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Abstract

The evaluation of nursing homes and the assessment of the quality of the health care
provided to their patients are usually based on the administration of questionnaires
made of a large number of polytomous items. In applications involving data collected
by questionnaires of this type, the Latent Class (LC) model represents a useful tool
for classifying subjects in homogenous groups. In this paper, we propose an algorithm
for item selection, which is based on the LC model. The proposed algorithm is aimed
at finding the smallest subset of items which provides an amount of information close
to that of the initial set. The method sequentially eliminates the items that do not
significantly change the classification of the subjects in the sample with respect to the
classification based on the full set of items. The LC model, and then the item selection
algorithm, may be also used with missing responses that are dealt with assuming a
form of latent ignorability. The potentialities of the proposed approach are illustrated
through an application to a nursing home dataset collected within the ULISSE project,
which concerns the quality-of-life of elderly patients hosted in Italian nursing homes.
The dataset presents several issues, such as missing responses and a very large number
of items included in the questionnaire.

Keywords: Expectation-Maximization algorithm, Polytomous items, Quality-of-life,

ULISSE project
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1 Introduction

The evaluation of long-term care facilities is assuming a role of increasing relevance due to

the rapid growth of demand for long-term care services for elderly people. The main cause

is represented by the rapid aging of the population and also by the changes in the family

structure and in the socio-economic context. Furthermore, the recent international debate

on demographic aging has been focused on the effect of aging on the welfare and health

care system in various countries (Galasso and Profeta, 2007; Breyer et al., 2010). In this

context, measuring health care quality and comparing nursing home performance represent

a challenging issue to assure the quality of services and to allocate resources efficiently.

For this end, Kane et al. (2003), among others, propose quality-of-life measures using an

index obtained through Factor Analysis. Phillips et al. (2007) deal with the construction of

indicators which measure nursing home performance and propose the use of such indicators

to rank these types of facility in a certain geographical area. The indicators currently used

to evaluate nursing home performance are based on data coming from surveys which are

periodically carried out by public institutions; see, among others, Hirdes et al. (1998) and

Mor et al. (2003). In the United States, the nursing homes are compared by means of a

set of quality of care indicators obtained by a standardized resident assessment instrument

(Zimmerman, 2003). In particular, the Center for Medicare and Medicaid Services is engaged

in building quality measures for nursing homes using descriptive statistics as indicators; these

indicators are generally referred to the psycho-physics conditions of elderly people hosted

in these facilities. Moreover, Grabowski et al. (2004) examine the relationship between

Medicaid payment rates and quality of nursing home care, since Medicaid is the dominant

payer of U.S. nursing home services.

Among other authors dealing with nursing home data, Gajewski et al. (2006) investigate

the inter-rater reliability of the nursing home survey process by means of a Bayesian Latent

Class analysis. Prado-Jean et al. (2011) develop and verify a tool to detect depression in

elderly patients. The evaluation of nursing home performance is also studied in a longitudinal

context by Bartolucci et al. (2009), who use a Latent Markov model to estimate the effect

of nursing homes on the probability of transition between latent states representing different

levels of the health status.
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Issues related to population aging are particularly relevant in Italy, which is one of the

European countries with the highest proportion of elderly people, and where this proportion

is expected to increase over the next few decades (Kohler et al., 2002). This situation is

putting a great pressure on the health care system, that in Italy is characterized by a high

level of heterogeneity and fragmentation across the country. In this context, the ULISSE

project (Lattanzio et al., 2010) was carried out by the Italian Ministry of Health jointly

with the Italian Society of Gerontology and Geriatrics in order to obtain relevant data for

health care planning. The purpose is to document the change in elderly patients’ health

status and the ability of the health care system to satisfy their needs. The dataset obtained

from this project was collected by the administration of a questionnaire to patients hosted

in a certain number of Italian nursing homes. The questionnaire is made of items about

different aspects of the quality-of-life and health status of these subjects. In particular,

we focus on 75 polytomous items, which have been chosen as clarified later. These items

were administrated to a sample of 1744 patients. Many items are ordinal, with categories

ordered according to increasing difficulty levels in accomplishing a certain task or severeness

of the health condition. Moreover, given the complexity of the study, there are many missing

responses.

Motivated by the data collected within the ULISSE project, in this paper we propose

an algorithm that may be used for item selection when a large number of items is included

in a questionnaire made of dichotomous, or in general polytomous, items. In this situation,

the questionnaire administration may be lengthy and expensive. Due to tiring effects, using

a large number of items may also induce the respondent to provide inaccurate responses.

This is particularly relevant when the questionnaire is periodically administered. Therefore,

methods are of interest which allow us to select the smallest subset of items providing an

amount of information close to that of the full set. These methods may lead to a reduction

of the costs of the data collection process and a better quality of data. Item selection is also

important as a preliminary investigation that may be useful to reduce the amount of data,

so that they may be more easily analyzed by complex statistical models.

The proposed algorithm is based on an extended version of the Latent Class (LC) model.

The LC model (Lazarsfeld, 1950; Lazarsfeld and Henry, 1968; Goodman, 1974) has become an

important tool of analysis of data collected by questionnaires made of polytomous items. As
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is well known, the model relies on a discrete latent variable, which defines a certain number of

latent classes, and assumes the independence of the responses to the items given this variable.

Therefore, its use is justified when the items measure one or more latent traits, such as the

quality-of-life or the tendency to a certain behavior, which are not directly observable. In

geriatrics, the LC model has been used to measure mobility disability (Bandeen-Roche et al.,

1997), to study behavioral syndromes in Alzheimer’ patients (Moran et al., 2004), and to

test the validity of certain physical frailty measures (Bandeen-Roche et al., 2006). Moreover,

Lafortune et al. (2009) uses the LC analysis to model the heterogeneity in elderly individuals’

health status.

It is important to recall that the LC model produces a model-based classification (Fraley

and Raftery, 2002) of the observed subjects in different clusters, which correspond to the

latent classes. Once the model is fitted, a subject is assigned to the latent class corresponding

to the highest posterior probability (i.e., the conditional probability of the latent class given

the observe data). This characteristic of the LC approach is exploited by the proposed

method for item selection. In fact, the method assesses the relevance of an item on the

basis of the number of subjects for whom the classification changes with or without this

item. Therefore, this method starts from the classification of the subjects based on the full

set of items; then, it sequentially removes the items which, among the existing ones, have

the smallest impact on this classification. This procedure is stopped when the difference

with respect to the initial classification is considered to be excessive. The proposed method

is comparable to that for item selection proposed by Dean and Raftery (2010) in a similar

context. Note, however, that the latter one evaluates the impact of removing an item through

the Bayesian Information Criterion (BIC, Schwarz, 1978; Kass and Raftery, 1995), whereas

our method is directly based on the impact in terms of classification of subjects.

As indicated above, the model on which our approach relies is an extended version of

the LC model. The extension is for dealing with missing responses, which are frequently

encountered in data as those coming from the ULISSE project. Obviously, formulating non-

realistic assumptions in dealing with missing responses may lead to a strong bias in the

parameter estimates. The extended LC model we adopt is based on some kind of latent

ignorability condition (Harel and Schafer, 2009), given the latent class. In particular, we

assume that the indicator for the presence of the response is conditionally independent
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of the “underlying” response variable (which is not always observable), given the latent

variable. Then, missing responses are informative, in the sense that the latent classes are

also characterized in terms of probability that a response is provided. For this model, we

implemented an Expectation-Maximization algorithm (EM; Baum et al., 1970; Goodman,

1974; Dempster et al., 1977), which has a complexity comparable to that of the conventional

LC model. On the other hand, the method set up by Dean and Raftery (2010) is not directly

formulated for the case of missing responses.

In dealing with missing responses, a more common assumption is that data are missing

at random (MAR; Rubin, 1976; Little and Rubin, 2002). The basic idea is that the probab-

ility that a response variable is observed only depends on the values of those other variables

which have been observed (Lu and Copas, 2004). Under this assumption, the missingness

mechanism does not depend on the unobserved data (given the observed data) and ignor-

ing the information in the missing-data indicator is generally appropriate. Computational

methods for handling missing data under this assumption have been developed using, for

example, the EM algorithm; see, among others, Tanner (1996), Schafer (1997), Kenward and

Molenberghs (1998) and Little and Rubin (2002).

Among the authors dealing with the problem of missing responses in connection with

latent variable models, we consider Muthén et al. (1987), who deal with latent variable

structural equation models, and O’Muircheartaigh and Moustaki (1999) who consider the

problem of treating item non-response in the analysis of attitude scales. Moreover, Reboussin

et al. (2002) develop an LC model for the analysis of longitudinal binary health outcomes

under the hypothesis that the data are MAR. Among the other authors who employ an LC

structure to jointly describe the pattern of missingness and the outcome of interest, we also

refer to Roy (2003) and Lin et al. (2004).

The application of the proposed item selection method to the data coming from the

ULISSE project leads to a strong reduction of the number of items. In particular, we found

a subset of around one third of items that has a degree of informativeness close to that

of the full set of items. Moreover, this application allows us to compare our approach to

missingness with the more common approach based on the MAR assumption. We found

evidence that missing responses cannot be ignored and, also considering the sensitivity of

some items, we conclude that our approach is then preferable.

5



The reminder of this paper is structured as follows. The ULISSE dataset is described

in the following section. In Section 3 we illustrate the extended LC model with missing re-

sponses together with a discussion of the missingness assumptions we formulate. In Section 4

we describe maximum likelihood estimation of the proposed model, via the EM algorithm.

In Section 5 we illustrate the proposed item selection procedure based on measuring the

impact on the classification of the sample units. In Section 6 we present the results of the

application of the proposed approach to the ULISSE dataset. Finally, Section 7 provides

main conclusions about the proposed approach.

The methods proposed in this paper have been implemented in a series of Matlab

functions that we make available to the reader upon request.

2 The ULISSE dataset

The ULISSE project (“Un Link Informatico sui Servizi Sanitari Esistenti per l’Anziano” -

“a computerized network on heath care services for older people”) is aimed at describing

the health status of elderly patients who currently receive health care assistance in Italy

(Lattanzio et al., 2010). The project was carried out by the Italian Ministry of Health

jointly with the Italian Society of Gerontology and Geriatrics. The main aim of the study

is to improve the knowledge of the characteristics and the quality of health care services

provided to elderly patients in Italy. The study considers three different levels of health care

assistance: that provided by acute care facilities, that provided by nursing homes, and that

provided at home. Overall, 23 acute geriatric or internal medicine hospital units, 31 nursing

homes, and 11 home care services participated in the project. In the analysis here presented,

we consider only the data collected in nursing homes.

The ULISSE project is based on a longitudinal survey; in the nursing homes considered by

the project, the total number of residents, or a maximum of 100 randomly selected residents

for bigger nursing homes, were evaluated at admission and then re-evaluated at 6 and 12

months after the admission. Only long stay residents (i.e., permanently admitted to the

nursing home) aged at least 65 years, were included in the study. This survey was carried

out since 2004 through the repeated administration of a questionnaire which is filled up by

the nursing assistant of each patient. For our analysis, we consider only the first interview,
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which covers 1744 patients.

The detailed patients information were collected using the classification system VAOR

(Valutazione dell’Anziano Ospite di Residenza) that represents the Italian version of the

interRAI Minimum Data Set (MDS) for nursing home care (Morris et al., 1991; Hawes et al.,

1997). The questionnaire covers several aspects of the health status of the elderly patients.

From the original questionnaire, we singled out 75 items, including only those actually related

to health conditions. The discarded items are related to treatments and other aspects that

are not relevant for our application.

The selected items are grouped into eight different sections of the questionnaire concern-

ing:

1. Cognitive Conditions (CC);

2. Auditory and View Fields (AVF);

3. Humor and Behavioral Disorders (HBD);

4. Activities of Daily Living (ADL);

5. Incontinence (I);

6. Nutritional Field (NF);

7. Dental Disorders (DD);

8. Skin Conditions (SC).

The 75 items are polytomously-responded, with categories generally ordered according

to increasing difficulty levels in accomplishing a certain task or severeness of the health

condition. The complete list of items, with the corresponding number of response categories,

is reported in Appendix. Table 1 also shows the average of the percentage of missing values

computed with respect to the items composing each section of the questionnaire.

In this application, the LC model allows us to classify subjects into latent classes cor-

responding to different degrees of severeness of elderly patients’ health condition. This

classification may have important implications on the system of financial support for long-

term nursing homes and on the evaluation of their performance with respect to their ability

to retain over time patients in the classes corresponding to better quality-of-life.

7



section % missing

1 (CC) 1.04
2 (AVF) 0.77
3 (HBD) 2.24
4 (ADL) 9.23
5 (I) 1.89
6 (NF) 5.82
7 (DD) 2.47
8 (SC) 6.75

Table 1: Average percentage of missing values for each section of the questionnaire.

Latent variable models for ordinal variables are also present in the literature, such as the

Rating Scale model (Andersen, 1977; Andrich, 1978). In this model, the response probability

is expressed as a function of one or more latent variables through a specific link function

(e.g., the cumulative logit link). Given the ordinal nature of the items composing our

questionnaire, this model could be also used in the present context. However we prefer

to avoid such parametrization and to rely on a standard LC model. The main advantages

are the simplicity of the approach and the need of a reduced the number of parametric

assumptions.

3 The Latent Class model with missing responses

Let J denote the number of items in the questionnaire of interest and, for a sample of n

respondents, let Yij denote the response variable for subject i and item j, with i = 1, . . . , n

and j = 1, . . . , J , which has lj categories, from 0 to lj − 1. Moreover, to take into account

missing responses, we introduce the binary indicators Rij: when subject i responds to item

j, Rij is equal to 1 and the label corresponding to the chosen response category is assigned

to Yij; otherwise, Rij is set equal to 0 and an arbitrary value is assigned to Yij. The value

assigned to the missing response is arbitrary in the sense that it does not have any influence

on the estimation results. We also introduce the notation Y ∗
ij for the “underlying” response

which is unobserved when Rij = 0 and coincides with Yij when Rij = 1. Finally, we let

Y ∗
i = (Y ∗

i1, . . . , Y
∗
iJ), Ri = (Ri1, . . . , RiJ), and Y i = (Yi1, . . . , YiJ).

In order to explain the dependence structure between the response variables, the LC

model assumes the existence of a discrete latent variable Ui which has, a priori, the same
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distribution for every subject i. This distribution is based on k support points, labeled from

1 to k. Each support point corresponds to a latent class in the population and has a specific

weight (or a priori probability); these weights are denoted by π1, . . . , πk. Moreover, the

conditional probability that individual i in class u provides response y to item j is

λj|u(y) = p(Yij = y|Ui = u), j = 1, . . . , J, u = 1, . . . , k, y = 0, . . . , lj − 1.

We also introduce the parameters

ηj|u = p(Rij = 1|Ui = u), j = 1, . . . , J, u = 1, . . . , k,

corresponding to the probabilities that a subject in latent class u provides the response to

item j. Overall, the number of non-redundant parameters of the extended LC model is then

m = (k − 1) + k
∑

j

lj,

since it has kJ additional parameters with respect to the standard LC model, which rules

out missing responses (Goodman, 1974). Therefore, under this extended version of the LC

model, the latent classes are also characterized in terms of probability that a response is

given. In order to make the model more parsimonious, it is also possible to assume certain

constraints on the parameters ηj|u (see also Section 4.3).

As in the standard LC model, we assume local independence. For the present model,

this assumption is formulated by requiring that, for all i, the response variables in Y ∗
i (i.e.,

Y ∗
i1, . . . , Y

∗
iJ) and in Ri (i.e., Ri1, . . . , RiJ) are conditionally independent, given the latent

variable Ui. Moreover, the condition of latent ignorability (Harel and Schafer, 2009) that we

assume is formulated by requiring that the random vector Ri is conditionally independent

of the random vector Y ∗
i given Ui.

The assumption of local independence implies that

p(y∗
i |u) = p(Y ∗

i = y∗
i |Ui = u) =

∏

j

λj|u(yij)
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and

p(ri|u) = p(Ri = ri|Ui = u) =
∏

j

η
rij
j|u(1− ηj|u)

1−rij ,

where y∗
i denotes a realization of Y ∗

i with elements y∗ij and ri denotes a realization ofRi with

elements rij, where j = 1, . . . , J . Then, on the basis of the assumption of latent ignorability

and considering that Yij is a function of Rij and Y ∗
ij , we have that

p(ri,yi|u) = p(Ri = ri,Y i = yi|Ui = u) = p(ri|u)p(yi|u) =

=
∏

j

η
rij
j|u(1− ηj|u)

1−rij
[

rij λj|u(yij) + (1− rij)
]

=

=
∏

j

[

ηj|uλj|u(yij)
]rij

(1− ηj|u)
1−rij ,

with yi denoting a realization of Y i having elements yij, j = 1, . . . , J . Finally, the manifest

probability of the response pattern (ri,yi) for subject i is

p(ri,yi) =
∑

u

p(ri,yi|u)πu.

Another quantity of interest is the posterior probability that a subject with observed

response configuration (ri,yi) belongs to latent class u. Using standard rules, this probability

is equal to

p(u|ri,yi) = p(Ui = u|Ri = ri,Y i = yi) =
p(ri,yi|u) πu

p(ri,yi)
, u = 1, . . . , k. (1)

These posterior probabilities are used to allocate subjects in the different latent classes, as

will be clarified in the following.

As mentioned in Section 1, an alternative way to formulate an LC model in the present

context is on the basis of the hypothesis that the responses are missing at random (MAR;

Rubin, 1976; Little and Rubin, 2002). In particular, MAR assumption states that the prob-

ability of the observed missingness pattern, given the observed and the unobserved data,

does not depend on the unobserved data. Therefore, the missing data are ignorable for

likelihood-based inference, provided that the parameters of the missing data mechanism are

separable from those of the model for the responses of interest. Thus, we can proceed without

worrying about the model for missingness and a valid analysis can be done considering only
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the observed data (Howell, 2008). The conditional probability of the response configuration,

given the latent class, is simply

p(yi|u) =
∏

j:rij=1

λj|u(yij),

and then

p(yi) =
∑

u

p(yi|u)πu. (2)

Note that in this case the number of parameters is the same as the standard LC model, that

is (k − 1) + k
∑

j(lj − 1) = m− kJ .

In the application to the ULISSE dataset, the MAR assumption seems to be unrealistic,

since it is plausible that patients with severe health condition are less likely to respond to

some items. Considering the above latent ignorability assumption, the latent classes are also

characterized in terms of probability that a given response is provided. This can provide more

information with respect to the standard MAR assumption. A more detailed discussion on

the missing assumptions for the considered application, together with a comparison between

the maximum likelihood estimates obtained under our assumption of latent ignorability and

the MAR assumption, are illustrated in Section 6.3.

4 Maximum likelihood estimation

In the following, we outline maximum likelihood estimation of the proposed LC model via

the Expectation-Maximization (EM; Baum and Petrie, 1966; Baum et al., 1970) algorithm

and we deal with the choice of the starting values for this algorithm. We then briefly discuss

maximum likelihood estimation under the MAR assumption.

Given the independence between the sample units, the log-likelihood function of the

model formulated in Section 3 is

ℓ(θ) =
∑

i

log p(ri,yi), (3)

where θ is a short-hand notation for all model parameters. In order to estimate these

parameters, we maximize this function by the EM algorithm.
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4.1 Expectation-Maximization algorithm

The EM algorithm is based on the complete-data likelihood that we could compute if we knew

the value of the latent variable Ui for every subject i in the sample. This is equivalent to the

knowledge of the latent class to which every subject belongs. We represent this information

by the set of dummy variables ziu, i = 1, . . . , n, u = 1, . . . , k, where ziu is equal to 1 if

subject i belongs to latent class u and to 0 otherwise. Then, we can write the complete-data

log-likelihood as

ℓ∗(θ) =
∑

i

∑

u

ziu log[p(ri,yi|u)πu] =

=
∑

i

∑

u

ziu
∑

j

[rij log ηj|u + (1− rij) log(1− ηj|u)] +

+
∑

i

∑

u

ziu
∑

j

rij log λj|u(yij) +
∑

u

z+u log πu, (4)

where z+u =
∑

i ziu is the number of subjects in latent class u. Note that, given a configura-

tion of dummy variables ziu, we have an explicit solution for the maximum of ℓ∗(θ) in terms

of the model parameters. In particular, we have

πu =
z+u

n
, u = 1, . . . , k, (5)

λj|u(y) =

∑

i I(yij = y)rijziu
∑

i rijziu
, j = 1, . . . , J, u = 1, . . . , k, y = 0, . . . , lj − 1, (6)

ηj|u =

∑

i rijziu

z+u

, j = 1, . . . , J, u = 1, . . . , k, (7)

where I(·) is the indicator function equal to 1 if its argument is true and to 0 otherwise.

In order to maximize the model log-likelihood, the EM algorithm alternates the following

two steps until convergence, starting from an initial guess of the model parameters collected

in θ:

• E-step: compute the conditional expected value of the complete-data log-likelihood

ℓ∗(θ) given the observed data and the current value of the parameters;

• M-step: update the model parameters by maximizing the expected value obtained at

the E-step.

Both steps are usually simple to implement. In practice, the E-step consists of obtaining
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the posterior expected value of every dummy variable ziu, that is

ẑiu = p(u|ri,yi), i = 1, . . . , n, u = 1, . . . , k,

which may be computed according to (1).

At the M-step we maximize the expected value of the complete-data log-likelihood, which

is obtained by substituting every dummy variable ziu in (4) with ẑiu, and in this way we

update the parameter vector θ. For this maximization we exploit the formulae given by (5),

(6), and (7), with ẑiu instead of ziu.

As mentioned in Section 3, the posterior probabilities ẑiu may be used for the classification

of the subjects in the sample, that is for the allocation of the subjects into the k latent classes.

In particular, on the basis of the output of the EM algorithm, we assign each subject i to

latent class u when ẑiu = ẑ∗i , where ẑ∗i is the maximum of ẑi1, . . . , ẑik. For this reason,

Magidson and Vermunt (2001) and Vermunt and Magidson (2002) refer to this kind of

model as an LC cluster model.

We have also to mention that, whereas the LC model assumes that individuals are full

members of one of the classes for the discrete latent variable, in statistical literature other lat-

ent classification techniques exist. For example, the Grade of Membership model (Woodbury

et al., 1978; Manton and Woodbury, 1991) assumes that individuals can be partial mem-

bers of more than one class of a continuous distribution of the latent variables (Erosheva,

2002, 2006). This model was also used to identify clinically meaningful health profiles in

community-living elderly (Portrait et al., 1999; McNamee, 2004) and to develop disability

profiles (Erosheva et al., 2007).

4.2 Initialization of the algorithm

A typical problem of the latent variable and finite mixture models is the multimodality of the

likelihood. Obviously, in the presence of more local maxima, the EM algorithm converges

to one of them, which is not ensured to be the global maximum. In this case, it is advisable

to use a deterministic initialization strategy together with a random initialization strategy.

The latter consists of repeatedly initializing the algorithm from randomly chosen starting

values for the parameters. When more starting values are used, the final estimate is the
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one corresponding to the largest likelihood value that has been found at convergence of

the EM algorithm (Biernacki et al., 2003; Karlis and Xekalaki, 2003). This solution is not

guaranteed to correspond to the global maximum; however, it is rather obvious that the

chance of reaching the global maximum increases with the number of starting values that

is adopted. The drawback of the likelihood multimodality is particularly severe in the LC

model used in our analysis, due to the large number of items, and to the fact that these

items generally have more than two response categories.

In our approach we adopt a deterministic initialization which is based on a hierarchical

clustering procedure of the sample units. This procedure uses a suitable distance measure

computed on the basis of the complete-data log-likelihood; see equation (4). Given two

clusters of units, this distance is equal to the difference between the complete log-likelihood

of the LC model computed when these clusters correspond to two separate latent classes

and that computed when these clusters are joined in the same latent class. The hierarchical

clustering algorithm starts from the case of one cluster for every unit, which corresponds to

k = n, and then sequentially merges these clusters until defining a classification based on

only one cluster. Then, the EM algorithm is started from the classification corresponding to

a number of clusters equal to the number of latent classes k of the adopted LC model.

We also adopt a random initialization which is based on drawing each latent class weight

πu from a uniform distribution from 0 and 1 and then normalizing these random draws in a

suitable way. Similarly, we randomly choose λj|u(y) and ηj|u. We use a number of random

initializations which increases with the number of latent classes, because the latter affects

the number of parameters and then the expected number of local maxima; more details are

given in Section 6.1 with specific reference to the application.

4.3 Estimation under missing at random assumption

The EM algorithm illustrated above may be also employed to fit the LC model under the

MAR assumption. In this case, the model log-likelihood is simply

ℓm(φ) =
∑

i

log p(yi) (8)
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where the manifest probability p(yi) is computed as in (2). As clarified in Section 3, under

the MAR assumption, the parameters to be estimated are the same as in the standard LC

model, that is the class weights π1, . . . , πk and the conditional response probabilities λj|u(y),

which are included in the vector φ.

It is worth noting that the estimates of the parameters above, obtained under the MAR

assumption, may be also obtained from the proposed LC model under the hypothesis that the

probability of responding to an item, ηj|u, does not depend on the latent class. Formally, this

hypothesis may be expressed asH0 : ηj|u = ηj, u = 1, . . . , k. When it holds, the log-likelihood

of the extended LC model defined in (3) may be expressed as the sum of two components:

the first is ℓm(φ) defined in (8), whereas the second is given by ℓr(η) =
∑

i log p(ri), with

p(ri) =
∏

j

η
rij
j (1− ηj)

1−rij ,

and where η is the vector of all parameters ηj.

In order to test the hypothesis H0, we can rely on a Likelihood Ratio (LR) statistic,

which consists of comparing the log-likelihood ℓ(θ̂) with ℓ(θ̂0), where θ̂ is the unconstraint

estimate of θ under the proposed LC model, whereas θ̂0 is the constraint estimate under

H0. This statistic is equal to D = −2[ℓ(θ̂0) − ℓ(θ̂)] and, under H0, has an asymptotic χ2

distribution with (k − 1)J degrees of freedom. Since the parameter estimates under H0 are

equal to those obtained under the MAR assumption, through this test we can have some

evidence in favor of or against the MAR assumption.

5 Item selection procedure

Once the LC model is fitted with a fixed number of latent classes and the subjects are clas-

sified on the basis of the posterior probabilities ẑiu as described above, the item selection

algorithm we propose sequentially removes an item from the initial set until a certain stop-

ping rule is satisfied. The purpose here is to select the optimal subset of items, in terms of

classification accuracy, from the set of available ones. In particular, the algorithm sequen-

tially eliminates those items that do not significantly change the classification of the subjects

in the sample with respect to that based on the full set of items.
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More precisely, let A denote the set of existing items at the end of a given step of this

algorithm. At the next step, we compute, for every j ∈ A, the proportion FA\j of subjects

whose classification is modified when this item is removed with respect to the classification

based on the full set of items. Then, the item corresponding to the minimum value of FA\j,

j ∈ A, is removed. If the minimum value of FA\j is common to two or more items in A, the

item with the minimum value of the index DA\j is removed. This index corresponds to the

following Kullback-Leibler distance

DA\j =
∑

i

∑

u

ẑiu log
ẑiu

ẑ
A\j
iu

,

where ẑ
A\j
iu is the posterior probability computed according to (1) considering all the re-

sponses to the items in A apart from item j. Other distance measures between the posterior

probabilities ẑiu and ẑ
A\j
iu could be used, such as a distance based on the square differences

between these probabilities.

It is worth noting that our item selection procedure is based on the consideration that

an item is not useful when it does not have a strong connection with the latent trait and,

therefore, it has not a significant influence on the classification of the subjects. Moreover,

at each step of the item selection algorithm described above, the values of FA\j and DA\j

are computed on the basis of the parameter estimates obtained from the initial fitting of

the extended LC model. These initial estimates are obtained on the basis of data coming

from the administration of a questionnaire, which is approved and validated at international

level, to a large sample of subjects. Therefore, we consider these estimates on the same

footing as “true” parameter values. On the other hand, this criterion is in accordance with

the use of these parameters for classifying a sample of subjects on the basis of consecutive

administrations of the questionnaire. Furthermore, since the classification of the subjects is

always based on the same parameter estimates, we always consider the same ordering for

the latent classes, that leads the clusters to be always identified in the same way.

The approach we propose considers all the subjects in the sample when computing the

indices FA\j and DA\j. Alternatively, we can discard those subjects that have unusual

sequences of responses or a large number of missing responses. For these subjects the clas-

sification may change, even if the deleted items have a low discriminating power. In order
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to decide which subjects have to be discarded we use a threshold, such as 0.95, for the

maximum value of the posterior probabilities ẑiu. The subjects having a maximum posterior

probability lower than this threshold may be considered as having an unusual behavior in

relation to the classification procedure and then can be ignored during the item selection

algorithm.

As already mentioned in Section 1, an alternative item selection procedure is proposed

by Dean and Raftery (2010). In particular, these authors propose a method in which the

importance of an item is assessed by comparing two models, given the items already selected.

In one model the item provides information about cluster allocation beyond that contained in

the already selected items, and in the other model it does not. The two models are compared

via the Bayesian Information Criterion (BIC; Schwarz, 1978), seen as an approximation of

the Bayes Factor. On the other hand, in the item selection strategy we propose, we explicitly

consider a criterion which takes into account the classification of the subjects that arises from

a selected subset of items. From this perspective, our method seems more sensible when, as

in the application to the ULISSE dataset, the questionnaire is specifically tailored to classify

a sample of subjects on the basis of some latent characteristic. Moreover, differently from the

strategy of Dean and Raftery (2010), our strategy is explicitly formulated so as to account

for missing responses.

6 Application to the ULISSE dataset

In this section, we illustrate the results obtained from the application of the proposed ap-

proach to the ULISSE dataset. We first show the maximum likelihood estimates obtained

from the initialization strategy of the EM algorithm described in Section 4.2. Then, we deal

with the choice of the number of latent classes (k) of the adopted LC model and we report

a comparison between the missing assumptions applied to the data at hand. Finally, we

illustrate the approach introduced in Section 5 to select a reduced set of items.

6.1 Choice of the number of latent classes

With reference to the analyzed dataset, we fitted the extended LC model described in Sec-

tion 3 for a number of latent classes k from 1 to 10. For each k, we initialized the EM
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algorithm as described in Section 4.2 from both a large number of random starting val-

ues and from the output of the hierarchical clustering procedure. In particular, we used

2(k+1) random initializations for k greater than 1. The maximum value of the log-likelihood

obtained under the deterministic and the random strategy is reported in Table 2. Obvi-

ously, for each value of k we take the estimate corresponding to the highest log-likelihood at

convergence of the EM algorithm.

maximum log-likelihood
deterministic random

k initialization initialization

1 -118,645.34 -118,645.34
2 -106,489.45 -106,489.45
3 -102,788.03 -102,647.50
4 -99,512.87 -99,367.87
5 -97,150.04 -97,409.08
6 -95,848.61 -96,189.39
7 -94,815.31 -94,978.31
8 -93,877.77 -94,028.91
9 -93,148.59 -93,190.11
10 -92,483.79 -92,630.66

Table 2: Maximum value of the log-likelihood obtained under the deterministic and the ran-
dom initialization strategy. The highest log-likelihood value in each row is in boldface.

On the basis of the results above, we select the number of latent classes adopting different

criterion. However, since we are especially interested in the classification of the sample of the

elderly patients on the basis of the questionnaire, we give more relevance to criteria which

measure the quality of the classification. In particular, we mainly rely on the normalized

entropy criterion (NEC; Celeux and Soromenho, 1996; Biernacki et al., 1999) which is based

on the index defined as

NEC =
−

∑

i

∑

u ẑiu log ẑiu

(ℓ̂− ℓ̂1)
(9)

for k ≥ 2, where ℓ̂ is the maximum of the log-likelihood of the model of interest and ℓ̂1 is the

maximum log-likelihood for the one latent class model. For k = 1, we have NEC = 1 by con-

vention. The optimal number of latent classes is that corresponding to the minimum value of

NEC. This criterion is based on the value of the posterior probabilities ẑiu = p(u|ri,yi), which

are used to classify subjects into latent classes, and takes also into account the goodness-of-fit

of the model, which is measured by the log-likelihood.

Further to NEC, we consider a criterion based on an alternative index to measure the
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quality of the classification (Bartolucci et al., 2009), which is defined as

S =

∑

i(ẑ
∗
i − π̂∗)

n (1− π̂∗)
, (10)

where ẑ∗i is the maximum, with respect to u, of the posterior probabilities ẑiu, and π̂∗ is

the maximum, with respect to u, of the maximum likelihood estimates of the class weights

under the model with k classes. When all the probabilities ẑ∗i are close to 1, the classification

provided by the model relies on well separated latent states. In this situation, index S will

attain a value close to its maximum which is equal to 1. On the other hand, when classes

are not well separated, the index S will attain a value close to 0.

Finally, as in common applications of the LC model, we consider information criteria,

such as the Akaike Information Criterion (AIC; Akaike, 1973), which is based on the index

AIC = −2 ℓ̂+ 2 m, (11)

and the Bayesian Information Criterion (BIC; Schwarz, 1978), based on the index

BIC = −2 ℓ̂+m log(n). (12)

In the above expressions, m stands for the number of free parameters of the model. The

optimal number of latent classes is that corresponding to the minimum value of the indices

AIC or BIC. Usually BIC is preferable to AIC, as the latter tends to overestimate the number

of states; see Dias (2006) and Nylund et al. (2007) for simulation studies on the performance

of these and other information criteria.

Table 3 displays the maximum log-likelihood of the proposed model together with the

corresponding number of parameters and the value attained for the indices described above.

We observe that the BIC index assumes the minimum value for k = 8, whereas AIC leads

to choosing a larger number of classes. However, taking into account the purpose of this

application, we chose k = 5 latent classes, as suggested by the criteria based on the indices

S and NEC. Note that a large number of latent classes may have a negative impact on

the interpretability of the latent classes, which, in our application, correspond to different

degrees of impairment of the elderly people health status.
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k ℓ̂ m AIC BIC S NEC

1 -118,645.34 150 237,590.67 238,410.26 - -
2 -106,489.45 495 213,968.90 216,673.54 0.9821 0.0028
3 -102,647.50 743 206,781.00 210,840.70 0.9821 0.0029
4 -99,367.87 991 200,717.74 206,132.50 0.9848 0.0025
5 -97,150.04 1,239 196,778.08 203,547.89 0.9863 0.0020
6 -95,848.61 1,487 194,671.21 202,796.09 0.9813 0.0028
7 -94,815.31 1,735 193,100.62 202,580.55 0.9808 0.0028
8 -93,877.77 1,983 191,721.54 202,556.52 0.9813 0.0029
9 -93,148.59 2,231 190,759.19 202,949.23 0.9827 0.0026

10 -92,483.79 2,479 189,925.58 203,470.68 0.9817 0.0029

Table 3: Selection of the number of latent classes for the LC model. For each number of
classes, ℓ̂ is the maximum log-likelihood of the model, m is the number of parameters, and
indices AIC, BIC, S and NEC are defined in (9), (10), (11), and (12). In boldface are
reported the quantities corresponding to the model selected by the indices.

6.2 Parameter estimates

In this section we report the results of the estimation procedure obtained when considering

the proposed LC model, with reference to the selected number of latent classes, k = 5. Since

the items are categorical, with a different number of categories, we decided to summarize the

estimated conditional response probabilities, λ̂j|u(y), by a weighted average computed with

respect to values equally spaced between 0 and 1, and with weights given by these estimated

response probabilities. This quantity can be expressed as

λ̂∗
j|u =

1

lj − 1

∑

y

yλ̂j|u(y).

For each item, this corresponds to assigning a score between 0 and 1 to the different response

categories, and then computing the average of the scores, given the corresponding response

probabilities. In particular, a value of λ̂∗
j|u close to 0 corresponds to a low probability of

suffering from a certain pathology, whereas a value close to 1 corresponds to a high probability

of suffering from the same pathology. To summarize these results, we also computed ˆ̄λ
∗

d|u as

the average of the values assumed by λ̂∗
j|u with respect to the items composing each section

d of the questionnaire, with d = 1, . . . , 8. Finally, in order to have a clearer interpretation

of the results, we ordered the latent classes on the basis of the values of ˆ̄λ
∗

d|u assumed in the

first section (ˆ̄λ
∗

1|u), so that the first class may be interpreted as that of subjects with the best

health conditions. For each latent class, Table 4 shows the values of ˆ̄λ
∗

d|u together with the
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estimated class weights π̂u.

d

1 2 3 4 5 6 7 8
u (CC) (AVF) (HBD) (ADL) (I) (NF) (DD) (SC) π̂u

1 0.115 0.134 0.089 0.118 0.275 0.065 0.205 0.022 0.281
2 0.170 0.183 0.108 0.585 0.627 0.103 0.216 0.076 0.206
3 0.573 0.487 0.248 0.546 0.783 0.179 0.139 0.099 0.030
4 0.624 0.389 0.234 0.310 0.644 0.086 0.206 0.023 0.182
5 0.693 0.544 0.163 0.781 0.885 0.168 0.214 0.129 0.301

maxu(
ˆ̄
λ
∗

d|u)−minu(
ˆ̄
λ
∗

d|u) 0.579 0.410 0.158 0.663 0.610 0.114 0.077 0.107

Table 4: Means of the estimated response probabilities, ˆ̄λ
∗

d|u, for each latent class u and
each section d of the questionnaire, together with the estimated weights π̂u, under the latent
ignorability assumption.

The average ˆ̄ηd|u of the estimated probabilities, η̂j|u, of giving a response to the items

composing each section d is reported in Table 5. We can see that the lowest estimated

probabilities are around 0.5.

d

1 2 3 4 5 6 7 8
u (CC) (AVF) (HBD) (ADL) (I) (NF) (DD) (SC)

1 0.992 0.996 0.994 0.986 0.984 0.950 0.976 0.946
2 0.992 0.993 0.996 0.885 0.995 0.949 0.997 0.953
3 0.841 0.906 0.479 0.756 0.849 0.613 0.678 0.540
4 0.997 0.996 0.993 0.956 0.984 0.960 0.991 0.940
5 0.997 0.995 0.991 0.836 0.980 0.952 0.981 0.941

Table 5: Means of the estimated probabilities of giving a response to an item, ˆ̄ηd|u, for
each latent class u and each section d of the questionnaire, under the latent ignorability
assumption.

6.3 Comparison with the MAR assumption

The previous results have been obtained under the assumption of latent ignorability for the

missing responses, illustrated in Section 3. In the following, we compare the results obtained

under this assumption with those obtained under the MAR assumption. For this aim, in

Table 6 (top panel) we report the means of the estimated response probabilities, which

are denoted by ˜̄λ
∗

d|u and are computed as clarified in the previous section, together with

the estimated class weights, π̃u, obtained under the MAR assumption. In the same table
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(bottom panel) we report the differences between these estimates and the corresponding

estimates obtained under the latent ignorability assumption (Table 4).

d

1 2 3 4 5 6 7 8
u (CC) (AVF) (HBD) (ADL) (I) (NF) (DD) (SC) π̃u

1 0.099 0.123 0.077 0.110 0.262 0.063 0.204 0.020 0.253
2 0.133 0.166 0.079 0.555 0.592 0.095 0.221 0.077 0.177
3 0.561 0.359 0.236 0.233 0.561 0.085 0.200 0.022 0.171
4 0.574 0.373 0.215 0.682 0.828 0.157 0.226 0.078 0.199
5 0.740 0.642 0.145 0.788 0.906 0.159 0.195 0.147 0.199

1 -0.015 -0.011 -0.013 -0.008 -0.013 -0.002 -0.001 -0.002 -0.028
2 -0.037 -0.017 -0.029 -0.029 -0.035 -0.008 0.005 0.001 -0.029
3 -0.012 -0.128 -0.012 -0.313 -0.222 -0.095 0.061 -0.077 0.141
4 -0.050 -0.016 -0.020 0.372 0.184 0.071 0.020 0.056 0.017
5 0.047 0.098 -0.019 0.007 0.020 -0.008 -0.019 0.019 -0.102

Table 6: Means of the estimated response probabilities, ˜̄λ
∗

d|u, for each latent class u and
each section d of the questionnaire, together with the estimated weights π̃u, under the MAR
assumption (top panel). Differences with respect to the corresponding estimates under the
latent ignorability assumption (bottom panel).

From the results in Table 6 we observe that the largest differences between the estimates

obtained under the MAR assumption and under the latent ignorability assumption exist for

sections ADL (Activity of Daily Living) and I (Incontinence). Note that large differences

are especially observed for subjects in the third latent class, who have the lowest estimated

probability of giving a response (see Table 5). Moreover, for this class, and for the last class,

we observe the largest change in the estimated weight. Overall, ignoring the missing data

mechanism leads to a significant difference in the estimation results, especially for those

sections of the questionnaire in which the number of missing values is relevant, and for

the classes that include patients with high probability of missing responses. Therefore, the

MAR assumption seems to be restrictive for the analysis of the data at hand, whereas our

assumption of latent ignorability seems more realistic.

The above conclusion is confirmed by the result of the test of the hypothesisH0 : ηj|u = ηj,

u = 1, . . . , k, already illustrated in Section 4.3, under which we obtain the same parameter

estimates as under the MAR assumption. With k = 5, the LR statistic for this hypothesis is

equal to D = 4, 946.58 with 300 degrees of freedom and then a p-value equal to 0. Therefore,

we have a strong evidence against the hypothesis H0 and then against the MAR assumption.

On the other hand, it is rather difficult to consider missing responses as ignorable given the
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sensitivity of certain items and the multidimensionality of the questionnaire.

Here, we also report the results of the estimation procedure when the LC model is applied

to a reduced dataset in which all the patients with at least one missing response to an item

are removed. In this way the number of patients is reduced from 1744 to 592. Table 7 shows

the means of the estimated response probabilities, ˜̄λ
∗

d|u, and the estimated class weights, π̃u,

together with the differences with respect to the results reported in Table 4. Even in this case,

we observe that largest differences are detected for sections ADL and I of the questionnaire

and for the third latent class. Overall, these differences are significant, confirming that

missing responses are not ignorable.

d

1 2 3 4 5 6 7 8
u (CC) (AVF) (HBD) (ADL) (I) (NF) (DD) (SC) π̃u

1 0.079 0.098 0.051 0.080 0.240 0.049 0.207 0.016 0.304
2 0.112 0.152 0.075 0.396 0.459 0.083 0.215 0.060 0.191
3 0.354 0.224 0.227 0.152 0.311 0.093 0.202 0.016 0.187
4 0.599 0.429 0.187 0.720 0.809 0.167 0.259 0.065 0.140
5 0.669 0.422 0.246 0.351 0.693 0.107 0.225 0.033 0.179

1 -0.036 -0.035 -0.038 -0.039 -0.035 -0.016 0.002 -0.006 0.022
2 -0.058 -0.031 -0.033 -0.189 -0.169 -0.019 -0.001 -0.016 -0.015
3 -0.219 -0.263 -0.021 -0.394 -0.473 -0.086 0.063 -0.083 0.156
4 -0.025 0.040 -0.048 0.410 0.165 0.081 0.053 0.042 -0.042
5 -0.024 -0.122 0.082 -0.431 -0.192 -0.061 0.011 -0.096 -0.122

Table 7: Means of the estimated response probabilities, ˜̄λ
∗

d|u, for each latent class u and each
section d of the questionnaire, together with the estimated weights π̃u, under the reduced
dataset (top panel). Differences with respect to the corresponding estimates under the latent
ignorability assumption (bottom panel).

Finally, we clarify that the comparison in Table 6 is based on the same number of lat-

ent classes (k = 5) selected under the extended LC model which incorporates the latent

ignorability assumption. However, under the MAR assumption the same selection criteria

adopted in this application may lead to selecting a different number of classes, but in this

case a direct comparison in terms of parameter estimates would be infeasible. The same

may happen when dealing with the reduced sample obtained by discarding all subjects with

at least one missing response (see Table 7).
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6.4 Item selection

On the basis of the estimates illustrated in Section 6.2, we performed the item selection

algorithm described in Section 5. In this regard, two approaches may be adopted. The first

uses the information on all subjects in the sample, whereas the second approach discards

from the sample those subjects having an anomalous response pattern.

Under the first approach, the results of the item selection algorithm are reported in

Table 8. In particular, with reference to the first 50 steps of the algorithm, the table indicates

the item which is removed at each step, the section to which the item belongs, and the

corresponding values of the indices FA\j and DA\j.

step item section D
A\j

F
A\j step item section D

A\j
F

A\j

1 65 NF 0.134 0.000 26 37 HBD 30.084 0.009
2 19 HBD 0.253 0.000 27 1 CC 30.319 0.009
3 63 NF 0.298 0.000 28 39 HBD 32.718 0.009
4 74 SC 0.548 0.000 29 35 HBD 36.347 0.010
5 25 HBD 0.762 0.000 30 66 NF 38.507 0.010
6 71 DD 1.274 0.000 31 55 ADL 42.424 0.011
7 31 HBD 1.360 0.001 32 73 SC 47.043 0.013
8 36 HBD 2.082 0.001 33 30 HBD 47.643 0.014
9 64 NF 2.880 0.001 34 47 ADL 57.895 0.015

10 24 HBD 3.274 0.001 35 49 ADL 70.899 0.015
11 22 HBD 4.106 0.002 36 27 HBD 77.196 0.018
12 75 SC 4.630 0.002 37 21 HBD 82.640 0.018
13 28 HBD 6.393 0.002 38 12 CC 75.490 0.020
14 60 I 5.656 0.002 39 69 DD 89.046 0.020
15 52 ADL 5.723 0.002 40 42 ADL 76.717 0.021
16 70 DD 7.845 0.002 41 54 ADL 92.204 0.021
17 23 HBD 8.766 0.003 42 34 HBD 100.836 0.023
18 18 AVF 9.678 0.003 43 72 DD 116.506 0.024
19 14 AVF 12.104 0.004 44 33 HBD 140.257 0.025
20 29 HBD 10.854 0.005 45 40 ADL 146.003 0.027
21 59 I 17.533 0.005 46 26 HBD 181.504 0.030
22 57 ADL 18.885 0.006 47 44 ADL 183.233 0.033
23 15 AVF 27.488 0.006 48 50 ADL 184.303 0.034
24 67 DD 19.878 0.007 49 13 CC 185.315 0.036
25 61 NF 30.078 0.007 50 53 ADL 196.592 0.036

Table 8: Results of the item selection strategy, considering all the subjects in the sample.

These results show that it is possible to remove up to 6 items without changing at all

the classification of the subjects (FA\j = 0 for the first six step). Moreover, we can drop up

to 21 items changing the classification of only the 0.5% of the subjects. Overall, deleting 50

items, the classification changes for a percentage of subjects of around 4%. With respect to

the sections of the questionnaire, we can see that most of the items that can be removed are
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referred to the sections denoted by HBD (Humor and Behavioral Disorder), NF (Nutritional

Field) and SC (Skin Condition), that represent the sections of the questionnaire that have

a reduced discrimination power (see Table 4). Note that the values of FA\j do not increase

monotonically, but this is not ensured from a mathematical point of view.

The second item selection approach only considers those subjects having a maximum

value of the posterior probabilities, ẑ∗i , greater than 0.95. When we apply this strategy to

the ULISSE dataset, we observe that the 95.1% of the subjects may be kept in the sample.

Considering this subset of subjects, Table 9 reports the values obtained by the two indices

FA\j and DA\j for every step of the algorithm. By this strategy, the number of items that

can be removed without changing the classification of the subjects increases from 6 to 25.

Moreover, deleting 50 items, the percentage of subjects for whom the classification changes

is lower than 2.5%.

step item section D
A\j

F
A\j step item section D

A\j
F

A\j

1 31 HBD 0.044 0.000 26 52 ADL 8.902 0.001
2 63 NF 0.056 0.000 27 70 DD 9.455 0.001
3 19 HBD 0.064 0.000 28 25 HBD 10.445 0.001
4 65 NF 0.118 0.000 29 51 ADL 12.312 0.002
5 22 HBD 0.149 0.000 30 59 I 16.842 0.002
6 75 SC 0.175 0.000 31 62 NF 19.067 0.002
7 60 I 0.214 0.000 32 66 NF 20.772 0.002
8 37 HBD 0.287 0.000 33 1 CC 24.569 0.003
9 61 NF 0.373 0.000 34 50 ADL 27.189 0.005

10 14 AVF 0.481 0.000 35 34 HBD 31.070 0.005
11 30 HBD 0.528 0.000 36 16 AVF 37.561 0.007
12 64 NF 0.651 0.000 37 23 HBD 40.287 0.007
13 39 HBD 0.770 0.000 38 71 DD 41.656 0.007
14 28 HBD 0.936 0.000 39 45 ADL 40.270 0.008
15 57 ADL 1.179 0.000 40 21 HBD 42.904 0.009
16 67 DD 1.337 0.000 41 72 DD 54.959 0.009
17 29 HBD 1.631 0.000 42 54 ADL 58.471 0.010
18 74 SC 2.021 0.000 43 24 HBD 61.179 0.012
19 18 AVF 2.307 0.000 44 53 ADL 68.975 0.014
20 27 HBD 2.866 0.000 45 69 DD 86.810 0.015
21 40 ADL 3.780 0.000 46 36 HBD 99.006 0.016
22 38 HBD 4.606 0.000 47 55 ADL 112.675 0.017
23 33 HBD 5.309 0.000 48 5 CC 114.207 0.020
24 12 CC 6.623 0.000 49 13 CC 118.671 0.022
25 35 HBD 7.685 0.000 50 4 CC 132.679 0.023

Table 9: Results of the item selection strategy, considering only those subjects in the sample
having a maximum value of the posterior probabilities, ẑ∗i , greater than 0.95.

For both strategies, we also note that there is no a clear relation between the removed

items and the corresponding number of missing responses.
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7 Conclusions

In this paper, we propose an algorithm for item selection which is based on an extended

version of the Latent Class (LC) model (Lazarsfeld, 1950; Lazarsfeld and Henry, 1968; Good-

man, 1974). In particular, this algorithm is aimed at finding the smallest subset of items

which provides an amount of information that is close to the original set of items in terms of

classification of the subjects in homogenous clusters. Moreover, the extended version of the

LC model we propose, and then the item selection algorithm, can be used in the presence of

missing responses. This model relies on a form of latent ignorability assumption (Harel and

Schafer, 2009), given the latent variable.

The method for item selection is of simple implementation. In particular, we implemented

it in a series of Matlab functions that we make available to the reader upon request.

Moreover, in order to illustrate the potentiality of the proposed approach for large scale

investigations, we report an application to a dataset collected within an Italian project,

named ULISSE (Lattanzio et al., 2010), about the quality-of-life of elderly subjects hosted

in a certain number of nursing homes.

The ULISSE dataset was collected by a very large number of polytomous items about

several aspects of the health status of the patients and presents several missing responses.

The extended LC model that we propose may be applied without discarding any record

and then without loosing relevant information. In order to evaluate the validity of the

latent ignorability assumption, we also illustrate a comparison between the estimation results

obtained when assuming this condition and the results obtained when assuming the more

standard missing at random (MAR) hypothesis (Rubin, 1976; Little and Rubin, 2002). For

the data at hand, we found evidence against the MAR assumption, and then our approach,

which considers missing responses not ignorable, seems more appropriate. On the other hand,

this conclusion is in accordance with the particular topic dealt with by the questionnaire

and its multidimensional structure.

Finally, consider that a large number of items may lead to a lengthy and expensive

administration of the questionnaire and may induce the respondents to provide inaccurate

responses. We show that the suggested algorithm for item selection, when applied to the

ULISSE dataset, leads to a strong reduction of the number of items, without loosing relevant
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information for the classification of the subjects. In particular, we found a subset of one third

of items with a degree of informativeness close to that of the initial set. This implies clear

advantages in terms of setting up a questionnaire which may be more easily administered

to a sample of subjects, especially in a longitudinal context in which we have repeated

measurements.
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Appendix

j # cat. item description

Section CC

01 2 Short-term memory (0 = “recalls what recently happened (5 minutes)”, 1 = “does not recall”)
02 2 Long-term memory (0 = “keeps some past memories green”, 1 = “does not keep some past memories green”)
03 2 Memory status (0 = “recalls the actual season”, 1 = “does not recall the actual season”)
04 2 Memory status (0 = “recalls where is his room”, 1 = “does not recall where is his room”)
05 2 Memory status (0 = “recalls the names and faces of the staff”, 1 = “does not recall the names and faces of the staff”)
06 2 Memory status (0 = “recalls where he is”, 1 =“does not recall where he is”)
07 4 Decision about his daily activities (from 0 = “independent decisions” to 3 = “unable to decide”)
08 3 Easily sidetracked (from 0 = “problems absent” to 2 = “problems worsened in the last week”)
09 3 Altered perception or awareness of surrounding (from 0 = “problems absent” to 2 = “problems worsened in the last week”)
10 3 Disorganized speech (from 0 = “problems absent” to 2 = “problems worsened in the last week”)
11 3 Restlessness movements (from 0 = “problems absent” to 2 = “problems worsened in the last week”)
12 3 Lethargic spans (from 0 = “problems absent” to 2 = “problems worsened in the last week”)
13 3 Change in the cognitive conditions during the day (from 0 = “problems absent” to 2 = “problems worsened in the last week”)

Section AVF

14 4 Hearing (from 0 =“no hearing impairment” to 3 = “severe hearing impairment”)
15 4 Ability to make itself understood (from 0 = “understood” to 3 = “seldom/never understood”)
16 3 Clear language (from 0 = “clear language” to 2 = “no language”)
17 4 Ability to understand others (from 0 = “understands” to 3 = “seldom/never understands”)
18 5 Sight in conditions of adequate lighting (from 0 = “no sight impairment” to 4 = “severe sight impairment”)

Section HDB

19 3 Negative statements (from 0 = “symptom not showed” to 2 = “symptom daily showed”)
20 3 Repetitive questions (from 0 = “symptom not showed” to 2 = “symptom daily showed”)
21 3 Repetitive verbalizations (from 0 = “symptom not showed” to 2 = “symptom daily showed”)
22 3 Persistent anger with himself or others (from 0 = “symptom not showed” to 2 = “symptom daily showed”)
23 3 Self deprecation disesteem (from 0 = “symptom not showed” to 2 = “symptom daily showed”)
24 3 Fears that are not real (from 0 = “symptom not showed” to 2 = “symptom daily showed”)
25 3 To believe himself to be dying (from 0 = “symptom not showed” to 2 = “symptom daily showed”)
26 3 To complain about his health (from 0 = “symptom not showed” to 2 = “symptom daily showed”)
27 3 Repeated events anxiety (from 0 = “symptom not showed” to 2 = “symptom daily showed”)
28 3 Unpleasant mood in morning (from 0 = “symptom not showed” to 2 = “symptom daily showed”)
29 3 Insomnia/problems with sleep (from 0 = “symptom not showed” to 2 = “symptom daily showed”)
30 3 Expressions of sad-faced (from 0 = “symptom not showed” to 2 = “symptom daily showed”)
31 3 Easily tears (from 0 = “symptom not showed” to 2 = “symptom daily showed”)
32 3 Repetitive movements (from 0 = “symptom not showed” to 2 = “symptom daily showed”)
33 3 Abstention from activities of interest (from 0 = “symptom not showed” to 2 = “symptom daily showed”)
34 3 Reduced local interactions (from 0 = “symptom not showed” to 2 = “symptom daily showed”)
35 4 To wander aimlessly (from 0 = “problem absent” to 3 = “problem daily encountered”)
36 4 Offensive language (from 0 = “problem absent” to 3 = “problem daily encountered”)
37 4 Physically aggressive (from 0 = “problem absent” to 3 = “problem daily encountered”)
38 4 Socially inappropriate behavior (from 0 = “problem absent” to 3 = “problem daily encountered”)
39 4 To refuse assistance (from 0 = “problem absent” to 3 = “problem daily encountered”)

Section ADL

40 5 Moving to/from lying position (from 0 = “independent” to 4 = “totally dependent”)
41 5 Moving to/from bed, chair, wheelchair (from 0 = “independent” to 4 = “totally dependent”)
42 5 Walking between different points within the room (from 0 = “independent” to 4 = “totally dependent”)
43 5 Walking in the corridor (from 0 = “independent” to 4 = “totally dependent”)
44 5 Walking into the nursing home ward (from 0 = “independent” to 4 = “totally dependent”)
45 5 Walking outside the nursing home ward (from 0 = “independent” to 4 = “totally dependent”)
46 5 Dressing (from 0 = “independent” to 4 = “totally dependent”)
47 5 Eating (from 0 = “independent” to 4 = “totally dependent”)
48 5 Using the toilet room (from 0 = “independent” to 4 = “totally dependent”)
49 5 Personal hygiene (from 0 = “independent” to 4 = “totally dependent”)
50 5 Taking full-body bath/shower (from 0 = “independent” to 4 = “totally dependent”)
51 4 Balance problems (from 0 = “does not have balance problems” to 3 = “needs physical assistance”)
52 3 Mobility in the neck (0 = “no limitation”, 1 = “unilateral limitation”, 2 = “bilateral limitation”)
53 3 Mobility in the arm including shoulder or elbow (0 = “no limitation”, 1 = “unilateral limitation”, 2 = “bilateral limitation”)
54 3 Movements of the hand including wrist or finger (0 = “no limitation”, 1 = “unilateral limitation”, 2 = “bilateral limitation”)
55 3 Mobility in the leg and hip (0 = “no limitation”, 1 = “unilateral limitation”, 2 = “bilateral limitation”)
56 3 Mobility in the foot and ankle (0 = “no limitation”, 1 = “unilateral limitation”, 2 = “bilateral limitation”)
57 3 Other movements (0 = “no limitation”, 1 = “unilateral limitation”, 2 = “bilateral limitation”)

Section I

58 5 Fecal incontinence (from 0 = “continence” to 4 = “incontinence”)
59 5 Urinary incontinence (from 0 = “continence” to 4 = “incontinence”)
60 2 Elimination of feces (0 = “adequate”, 1 = “not adequate”)

Section NF

61 2 Chewing problem (0 = “no problem”, 1 = “problems”)
62 2 Swallowing problem (0 = “no problem”, 1 = “problems”)
63 2 Mouth pain (0 = “no problem”, 1 = “problems”)
64 2 Taste of many foods (0 = “does not complain”, 1 = “complains”)
65 2 Hungry (0 = “does not complain”, 1 = “complains”)
66 2 Food on his plate (0 = “does not leave it”, 1 = “leaves it”)

Section DD

67 2 Debris present in mouth prior to going to bed at night (0 = “problem absent”, 1 = “problem present”)
68 2 Dentures/removable bridge (0 = “absent”, 1 = “present”)
69 2 Some/all natural teeth lost and does not have/does not use dentures (or partial plates) (0 = “problem absent”, 1 = “problem present”)
70 2 Broken, loose, or carious teeth (0 = “problem absent” 1 = “problem present”)
71 2 Inflamed gums, swollen or bleeding gums, oral abscesses, ulcers or rashes (0 = “problem absent”, 1 = “problem present”)
72 2 Dentures or removable bridge daily cleaned by resident or staff (0 = “absent”, 1 = “present”)

Section SC

73 5 Pressure ulcer (from 0 = “no pressure ulcer” to 4 = “stage 4”)
74 5 Stasis ulcers (from 0 = “no pressure ulcer” to 4 = “stage 4”)
75 2 Resolved or cured ulcer (0 =“absent”, 1 = “present”)

Table 10: Description of the full set of items.
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