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Abstract: 

 

The present study significantly contributes to the economic literature by investigating the 

direction of causality between WPI and CPI by applying frequency domain causality approach 

developed by Lemmens et al. (2008) based on spectral approach. We use monthly frequency data 

covering the period of 1961-2010 in case of Pakistan. Our results provide evidence of 

cointegration between the variables. Furthermore, we find unidirectional causal relationship 

running from CPI to WPI that varies across frequencies i.e., CPI Granger-causes WPI at lower, 

medium as well as higher level of frequencies reflecting long-run, medium and short-run cycles. 

This implies that CPI should be a leading indicator for important policy decisions pertaining to 

monetary or fiscal policies in Pakistan.  
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I. Introduction  

 

The objective of this paper is to re-assess the causality relationship in case of Pakistan between 

wholesale price and consumer price indices by using nonparametric frequency domain causality 

approach developed by Lemmens et al., (2008). The prime objective of monetary policy is to 

stabilize price levels in an economy. A hike in inflation will reduce the purchasing power of 

general population especially among middle income and poor segments of the population and 

hence influence their economic wellbeing (Rao and Bukhari, 2011). That is why central banks 

have been given enough independence to stabilize the prices. Central banks usually controls 

price hikes through monetary policy. 

 

In Pakistan, variety of price indices are calculated by following survey based measures. The 

measures of general price levels such as consumer price index, wholesale price index, GDP 

deflator and sensitive price index are being constructed by the State Bank of Pakistan (SBP)
1
. 

These indices help in constructing national income and product account measures (Cecchetti et 

al. 2009). They are also used to convert data from nominal to real terms in order to examine real 

performance of macroeconomic indicators. The wholesale price index shows the value of goods 

at first commercial transaction while at retail level the consumer price index measures the price 

of goods and services (Rao and Bukhari, 2011). The traditional view is that the wholesale price 

index leads the consumer price index. This shows that the movement of wholesale prices is from 

supply side and production process to demand side. This transmission mechanism has been 

discussed in Shahbaz et al. (2010). 

 

The findings of our analysis confirm that both series are integrated at I (1) and cointegration 

exists between the variables for a long run relationship. The causality results from frequency 

domain approach show that the consumer price index (CPI) does lead the wholesale price index 

(WPI) in case of Pakistan. These findings are also validated by innovative accounting approach 

as variance decomposition approach reveals that a standard deviation innovative shock in CPI 

explains WPI by 52.68% while WPI contributes to CPI by 17.97% through its innovative shocks. 

Shahbaz et al. (2010) and Rao and Bukhari (2011) do not agree with our findings. However, we 

argue on the reliability of our results over the previous work as this study uses more advanced 

frequency domain approach developed by Lemmens et al. (2008) based on spectral approach. 

 

The rest of the paper is organized as follows: Section II presents the literature review; section III 

details the methodology and data sources; section IV discusses the results, and conclusion and 

policy implications are drawn in section V. 

 

 

II. Literature Review 

 

Existing literature reveals that wholesale prices play a vital role to increase the consumer prices 

in an economy. This implies that unidirectional causality should run from wholesale prices to 

consumer prices. For example, Hatanaka and Wallace (1979), Engle (1978), Silver and Wallace 

(1980), Guthrie (1981), Colclough and Lange (1982), Cushing and McGarvey (1990), Clark 

(1995) and, Samanta and Mitra (1998) consider both variables to explore the direction of 

                                                            
1 See Rao and Bukhari, (2011) for more details. 
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causality and provide inconclusive findings. Caporale et al. (2002) collect data for G7 countries 

and examine the causal relationship between wholesale and consumer prices. Their results 

indicate that wholesale prices Granger-cause consumer prices. Caporale et al. (2002) also 

highlight two estimation issues that arise when testing for a causal relationship between 

consumer and wholesale prices: selecting the “correct” model in the context of which causality 

relationships are analyzed and carrying out tests that result in invalid statistical inferences. That 

is why Caporale et al. (2002) apply Toda and Yamamoto (1995) causality approach because it 

does not require any pre-testing of stationarity and cointegration properties of the series. Their 

results indicate the presence of feedback hypothesis between the two variables and this 

relationship exists once the monetary transmission mechanism is ignored.  

 

In case of other country studies, Akdi et al. (2006) investigate the relationship between the 

consumer price index and the wholesale price index using the Turkish data. Their empirical 

evidence shows cointegration between the series and both variables Granger-cause each other 

under the umbrella of feedback hypothesis. In case of Mexico, Sidaoui et al. (2009) examine 

causality relation between producer prices and consumer prices. Their study shows cointegration 

between the variables. The causality analysis indicates feedback effect between the two series in 

the long run as well as in the short run. In case of Pakistan, Shahbaz et al. (2009) document the 

long run relationship between producer price and consumer price indices. Their study shows 

bidirectional causality between the two variables but strong causality is running from producer 

prices to consumer prices. In case of Malaysia, Ghazali et al. (2009) investigate whether 

producer prices Granger-cause consumer prices by applying Engle-Granger (1987) and Toda-

Yamamoto (1995) approaches. Their results indicate that unidirectional causality is found 

running from producer prices to consumer prices.   

 

Furthermore, Shahbaz et al. (2010) conduct a study to test the causality between wholesale prices 

and consumer prices. They document that variables are integrated at I (1) and cointegration for 

long run exists. Their results report that wholesale prices and consumer prices Granger-cause 

each other but causal relation is dominant from wholesale prices to consumer prices validating 

the hypothesis documented by Cushing-McGarvey (1990). Rao and Bukhari (2011) also examine 

the causal relation between wholesale price and consumer price indices by using month 

frequency data for the period 1978-2010. Their empirical exercise confirms the presence of long 

run relation between both variables. Furthermore, they document that short run changes are 

temporary and both series converge to long run stable equilibrium with CPI as an appropriate 

indicator of inflation. Finally, Akcay (2011) examines the direction of causality between 

producer price index and consumer price index by applying Toda and Yamamoto (1995) 

causality approach. The empirical evidence confirms unidirectional causal relation from 

producer price index to consumer price index in Finland and vice versa in case of France. The 

feedback effect is found in case of Germany for both variables and neutral hypothesis exists in 

case of Netherlands and Sweden. 

 

It is worth noting that most previous studies are limited in scope to the applications of linear 

models. However, economic events and regime changes such as changes in economic 

environment, changes in monetary and/or fiscal policy can cause structural changes in the pattern 

of inflation (i.e., WPI and/or CPI) for a given time period under study. This creates room for a 

nonlinear rather than linear relationship between WPI and CPI. Therefore, in the present study 
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we make an attempt to analyze the issue in a nonlinear framework by using a nonparametric 

approach developed by Lemmens et al. (2008). Use of this approach allows us to decompose the 

Granger-causality (GC) in the frequency domain. In frequency domain approach, the key idea is 

that a stationary process can be described as a weighted sum of sinusoidal components with a 

certain frequency ω. As a result, one can analyze these frequency components separately. As 

such, instead of computing a single GC measure for the entire relationship, the GC is calculated 

for each individual frequency component separately. Thus, the strength and/or direction of the 

GC can be different for each frequency. To the best of our knowledge, the analysis of GC 

between CPI and WPI has not yet been explored in the frequency domain both in the developing 

or developed country context. 

 

 

III. Methodology and Data Collection  

 

Time series analysis in the frequency domain (spectral analysis) can supplement the information 

obtained from the time-domain framework (Granger 1969, and Priestley 1981). Spectral analysis 

highlights the cyclical properties of the data. We implement Lemmens et al. (2008) in testing the 

Granger Causality (GC) over the spectrum using bivariate framework. This test is revised version 

of Pierce (1979). This GC test in the frequency domain relies on a modified version of the 

coefficient of coherence. The estimates are obtained non-parametrically and used to derive the 

distributional properties.  

 

Let tX  and tY  be two stationary time series of lengthT . The goal is to test whether tX Granger-

causes tY  at a given frequency . Pierce’s (1979) measure for GC in the frequency domain is 

performed on the univariate innovations series, tu  and tv , derived from filtering the tX and tY  as 

univariate ARMA processes, i.e. 

 

                                     t
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where )(Lx  and )(Ly are autoregressive polynomials, )(Lx and )(Ly  are moving average 

polynomials and 
xC  and 

yC potential deterministic components. The innovation series tu  and tv  

are white-noise processes with zero means, are possibly correlated with each other at different 

leads and lags. The innovation series tu  and tv , are the series of interest in the GC test proposed 

by Lemmens et al. (2008). 

 

Let )(uS  and )(vS be the spectral density functions (spectra) of tu  and tv  at 

frequency ],0[   , defined by  
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where )(ku = Cov ),( ktt uu   and )(kv = Cov ),( ktt vv   represent the autocovariances of tu  and 

tv  at lag k . The idea behind spectral representation is that each time series may be decomposed 

into a sum of uncorrelated components, each related to a particular frequency .
2
 The spectrum 

can be interpreted as a decomposition of the series variance by frequency. The portion of 

variance of the series occurring between any two frequencies is given by area under the spectrum 

between those two frequencies. In other words, the area under )(uS  and )(vS  between any two 

frequencies  and  d gives the portion of variance of tu  and tv respectively, originating in 

the cyclical components in the frequency band ( ,  d ). 

 

The cross spectrum represents the cross covariogram of two series in frequency domain and 

allows determining the relationship between two time series as a function of frequency.  Let 

)(uvS  be the cross spectrum between tu  and tv  series. The cross spectrum is a complex 

number, defined as 

                                   )()()(  uvuvuv iQCS   
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where )(uvC , called cospectrum and )(uvQ , called quadrature spectrum are respectively, the 

real and imaginary parts of the cross-spectrum and 1i . Here )(kuv = Cov ),( ktt vu   

represents the cross-covariance of tu  and tv  at lag k . The spectrum )(uvQ  between the two 

series tu  and tv  at frequency   can be interpreted as the covariance between the two series tu  

and tv that is attributable to cycles with frequency . The quadrature spectrum looks for 

evidence of out-of-phase cycles (see Hamilton 1994, p.274). The cross-spectrum can be 

estimated non-parametrically by 
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with 


)(kuv  ),( ktt vuCOV 



the empirical cross-covariances, and with window weights kw , for 

MMk ,.., . Equation (6) is called the weighted covariance estimator, and the weights kw  are 

                                                            
2 The frequencies  1 , 2 , ….., N  are specified as follows: 

                                                                T/21    

                                                                T/42    

The highest frequency considered is TNN /2   ; where 2/TN  , if T  is an even number and 

2/)1(  TN  , if T is an odd number (see Hamilton 1994, p.159). 
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selected as the Bartlett weighting scheme i.e. Mk /1 . The constant M determines the 

maximum lag order considered. The spectra of Equations (3) and (4) are estimated in a similar 

way. This cross-spectrum allows us to compute the coefficient of coherence )(uvh defined as 

                                          
)()(
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S
h                                                            (7) 

Coherence can be interpreted as the absolute value of a frequency specific correlation coefficient. 

The squared coefficient of coherence has an interpretation similar to the R-squared in a 

regression context. Coherence thus takes values between 0 and 1. Lemmens et al. (2008) have 

shown that, under the null hypothesis that 0)( uvh , the estimated squared coefficient of 

coherence at frequency , with  0  under appropriate rescaling converges to a chi-

squared distribution with 2 degrees of freedom
3
, denoted by

2

2 . 
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with 
2

1,2   being the 1 quantile of the chi-squared distribution with 2 degrees of freedom. 

The coefficient of coherence in Equation (7) provides a measure of the strength of the linear 

association between the two time series, frequency by frequency, but not on the direction of the 

relationship between the two processes. Lemmens et al. (2008) decomposed the cross-spectrum 

(Equation 3) into three parts: (i) vuS  , the instantaneous relationship between tu  and tv ; (ii) 

vuS  , the directional relationship between tv  and lagged values of tu ; and (iii) uvS  , the 

directional relationship between tu  and lagged values of tv , i.e., 
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3 For the end points 0  and   , one only has one degree of freedom since the imaginary parts of the spectral 

density estimates cancel out. 



7 

 

The proposed spectral measure of GC is based on the key property that tu  does not Granger-

cause tv  if and only if 0)( kuv for all 0k . The goal is to test the predictive content of  tu  

relative to tv  which is given by the second part of Equation (10), i.e.  
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The Granger coefficient of coherence is then given by 
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Therefore, in the absence of GC, 0)(  vuh  for every   in ],0[  . The Granger coefficient of 

coherence takes values between zero and one (Pierce, 1979).  Granger coefficient of coherence at 

frequency   is estimated by 
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with )(vuS 



as in Equation (6), but with all weights kw =0  for 0k . The distribution of the 

estimator of the Granger coefficient of coherence is derived from the distribution of the 

coefficient of coherence (Equation 8). Under the null hypothesis 0)( 



vuh , the distribution of 

the squared estimated Granger coefficient of coherence at frequency , for  0  is given by, 
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Later, we compute Granger coefficient of coherence given by Equation (13) and test the 

significance of causality using use of Equation (15).  

  

 

The data of wholesale price index (WPI) and consumer price index (CPI) has been obtained from 

International Financial Statistics (CD-ROM, 2011). We have used monthly frequency data over 

the period from 1961 to 2010. 
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IV. Empirical Results and Their Discussion  

 

First of all descriptive statistics of variables
4
  have been analyzed to see the sample properties 

and Pearson’s correlation analysis is conducted to see whether there is any evidence for co-

movement of both series.
5
 We find that correlation is very high and its value is 0.99. In the next 

step stationary property of the data series of all test variables has been tested through PP test and 

results are reported in Table 1. Table 1 reports that both variables have unit root problem at their 

level form while they are stationary at their first differenced form.  

 

 

Table 1: Estimation of Unit Root Tests  

 

Variables 

PP unit root test with 

intercept 

PP unit root test with intercept 

and trend 

Lee-Strazicich unit root test with one 

structural break 

T-Statistic Prob-value T-Statistic Prob-value
T-Statistic (Crash 

model) (k) 

T-Statistic (Break 

model) (k) 

tCPIln  0.713(10) 0.9924 -2.069(10) 0.5614 
-2.923 (12) 

[1973:12] 

-3.647 (12) 

[1976:07] 

tCPIln  -19.986(7)* 0.0000 -20.006(7)* 0.0000 
-3.336** (11) 

[1967:06] 

-5.318* (11) 

[1978:07] 

tWPIln  0.623(2) 0.9903 -2.575(2) 0.2917 
-2.196 (12) 

[1972:02] 

-3.229 () 

[1976:03] 

tWPIln  -15.994(10)* 0.0000 -15.993(10)* 0.0000 
-3.377** (12) 

[1987:05] 

-7.252* (12) 

[1973:01] 
Note: The asterisks * and ** denote the significant at 1% and 5% level respectively. The figure in the parentheses is the bandwidth for 

the PP unit root test and it is determined by the Schwert (1989) formula. Here we have presented results of Lee-Strazicich unit root test 

with one structural break only as second break in both models were insignificant in level series. Therefore, two breaks analysis of the 

variables with first difference form is not carried out. In parentheses are the break dates and “k” denotes the lags chosen for analysis.  

 

The next step is to investigate the long run relationship between the series by applying ARDL 

bounds testing approach. The results of ARDL bounds testing are reported in Table 4 ( in the 

Appendix). The lag length selection of the variables for a suitable ARDL model to calculate F-

statistic is based on Akaike Information Criteria (AIC). AIC provides better results and has 

superior predicting properties as compared to other tests (Lütkepohl, 2006) and lag order is 8. 

The results in Table 4 show that our calculated F-statistics exceed upper critical bounds 

generated by Pesaran et al. (2001) at 1% level of significance. Pesaran et al. (2001) created the 

upper and lower critical bounds for large sample (T = 500 to T = 40, 000) and Narayan (2005) 

generated the critical bounds for small sample (T = 30 to T = 80). We have used bounds 

developed by Pesaran et al. (2001) as our sample size is large. Our empirical exercise indicated 

two cointegrating vectors once WPI and CPI are treated as predicting variables. This shows that 

                                                            
4 Time series plot and descriptive statistics of the variables are presented in Figure 3 and Table 3 respectively, in the 

Appendix. Table 3 in the Appendix indicates that the two variables do not have log normal distribution and 

therefore, provides scope for our nonlinear analysis. 
5 Results are reported in Table 3 in the Appendix.  
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long run relationship exists between wholesale price and consumer price indices in case of 

Pakistan over the period of 1961-2010.   

 

In the next step, we analyze Granger-causality (GC) between CPI and WPI in the frequency 

domain framework. GC is analyzed by adopting log differenced data (after seasonal adjustment) 

of the variables so that series become stationary. Furthermore, the two log differenced variables 

have been filtered using ARMA models to obtain the innovation series. We have used lag length
6
 

TM  . The frequency  )(  on the horizontal axis can be translated into a cycle or periodicity 

of T  months by  /2T ; where T  is the period. Figure 1 presents the result of Granger 

coefficient of coherence for causality running from CPI to WPI.  

 

 

 

Figure 1: Granger Causality from CPI to WPI. (The line parallel to the frequency axis represents 

the critical value for the null hypothesis at the 5% level of significance). 
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6 Following Diebold (2001, p.136) we take M equal to the square root of number of observationsT . 
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Figure 1 shows that at 5% level of significance, CPI Granger-causes WPI at lower, medium as 

well as higher levels of frequencies reflecting very long-run, medium as well as short-run cycles. 

That is long-, medium-, and short-run business cycles in WPI are Granger-caused by CPI.  

 

Similarly, Figure 2 reports the result of Granger coefficient of coherence for causality running 

from WPI to CPI. However, Figure 2 provides no evidence of Granger-causality from WPI to 

CPI at 5% level of significance at all levels of frequencies
7
. Though some business cycles are 

evident in the CPI at the intermediate level yet WPI does not show significant evidence of 

Granger-causality to CPI (with the only exception of the frequency level 1.4).  

 

 

 

 

Figure 2: Granger Causality from WPI to CPI. (The line parallel to the frequency axis represents 

the critical value for the null hypothesis, at the 5% level of significance). 
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7 Of course, there is some evidence where Granger coefficient of coherence just crosses the critical value of 5% 

level of significance. However, it is at very high frequencies and therefore, business cycle is of very small 

periodicity.   
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Variance Decomposition Approach (VDA) 

 

The Granger causality tests do not present the relative strength of causality results ahead of the 

selected sample period. In this situation, findings by causality tests do not help policy makers in 

formulating comprehensive policy to control inflation in the country. The main objective of the 

State Bank of Pakistan is to stabilize price levels in the country by implementing an appropriate 

monetary policy. The variance decomposition approach seems to help policy makers by 

providing relative strength of causality results ahead of the selected sample period.   

 

Table 2: Variance Decomposition Approach (VDA) 

 

Period   Variance Decomposition of tCPIln   Variance Decomposition of tWPIln  

tCPIln  tWPIln  tCPIln  tWPIln  

 1  100.0000  0.0000  17.1115  82.8884 

 2  97.8713  2.1286  20.6217  79.3782 

 3  96.6760  3.3239  24.7635  75.2364 

 4  93.1164  6.8835  28.8036  71.1964 

 5  91.9433  8.0566  32.5980  67.4020 

 6  90.9504  9.0495  37.3831  62.6168 

 7  90.2594  9.74055  41.1019  58.8980 

 8  88.4741  11.5258  43.7795  56.2204 

 9  87.0775  12.9224  45.7970  54.2029 

 10  85.7675  14.2324  47.5167  52.4832 

 11  84.7996  15.2003  48.8459  51.1540 

 12  83.8608  16.1391  49.9673  50.0326 

 13  83.1913  16.8086  50.9068  49.0931 

 14  82.5587  17.4412  51.8147  48.1852 

 15  82.0343  17.9656  52.6810  47.3189 

 

The results reported in Table 2 show that a standard deviation innovation shock in CPI explains 

82.03 per cent of CPI itself and the rest is contributed by innovation shocks stemming in WPI. 

The innovative shocks in CPI attribute to WPI by 52.68 per cent and the rest is contributed by 

own innovative shocks of WPI i.e. 47.32 per cent. This indicates the unidirectional causality 

running from CPI to WPI. Overall, our findings confirm that findings by frequency domain 

approach are robust and superior to other traditional causality approaches. The results of impulse 

response function are shown in Figure 4 (in the Appendix).   

 

 

V. Conclusions and Policy Implications 

 

In the present study we analyze Granger causality between CPI and WPI for Pakistan by using 

monthly data covering the period from 1961 to 2010. We find that both variables are 

nonstationary in log level form and stationary in log first difference form. Our results show that 

in case of Pakistan causal relations between CPI and WPI vary across frequencies. We also find 
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that CPI Granger-causes WPI at lower, medium as well as higher levels of frequencies reflecting 

very long-run, medium as well as short-run cycles. Contrary to that we find that WPI does not 

Granger-cause CPI at 5% level of significance at all levels of frequencies.  

 

The unique contribution of the present study lies in decomposing the causality on the basis of 

time horizons and demonstrating causality at lower, medium as well as long-run cycles from CPI 

to WPI and no cycles from WPI to CPI. These results have important implications for Pakistan 

for planning of inflation related policies. For example, our finding that CPI Granger-causes WPI 

at lower, intermediate and higher level frequencies implies that CPI should be a leading indicator 

for important policy decisions pertaining to monetary or fiscal policies. It also suggests that by 

looking at this link policy makers may be better prepared to avoid, or at least mitigate, the 

negative consequences of producers’ inflation i.e. WPI. 
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Appendix  

 

Table 3: Descriptive Statistics and Correlation Matrix 

 
Variables Mean Median Maximum Minimum Std. Dev.

 
Skewness

 
 Kurtosis

 
Jarque-Bera 

tWPIln tCPIln  

tWPIln  2.9512 2.99673 5.0862 1.05431 1.2170 -0.0699 1.7101 40.1899 1.0000 0.9997 

tCPIln  3.0790 3.1376 5.0314 1.3029 1.1337 -0.0953 1.7152 40.2767 0.9997 1.0000 

 

 
 

Table 4: Statistical Output for Cointegration Test (Bounds Test) 

 

Estimation Models  Lag Length F-Statistics 
Lower - Upper  

Bound at 1% 

Lower - Upper  

Bound at 5% 

Lower - Upper 

Bound at 10% 

)/WPICPIFCPI   7 9.139* 3.34 - 4.63 2.69 - 3.83 2.38 - 3.45 

)/CPIWPIFWPI   7 7.537* 3.34 - 4.63 2.69 - 3.83 2.38 - 3.45 

)/WPICPIFCPI   8 8.123* 3.25 - 4.43 2.55 - 3.68 2.26 - 3.34 

)/CPIWPIFWPI   8 6.596* 3.25 - 4.43 2.55 - 3.68 2.26 - 3.34 

Note: * denotes rejection of the null at 1% significance level. Critical values bounds are used computed by Pesaran et 

al. (2001). 
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Figure-3: Time Series Plots of the Variables  

 

1

2

3

4

5

6

1965 1970 1975 1980 1985 1990 1995 2000 2005

LNWPI LNCPI  
 

 

Figure-4: Impulse Response Function 
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