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Abstract

We develop a test of the joint null hypothesis of linearity and nonstationarity within a threshold

autoregressive process of order one with deterministic components. We derive the limiting distribution

of a Wald type test statistic and subsequently investigate its local power and finite sample properties.

We view our test as a useful diagnostic tool since a non rejection of our null hypothesis would remove

the need to explore nonlinearities any further and support a linear autoregression with a unit root.
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1 Introduction

This paper is concerned with inferences within an environment that combines threshold type nonlinearities

with the presence of a highly persistent variable that contains a unit root. One of the first papers to

introduce an environment that combined unit root type of nonstationarities with nonlinear dynamics was

Caner and Hansen (2001). This latter research has been part of a growing literature on the econometrics of

threshold models which have gained considerable popularity in applied research for modelling phenomena

such as asymmetric adjustments, time varying mean reversion amongst others (see Hansen (2011), Tong

(2011) and references therein).

Operating within an autoregressive specification formulated as an Augmented Dickey Fuller (ADF)

regression Caner and Hansen (2001) developed two key tests for detecting the presence of threshold effects

when the underlying variable contains a unit root under the null hypothesis (see also Pitarakis (2008)).

Their first test was designed to test the null of linearity in all the parameters of the ADF regression

without explicitly imposing the unit root restriction within the null hypothesis of linearity. A random

walk with drift was however maintained as the data generating process. In a second test the authors

concentrated solely on the autoregressive parameters associated with the presence or absence of a unit

root and developed tests of the joint null of a unit root and linearity without constraining the remaining

parameters of the ADF regression that are associated with the deterministic components (i.e. constant

and trend).

In this paper we argue that a useful addition to the existing toolkit for uncovering threshold effects

in nonstationary environments is a test that would allow one to test the joint null of linearity in all the

parameters of the ADF regression and nonstationarity. In this context we are interested in the limiting

distribution of a Wald type test under a null hypothesis that imposes not only the stability of all AR

parameters but also the unit root explicitly. We expect such a test to have power against departures from

linearity as well as departures from the unit root null. More importantly a non rejection of this joint

null would conclude the analysis and support the modelling of the variable under investigation through

a linear unit root process. In this sense it may be viewed as a useful diagnostic tool before attempting

to undertake any further investigation of nonlinear dynamics.

The plan of the paper is as follows. In Section 2 we obtain the limiting distrubution of a Wald type

test statistic for our null hypothesis of interest. Section 3 provides a local power analysis together with

finite sample properties of our test and Section 4 concludes. All proofs are relegated to the appendix.

2 The Model and Asymptotic Inference

We are interested in testing HA
0
: θ1 = θ2, ρ1 = ρ2 = 0 in

∆yt = (θ′1wt−1 + ρ1yt−1)I(Zt−1 ≤ γ) + (θ′2wt−1 + ρ2yt−1)I(Zt−1 > γ) + et (1)
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with wt−1 = (1 t)′ and θi = (µi δi)
′ for i = 1, 2. Zt = yt − yt−m with m ≥ 1 is the stationary threshold

variable and the threshold parameter γ is assumed unknown with γ ∈ Γ = [γ1, γ2]. The parameters γ1

and γ2 are selected such that P (Zt ≤ γ1) = π1 > 0 and P (Zt ≤ γ2) = π2 < 1. Typically estimation

is performed with symmetric trimming that leaves out a fixed fraction of obervations at the top and

bottom of Zt (e.g. 10%). As in Caner and Hansen (2001) and for later use it is also convenient to rewrite

I(Zt−1 ≤ γ) = I(G(Zt−1) ≤ G(γ)) ≡ I(Ut−1 ≤ λ) where G(.) is the marginal distribution of Zt and

Ut denotes a uniformly distributed random variable on [0, 1]. Throughout this paper and for notational

simplicity we also let I1t−1 and I2t−1 denote the two indicator functions I(Ut−1 ≤ λ) and I(Ut−1 > λ).

Letting Ψi = (µi δi ρi)
′, in Caner and Hansen (2001) the authors derived the limiting behaviour of

a Wald type test statistic for testing H0 : Ψ1 = Ψ2 in (1) when the underlying process was known to

contain an exact unit root with or without an intercept (e.g. ∆yt = µ+ et). Proceeding under the same

probabilitic assumptions our goal here is to instead develop inferences for testing the joint null hypothesis

of linearity and unit root HA
0
: θ1 = θ2, ρ1 = ρ2 = 0 via a Wald type test statistic.

For greater convenience we rewrite (1) in matrix form as ∆Y = X1Ψ1 +X2Ψ2 + e with Xi stacking

the elements given by Iit−1, tIit−1, yt−1Iit−1. Letting W = [X1 X2] we also write ∆Y = WΨ + e with

Ψ = (Ψ1 Ψ2)
′ so that the Wald statistic associated with HA

0
: µ1 = µ2, δ1 = δ2, ρ1 = ρ2 = 0 can now

be formulated as WA
T (λ) = Ψ̂′R′

A[RA(W
′W )−1R′

A]
−1RAΨ̂/σ̂

2 with RA denoting the restriction matrix

associated with HA
0

and given by RA = {(1, 0, 0,−1, 0, 0), (0, 1, 0, 0,−1, 0), (0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1)}.
Here σ̂2 refers to the residual variance estimated from the unrestricted specification. Before stating our

main results we also let DFτ,∞ denote the limiting distribution of the t-ratio for testing H0 : ρ = 0 in

∆yt = µ+ δt+ ρyt−1 + et as stated in Hamilton (1988, pp. 549-550, Equations (17.4.53) and (17.4.54)).

See also Phillips and Perron (1888, Theorem 1(e) with λ = 0 and σ/σu = 1). The limiting behaviour

of the supremum version of WA
T (λ) is now summarised in the following Proposition with the supremum

understood to be taken over some symmetric interval Λ = [λ0, 1− λ0].

Proposition 1. Under the same assumptions as in Caner and Hansen (2001) and under HA
0

: θ1 =

θ2, ρ1 = ρ2 = 0 we have as T → ∞,

sup
λ
WA

T (λ) ⇒ sup
λ
BB(λ)/λ(1− λ) +DF 2

τ,∞ (2)

with BB(λ) denoting a standard Brownian Bridge process of the same dimension as φi.

It is interesting to note that the above limiting distribution is expressed as the sum of two components

only the first one of which depends on λ. The first component is the familiar normalised squared Brownian

Bridge type of limit while the second one comes into play due to the explicit imposition of the unit root

within the null hypothesis. More specifically

DFτ,∞ =
[
∫

1

0
BdB +A]√

D
(3)
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with

A = 12(

∫

rB − 1

2

∫

B)(

∫

B − 1

2
B(1))−B(1)

∫

B

D =

∫

B2 − 12(

∫

rB)2 + 12

∫

B

∫

rB − 4(

∫

B)2 (4)

and with B denoting a standard Brownian Motion associated with the iid process et as assumed in

Caner and Hansen (2001). It is also important to highlight the fact that the above distribution is free

of any nuisance parameters, an unusual occurrence in models with threshold variables. We expect that

the above test will have nontrivial power against departures from linearity as well as the unit root null.

Rejections occur when the magnitude of the test statistic is large. At this stage it is also interesting

to contrast the above limit with the one that occurs within a similar setting but with structural break

based regimes instead of thresholds in (1). In Pitarakis (2011) the author has investigated a similar null

hypothesis within an ADF regression with a structural break and documented a limiting distribution

composed also of two components one of which was again given by DF 2
τ,∞ but with its first component

being nonstandard and substantially different from the Brownian Bridge limit above. This highlights the

fundamentally different asymptotics that results from alternative approaches of capturing regime change

in models with unit roots.

For inference purposes Table 1 below presents various relevant quantiles of the distribution introduced

in Proposition 1 across alternative magnitudes of λ0 the trimming parameter. The values have been

obtained via standard simulations under a unit root DGP with NID(0, 1) errors and using T = 2000

across N = 2000 replications.

Table 1. Quantiles of the Limiting Distribution of SupWaldA

λ0 0.50 0.90 0.95 0.975 0.99

0.05 13.74 20.77 23.34 25.41 28.77

0.10 13.14 20.20 22.77 24.78 27.89

0.15 12.61 19.61 21.87 24.18 26.45

3 Finite Sample Size and Local Power Considerations

We are initially interested in documenting the finite sample accuracy of our empirical quantiles presented

in Table 1 by estimating the rejection ferquencies of the null hypothesis when the DGP is given by the

null model specified as ∆yt = et. Note that setting µ = 0 is with no loss of generality here since the

fitted model contains a trend component. Table 2 below presents our empirical size estimates across three

sample sizes and using λ0 = 0.10 in the computation of the SupWaldA statistic. The frequencies refer

to the number of times the calculated SupWaldA statistic exceeded the 24.78 cutoff.

Table 2. Empirical Size Estimates of SupWaldA

3



Nominal 2.5% 5.0% 10.0%

T = 200 3.20 6.00 11.60

T = 400 3.10 5.10 10.50

T = 800 2.40 4.25 10.25

The above size figures suggest a reasonably good finite sample accuracy of the limiting distribution as

approximated in Table 1. The test displays a slight tendency to overreject under a 2.5% nominal size but

is otherwise accurate across all scenarios.

Next, we are interested in assessing the ability of our SupWaldA statistic to detect deviations from

HA
0
: θ1 = θ2, ρ1 = ρ2 = 0 by focusing solely on local departures from the unit root null. More specifically

we are interested in scenarios whereby ρ1 = ρ2 = c/T for c < 0 while the parameters associated with

the deterministic components are kept time invariant. This scenario corresponds to a linear local to

unit root model. Letting DFτ,∞(c) denote the limiting distribution of the t ratio for testing ρ = 0 in

∆yt = µ+ δt+ ρyt−1 + et when ∆yt = (c/T )yt−1 + et and whose expression is given under Theorem 3(d)

in Phillips and Perron (1988, p. 342) we have the following result.

Proposition 2. Under the same assumptions as in Caner and Hansen (2001), θ1 = θ2, ρ1 = ρ2 = c/T

and as T → ∞ we have supλW
A
T (λ) ⇒ supλBB(λ)/λ(1− λ) +DFτ,∞(c)2.

The above result illustrates the local power properties of our test statistic under linearity but with a

local to unit root process. It is interesting to note that the first component of the limiting distribution

remains unaffected by whether ρ1 = ρ2 = 0 or ρ1 = ρ2 = c/T . Interestingly, it also follows from the

above that under the null hypothesis of linearity H0 : Ψ1 = Ψ2 investigated in Caner and Hansen (2001)

but with ρ1 = ρ2 = c/T in the background instead of ρ1 = ρ2 = 0 the same limiting distribution as when

ρ1 = ρ2 = 0 holds. This is not a shortcoming per se since the goal of testing H0 : Ψ1 = Ψ2 is testing the

null of linearity which is satisfied when θ1 = θ2, ρ1 = ρ2 = c/T .

Next, we perform a series of simulations to estimate the finite sample based empirical power properties

of our test. Our power experiments are geared towards uncovering departures from the linear unit root

ρ1 = ρ2 = 0 while maintaining θ1 = θ2. Our first DGP is given by ∆yt = µ+(c/T )yt−1+et and with no loss

of generality we again set µ = 0. Our experiments are ran using T = 200 for c = −1,−5,−10,−15,−20.

We use a 2.5% nominal significance level throughout and our rejection frequencies are evaluated using

the corresponding cutoff in Table 1 (i.e. we set λ0 = 0.10 and use 24.78 as our critical value). Results

are displayed in Table 3 below.

Table 3. Power Properties of SupWaldA

c −1 −10 −15 −20 −25 −30 −35 −40 −50

T = 200 3.30 10.60 19.10 32.70 52.10 69.50 84.60 93.50 99.50

Clearly power increases towards one as we move away from the unit root but is typically low for values of

c up to around -30 which corresponds to an autoregressive parameter of 0.85. Beyond such magnitudes
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power is in the region of 90% and quickly reaches 100%. This is very much in line with the the power

properties of traditional unit root tests (see for instance Table 1 in Phillips and Perron (1988)). Naturally

the power of our test would be substantially stronger if we also considered departures from the null

associated with the deterministic components (i.e. departures from linearity).

It is also interesting to explore the behaviour of SupWaldA when deviations occur in one direction

from the null in the sense (ρ1, ρ2) = (0, c/T ) or (ρ1, ρ2) = (c/T, 0). For this purpose we use ∆yt−1

as our threshold variable and set γ = 0 as the corresponding true threshold parameter i.e. ∆yt =

(c/T )yt−1I(∆yt−1 > 0)+et (case (i) say) while in the second scenario ∆yt = (c/T )yt−1I(∆yt−1 <= 0)+et

(case (ii)). Empirical rejection frequencies are displayed in Table 3 below.

Table 4. Further Power Properties of SupWaldA

c −1 −10 −15 −20 −25 −30 −35 −40 −50

(i) 3.70 9.40 16.60 27.30 40.10 55.80 69.40 81.00 94.10

(ii) 3.90 10.60 18.90 29.80 41.70 58.40 73.10 82.90 96.00

The above magnitudes are very much similar to the power estimates obtained in Table 3. Under both

scenarios power converges to 1 allbeit slowly when one of the parameters remains very close to the unit

root border. The test properties also appear to be unaffected by whether the exact unit root is present

in the first regime or the second one.

4 Conclusions & Extensions

In this paper we have proposed a test of the joint null of linearity and a unit root within a TAR(1) model

with deterministic components. A Wald type test statistic for testing this joint hypothesis was shown to

have a convenient limiting formulation that is nonstandard but free of nuisance parameters and easily

tabulated. A power analysis has subsequently showed that our test displays reasonably good power in

finite samples similar in magnitude to the commly encountered frequencies in the traditional unit root

literature.

One obvious limitation of our approach is our focus on a first order autoregression which rules out

the inclusion of lagged dependent variables. This would be important for instance if we suspect serial

correlation in the e′ts and wish to correct for it via the inclusion of lagged dependent regressors as it is

the norm in the ADF test literature. It is beyond the scope of this paper to generalise our hypotheses

to also include restrictions on the parameters of any additional stationary regressor(s). However it is

straightforward to establish that our results continue to hold if our model in (1) is augmented with

lagged dependent regressors provided that their associated parameters are assumed to be time invariant

as for instance in

∆yt = (θ′1wt−1 + ρ1yt−1)I(Zt−1 ≤ γ) + (θ′2wt−1 + ρ2yt−1)I(Zt−1 > γ) +
k

∑

j=1

ψj∆yt−j + ẽt. (5)
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and are also excluded from our earlier restriction matrices. The above provides a simple way of using our

results when the iid assumption is believed to be unsuitable. Interestingly (5) is different from the setting

considered in Caner and Hansen (2002) who allowed the ψ′
is to also be regime specific and included the

restrictions ψ1i = ψ2i within their null hypothesis. In such an instance our results in Proposition 1 would

no longer be valid and a new distributional theory would need to be developed.
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APPENDIX

PROOF OF PROPOSITION 1: With DT = diag(
√
T , T 3/2, T ) we can write

D−1

T X1
′X1D

−1

T =











∑
I1t−1

T

∑
tI1t−1

T 2

∑
yt−1I1t−1

T 3/2∑
tI1t−1

T 2

∑
t2I1t−1

T 3

∑
yt−1tI1t−1

T
5

2∑
yt−1I1t−1

T 3/2

∑
yt−1tI1t−1

T
5

2

∑
y2t−1

I1t−1

T 2











(6)

from which we obtain the following weak convergence results

D−1

T X1
′X1D

−1

T ⇒







λ 1

2
λ λ

∫

1

0
B(r)dr

1

2
λ 1

3
λ λ

∫

1

0
rB(r)

λ
∫

1

0
B(r) λ

∫

1

0
rB(r) λ

∫

1

0
B2(r)






≡ λ

∫

1

0

B(r)B(r)′ (7)

with B(r) = (1, r, B(r)). The above follows from Theorem 3 in Caner and Hansen (2001) and Lemma

3.1 in Phillips (1988). Proceeding similarly for D−1

T X2
′X2D

−1

T it is also straightforward to obtain

D−1

T X2
′X2D

−1

T ⇒ (1− λ)

∫

1

0

B(r)B(r)′ (8)

and

D−1

T X ′XD−1

T ⇒
∫

1

0

B(r)B(r)′ (9)

with X = X1 +X2 stacking the regressors associated with the linear specification. We next focus on the

limiting behaviour of D−1

T X ′u and D−1

T X ′
1
u. Looking at each component separately, setting σ2e = 1 for

simplicity and no loss of generality and using Theorem 2 in Caner and Hansen (2001), we have

D−1

T X1
′e =









∑
I1t−1et√

T∑
tI1t−1et
T 3/2∑

yt−1I1t−1et
T









⇒







B(λ)
∫

1

0
rdB(r, λ)

∫

1

0
B(r)dB(r, λ)






(10)

and

D−1

T X ′e =









∑
et√
T∑
tet

T 3/2∑
yt−1et
T









⇒







B(1)
∫

1

0
rdB(r, 1)

∫

1

0
B(r)dB(r, 1)






. (11)

At this stage it is also very convenient to remark that the limiting behaviour of D−1

T X1
′e−λD−1

T X ′e can

be reformulated as

D−1

T X1
′e− λD−1

T X ′e ⇒
∫

1

0

B(r)dG(r, λ) (12)

where G(r, λ) = B(r, λ) − λB(r, 1) is known as a Kiefer process. We note that the random variable

in (12) is mixed normal with variance λ(1 − λ) due to the independence of G(r, λ) and B(r) since

E[G(r1, λ1)B(r2, 1)] = 0 and both processes are Gaussian.
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Using (6)-(11) and the convenience of (12) we are in a position to explore the limiting behaviour ofWA
T (λ)

as defined in the text. Under our null hypothesis we can equivalently write

WA
T (λ) = u′W (W ′W )−1R′

A[RA(W
′W )−1R′

A]
−1RA(W

′W )−1W ′u/σ̂2

≡ u′Qu/σ̂2. (13)

Letting RL = (0 0 1), RB = (I3 − I3) with I3 denoting a three dimensional identity matrix and

X = X1 + X2 the regressor matrix under linearity, it is convenient to observe the following algebraic

identity

Q ≡ u′W (W ′W )−1R′
B[RB(W

′W )−1R′
B]

−1RB(W
′W )−1W ′u

+ u′X(X ′X)−1R′
L[RL(X

′X)−1R′
L]

−1RL(X
′X)−1X ′u (14)

and the result in Proposition 1 follows through the use of (6)-(11), the continuous mapping theorem

applied to (14) and the reparameterisation in (12). Note for instance that an appropriately normalised

version of the second component of Q in (14) will converge in distribution to DF 2
τ,∞ since it corresponds

to the Wald statistic for testing H0 : ρ = 0 in the linear ADF specification with an intercept and trend

components.

PROOF OF PROPOSITION 2. The proof of Proposition 2 follows identical lines to our proof of Propo-

sition 1 and is therefore omitted.
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