

√√√√ 1

T

T∑

t=1

‖Hft − f̂t‖2
1

T

T∑

t=1

f̂ 2
jt

= Op(
K√
T

+
K2

√
p
).

Still by Lemma B.8 and the Cauchy-Schwarz inequality,

‖ 1
T
E(F̂−HF′)′‖max = max

ij
| 1
T

T∑

t=1

uit(̂ft −Hft)j|

≤ max
ij

√√√√ 1

T

T∑

t=1

u2
it

1

T

T∑

t=1

(̂ft −Hft)2j

= Op(
1√
T

+
K√
p
).

Therefore we have the desired result.

(iii) By the triangular inequality,

‖IK −HH′‖max ≤ ‖IK − ĉov(Hft)‖max + ‖ĉov(Hft)−HH′‖max.

In the proof of Lemma B.11, ‖ĉov(Hft)−HH′‖max = Op(K
√

logK/T ), where we used the

fact that ‖.‖max is dominated by ‖.‖F . In addition,

‖IK − ĉov(Hft)‖max ≤ max
ij

√
1

T

∑

t

|Hft − f̂t|2i
1

T

∑

t

(Hft)2j

+max
ij

√
1

T

∑

t

|Hft − f̂t|2i
1

T

∑

t

f̂ 2
jt

= Op(
1√
T

+
K√
p
). (B.23)
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Q.E.D.

Completion of the Proof of Theorem 3.2 We first bound

A ≡ ‖Λ̂Λ̂
′ − (BH−1)HH′(BH−1)′‖max

≤ ‖2CT (BH−1)′‖max + ‖BH−1DT (BH−1)′‖max + ‖CTC
′
T‖max

+‖2BH−1DTC
′
T‖max.

We bound the terms on the right hand side. By Theorem 3.3,

‖CT (H
−1)′B′‖max = max

ij
|e′i,pCT (H

−1)′B′ej,p| ≤ max
ij

‖b̂i − (H′)−1bi‖‖H−1‖‖bj‖

= Op(
δT
mp

).

By Lemma B.16(iii), ‖DT‖max = Op(K
√

logK/T +K/
√
p). Hence

‖BH−1DT (BH−1)′‖max ≤ max
ij

‖e′i,pB‖‖DT‖‖e′j,pB‖ = Op(K
2)‖DT‖max

= Op(K
3

√
logK

T
+

K3

√
p
).

Since ‖e′i,pCT‖ = ‖b̂i − (H′)−1bi‖,

‖CTHH′C′
T‖max ≤ max

i
‖e′i,pCT‖2‖HH′‖ = Op(max

i≤p
‖b̂i − (H′)−1bi‖2)

= Op(
δ2T

m2
pK

).

‖2BH−1DTC
′
T‖max ≤ max

i,j
‖e′i,pB‖‖DT‖‖C′

Tej,p‖

= op(
δT
mp

).

Therefore,

A = Op(K
3

√
logK

T
+

δT
mp

).

Finally,

‖Σ̂T
u −Σu‖max = Op

(
δT
mp

)
.

43



Therefore,

‖Σ̂T −Σ‖max = Op(K
3

√
logK

T
+

δT
mp

).

Q.E.D.
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