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Abstract 

The aim of this paper is to demonstrate that dynamic paths in a model of discrete choice with 

social interactions, which have been developed by Brock and Durlauf (1999, 2001a, 2001b, 

2006), converge some self-consistent equilibrium. To this aim, we propose an asynchronous 

model of discrete-choice with social interaction 2 , in which the only individual selected 

cyclically is updated.   

 

1. The model of discrete-choice with social interaction  

We consider the model of discrete choice with social interaction proposed by Brock and Durlauf 

(1999, 2001a, 2001b, 2006). Each of I agents faces a binary choice. These choices are denoted 

by an indicator variable
i

 which has support  1,1 . Agent i makes a choice in order to 

maximize a utility function,  

( , ( ), ( )) ( ) ( , ( )) ( ) (1)e e

i i i i i i i i i i
U u S               

where 1 1 1( ,..., , ,..., )
i i i I

      
 

denotes the vector of choices other than that of agent i  

and ( )e

i i
   

denotes that individual’s anticipations concerning the choices of other agents. 

The three terms which construct the utility function are named respectively the following: 

( )
i

u 
 
is deterministic private utility, ( , ( ))e

i i i
S     

is deterministic social utility, and 

( )
i

 
 
is random private utility. The deterministic social utility represents a conformity effect,  

                                                   

1 Taisei Kaizoji, International Christian University, 3-10-2 Osawa, Mitaka, Tokyo 181-8585 Japan. 
Email: kaizoji@icu.ac.jp  
2 The asynchronous model is formulated in context of Neural Networks by Peterson, C. and 
Anderson, J. R., (1987) .  

mailto:kaizoji@icu.ac.jp


2 

 

          2,
, . ( 2

2

i je

i i i i i j

j i

J
S E    



    

The term 
,

2

i jJ

 
represents the interaction weight which relates agent i’s choice to agent j’s 

choice expected by agent i, and is assumed to be equal to the cross-partial derivative of the 

social utility function,  

  
 

2

,

,
(3)

e

i i i

i j

i i j

S
J

E

  

 



 

 

which means that the function measures the strategic complementarity (and substitutability) 

between agent i’s choice and the expected choices of agent  j.  

It is assumed that the private deterministic utility function of agent i with a linear function,  

         ( ) (4)
i i

u h k  
 

where h  and k  are chosen so that (1)h k u   and ( 1)h k u    .  

The random private utility ( )
i

   is independent and extreme value distributed both within and 

across agents3 . This means that the difference between the unobservable components is 

logistically distributed  

1
( ( 1) (1) ) ; 0.

1 exp( )
z

z
   


    

 
d,           (5) 

where ( )   denotes probability measures.  

Under the above assumptions, agent i’s choice will obey the probability  

 

,

,
1,1

exp ( ( ) ( ))

Pr( ) (6)

exp ( ( ) ( ))
i

i i j i i j

i j

i

i i j i i j

i j

u J E

u J E


   


   



  

 
 

 
 

 
 



 
. 

The expected value of agent i’s choice, which is conditional on his anticipations concerning the 
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behavior of others, can be written as  

,( ) tanh( ( )) (7)i i i j i j

j i

E h J E   


  
.

 

To close the model, Brock and Durlauf (2000, 2001) considers a case of this model occurs when 

all of the agents possess rational expectations, i.e.  

            ( ) ( ). (8)
i j j

E E   

Under the assumption of expectation formations, the subjective expectations can be replaced 

with their objective expecations, i.e.  

,( ) tanh( ( )) ( 1,2,..., ). (9)i i i j j

j i

E h J E i I   


  
 

These equations represent a continuous mapping of ( 1,1)I
C C   . Therefore, it is clear 

from Brouwer’s fixed point theorem that there is at least one fixed point solution, which implies 

Theorem 1. (see Brock and Durlauf (1999, 2001a, 2001b)).  

 

Theorem 1. Existence of self-consistent equilibria  

There exists at least one set of self-consistent equilibrium consistent with the binary choice 

model with interactions as specified by equation (9).  

 

2. Dynamics  

In order to consider the dynamic stability of the self-consistent equilibrium in the 

discrete-choice model from the point of view of dynamical system theory, we consider an 

asynchronous discrete-choice model in which the only individual selected cyclically is 

updated.  
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2.1. The synchronous discrete-choice model.  

For simplicity of the description of the asynchronous discrete-choice model, let a mapping 

: ( 1,1)n
f C C    be defined by  

,
1

( ) tanh ( ) ( 1,..., ) (10)
n

i i j j i

j

f x J x t h i n


  
       

  

where ( ),
i i

x E   1 2( , ,..., ),
n

x x x x and, 1( ) ( ( ),..., ( )).t

n
f x f x f x    

 

In order to consider the asynchronous discrete-choice model from the point of view of 

dynamical system theory, we define a mapping :f C C as follows.  

1 1 1 2( ) ( , ,..., )
n

f x f x x x
 

2 2 1 2( ) ( ( ), ,..., )
n

f x f f x x x
 

… 

… 

… 

1 2 1( ) ( ( ), ( ),..., ( ), )
n n n n

f x f f x f x f x x
 

and 

 

 

Then, the asynchronous discrete-choice model can be represented by  

( 1) ( ( )) ( 0,1,2,...). (11)x t f x t t    

 

 

 

1( ) ( ( ),..., ( )).t

n
f x f x f x
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2.2. Stability of self-consistent equilibrium 

We assume that  

, , . (12)
i j j i

J J  

That is, the interactions which are driven by expectations of the behavior of others are symmetry, 

and no self-connection (i.e. 
, 0

i i
J  ).  

Under these conditions, the following lemma 1 and Theorem 2 are demonstrated. The proofs are 

due to essentially Fleisher (1988) and Kurita and Funahashi (1996).  

 

Lemma 1. Assume that a matrix J of pairwise interactions between each individual choice and 

the expected choices of others are symmetric, that is, , ,i j j i
J J , and no self-connection (i.e. 

, 0
i i

J  ). We define a Liapunov function,  

1
, 0

1 1 1

1 1
( ) ( ) (13)

2

i
n n n

x

i j i j i i

i j i i

V x J x x h x x dx




   

     
ｎ

１  

where ( ) tanh( )x x  . Then, the Liapunov function () of the synchronous discrete-choice 

model with the weight matrix ,i j
J  decreases monotonically. If ' ( )x f x  and 'x x , then 

( ') ( )V x V x , when :f C C  is a mapping which defines the asynchronous 

discrete-choice model.  

 

Theorem 2 (Dynamic stability). The state of the asynchronous discrete-choice model converges 

to some self-consistent equilibrium.  
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4. Appendix  

The proof of Lemma 1 is given by Lemma 9 in Kurita and Funahashi (1996).  

 

Proof of lemma 1 (Kurita and Funahashi (1996)). First, we prove the first assertion. We 

remember that  

1
, 0

1 1 1 1

1 1
( ) ( ) .

2

i
n n n n

x

i j i j i i

i j i i

V x J x x h x u du




   

       

We set  

1

0

1
( ) ( ) .

ix

i
g x u du


   

Suppose that 
i

x  changed to 
k k k

x x x   , the resulting change in V  is given by  

,
1

( ) ( )
.

n
k k k

k k j j k

i k

g x x g x
V x J x h

x

  
      

  

Applying the intermediate value theorem to the function ( )g x , we get  

 

,
1

1 1

( )

1
( ) ( ) ,

n

k k j j k k

i

k k k

V x J x h g

x x x



  




 

      
 

    


 

where   is a point between 
k

x  and 
k k

x x . Between both ( )g x  and 1( )x   are 

strictly increasing functions, if 0
k

x   then 
k k k

x x x    and this implies  

1 1( ) ( )
k k

x x       

and hence 0V  . A similar argument holds for the case 0
k

x  . Of course 0
k

x   

implies 0V  .  

    Second, we prove the last part of the lemma. From the first assertion, there is no periodic 

point in the asynchronous model. Hence if ( )x f x   and x x  , then ( ) ( )V x V x  .  

Q.E.D.  
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The proof of Theorem 2 is given by Theorem 5 in Kurita and Funahashi (1996).  

 

Proof of Theorem 2 (Kurita and Funahashi (1996)).  

We take any initial point  1,1
n

x C   . We remark that ( )f C  is a relatively compact 

subset of C  because : ( 1,1)R    is a bounded function. We consider the  -limit set of 

x :  

 ( ) | ( )in

if
x y C there is a sequence n such that f x y     .  

As ( )f C  is a relatively compact subset of ( )
h

x  is a nonempty relatively compact subset of 

C . Suppose that ( )x  contains at least two points p  and ( )q p q . From the definition 

and the above lemma, we easily see that the Liapunov function ( )V x  constant on ( )
f

x . 

Hence, for any 0  , there are two integers 1N  and 2N  such that 1 2N N ,  

  1 ( )N
f x p   , and 2 ( )N

f x q   .  

Because 2 1( ( )) ( ( ))N N
V f x V f x , this implies ( ) ( )V q V p  from the above lemma and this 

is a contradiction. Therefore ( )
f

x  contains only one point.             Q.E.D.  
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