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1.   Introduction 

Many laboratory and field experiments in economics involve participants or groups of 

participants making a sequence of related decisions, usually with feedback, over many choice 

periods. For instance, this is typical of experimental work on auctions, bargaining, the private 

provision of public goods, tax compliance, and pollution control instruments. Through repeated-

game play, researchers allow for developments such as learning, strategy refinement, 

establishment of equilibria, and observances of how decisions or outcomes change in response to 

experimental design variations. The widespread availability and improving functionality of 

computer software has made it increasingly common for experiments to be reasonably complex 

and involve many choice periods.  

Experimentalists traditionally have relied on fairly simple and computationally 

transparent parametric and nonparametric hypothesis tests to evaluate hypotheses (e.g. paired t-

test, Wilcoxon test), such as those discussed in Davis and Holt (1993). It remains a somewhat 

common practice to address the time-series dimension superficially by using as the unit of 

observation the mean outcome across all periods for an individual or group. Time trends may be 

artificially accounted for by using the average outcome from the last decision period, last few 

periods, or by separately testing different period groupings. Such analyses rely on the variation in 

means across individuals or groups and insufficiently accounts for the variation in outcomes 

across decision periods. These approaches are particularly troublesome for experimental designs 

that expose the participant to multiple parameter changes.    
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Particularly in the last several years, experimentalists have relied more on available 

estimation methods for panel data.
1
 These methods include standard random effects (or closely 

related mixed effects) and fixed effects models, as well as the use of common estimators for 

cross-section data (e.g. OLS) in tandem with “robust” covariance matrix estimators such as 

White’s (1980) heteroskedasticity-consistent estimator and Beck and Katz’s (1995) “panel-

corrected standard errors”. While these approaches allow analysis of the full data set while 

accounting for important forms of heterogeneity, they may inadequately address inference issues 

related to serial correlation. In some instances where serial correlation has been explicitly 

addressed in experimental analyses, convenient parametric modeling approaches have been 

employed, such as the inclusion of a lagged dependent variable as an additional covariate or 

assuming model errors follow an AR(1) process (see, for example, Ashley, Ball, and Eckel 2003; 

Rassenti, Smith, and Wilson 2003). Alternatively, some recent studies use OLS in tandem with 

the “cluster-robust” covariance estimator, which – as I discuss in further detail in this study – can 

lead to valid inferences when within-unit serial correlation is unspecified in the regression 

model. Surprisingly, many of these papers do not mention serial correlation (e.g. Ashraf, Bonet, 

and Piankov 2006; Shupp and Williams 2008; Baker, Walker and Williams 2009), and thus the 

theoretical and empirical properties of this approach may be poorly understood by some.
2
 

Serial correlation is, or at least should be, an important consideration for repeated-game 

experiments, especially when the number of decision periods is large or when the cross-section 

and time dimensions are of similar magnitude.
3
 When serial correlation is left unspecified, the 

standard errors of common estimators (and sometimes the estimators themselves), and 

hypothesis tests based on them, are biased. Within a linear regression framework, unlike the case 

for heteroskedasticity, a consensus has not been reached regarding a covariance estimator for 
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panel data that is robust to serial correlation of unknown form. This is unfortunate for 

experimentalists, and indeed many applied researchers who are largely interested in testing 

hypotheses rather than deciphering the particular structure of the error correlation.  

This study endeavors to provide some guidance to those who analyze data from repeated-

game experiments. In particular, I propose the use of heteroskedasticity-autocorrelation 

consistent (HAC) covariance estimators for panel data, which allows researchers to conduct 

hypothesis tests without having to place structure on the heteroskedasticity and/or serial 

correlation likely present in econometric models. Through Monte Carlo experiments I explore 

the properties of three panel HAC covariance estimators within a linear regression framework, 

including a new HAC covariance estimator proposed in this study, for a range of cross-section 

(𝑛) and time (𝑇) dimensions relevant for economics experiments. The new estimator, a random-

effects HAC covariance estimator (hereafter, RE-HAC), is a panel version of the Newey and 

West (1987) covariance estimator that allows for a unit-specific random effect. The other two 

HAC covariance estimators investigated, the cluster-robust covariance estimator of Arellano 

(1987) (hereafter, A-HAC) and the standard panel version of the Newey-West (1987) estimator 

(hereafter, NW-HAC), are currently available through canned routines in popular econometrics 

software packages. Overall, the results of the Monte Carlo simulations provide strong support for 

adding panel HAC covariance estimators to the toolbox of experimentalists. 

Most of the previous work on HAC estimation is in the context of time-series data. 

Although HAC covariance estimators are consistent under reasonable assumptions for 𝑇 →∞ 

(see Newey and West 1987), results from Monte Carlo experiments suggest that the finite sample 

properties of HAC covariance estimators can be quite poor. In particular, even with large sample 

sizes, HAC standard errors tend to be too small in the presence of complicated heteroskedasticity 
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and serial correlation patterns or when the degree of serial correlation is high, leading to gross 

over-rejection under the null hypothesis (Andrews 1991; Andrews and Monahan 1992; Newey 

and West 1994; den Haan and Levin 1997; Cushing and McGarvey 1999). Further, unlike the 

straightforward heteroskedasticity-consistent covariance estimators, at least in the time-series 

realm, the analyst must choose a kernel (a rule for weighting sample autocovariances) and a 

bandwidth (the number of autocovariances included). It is also common to use a prewhitening 

filter, and finite sample performance of HAC covariance estimators can depend greatly on all 

three choices.
4
  

The infrequent use of HAC covariance estimators in the time-series literature is likely a 

result of unsupportive Monte Carlo evidence. This begs the question: why should we consider 

using HAC standard errors in a panel data context, in particular for experiment data? There are at 

least three reasons. First, construction of the panel HAC covariance matrix involves the 

averaging of autocovariances across cross-section units, and this averaging is likely to lessen the 

finite sampling variability introduced by the particular kernel and bandwidth chosen by the 

analyst (see den Hann and Levin 1997; Keifer and Vogelsang 2002, 2005). Thus, for a small or 

modest 𝑛, the performance of the HAC covariance estimator is likely to be reasonably insensitive 

to choice of kernel and bandwidth.  Arellano (1987), based on White (1984), proves the 𝑛 →∞ 

consistency of the A-HAC covariance estimator, which includes all autocovariances and for 

which all autocovariances are given full weight. In other words, for a large enough cross-section, 

the analyst is at least theoretically justified setting the bandwidth equal to 𝑇 and foregoing the 

use of a kernel to weight autocovariances.   

The theoretical results of Newey and West (1987) and Arellano (1987) together suggest a 

second reason to explore HAC covariance estimators in a panel context, namely, that it is 
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possible to achieve consistent covariance estimation with either large 𝑛 or 𝑇 (or both). This 

suggests that HAC covariance estimators may perform well for data sets with a large cross-

section dimension and/or a large time-series dimension. Third, the performance of HAC 

covariance estimators generally deteriorates when the explanatory variables are themselves 

serially correlated, and the correlation differs across variables (den Haan and Levin 1997). 

However, explanatory variables in a regression model for experiment data are typically treatment 

indicator variables, design-specific variables exogenously determined by the experimentalist, and 

(time-invariant) participant characteristics. 

Similar to the time-series literature, much of what we know about panel HAC covariance 

estimators is based on Monte Carlo experiments, although there have been few such studies. 

Bertrand, Duflo, and Mullainathan (2004) and Kezdi (2004) investigate the A-HAC covariance 

estimator within fixed effect frameworks. Similar to these studies, I find that test statistics based 

on A-HAC have the correct size for panels with a moderate cross-section dimension (e.g. 𝑛 = 

50), but with smaller cross-section dimensions (e.g. 𝑛 = 10) standard errors are biased 

downward. Driscoll and Kraay (1998) propose a panel HAC covariance estimator that is also 

robust to spatial correlation, and provide Monte Carlo evidence that their estimator performs 

better than OLS and seemingly unrelated regression (SUR) when there is spatial correlation. 

Their estimator is similar to the NW-HAC estimator explored in this study, with the important 

exception that it is constructed from cross-sectional averages of the autocovariances. This 

estimator requires that parameters not vary across cross-section units, and unfortunately, this 

restriction is likely to be violated in the analysis of experiment data (e.g. it would preclude 

estimation of treatment effects).  
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This study contains further explorations of panel HAC covariance estimators, with a 

focus on data generating processes (DGPs) and panel dimensions relevant for experimental 

economics applications. NW-HAC and the proposed RE-HAC estimator have not been 

previously explored with Monte Carlo methods. In contrast to the existing simulation work on A-

HAC in the context of fixed-effects models, I consider estimation in the presence of unobserved 

heterogeneity in the form of a unit-specific random effect. This is particularly relevant to 

experimentalists since: (1) unobserved individual or group-specific heterogeneity is unlikely to 

be correlated with included model covariates; and (2) we are commonly interested in estimating 

coefficients on time-invariant variables, such as treatment indicator variables and subject-

specific characteristics. The simulations further consider serial correlation processes.  

 The next section presents an overview of HAC covariance estimation in a time-series 

setting. This background material is useful as two of the HAC covariance estimators are panel 

extensions of time-series HAC covariance estimators. Section 3 provides some details of the 

three HAC covariance estimators in the context of panel data. Sections 4 and 5 present Monte 

Carlo simulation results designed to assess the accuracy of HAC-based hypothesis tests. Section 

6 provides some recommendations. 

2.   HAC Covariance Matrix Estimators for Time-Series Data  

 This section overviews HAC covariance estimation within the context of analyzing a 

single time series. Capitalizing on the nice robustness properties of OLS, and beginning with the 

seminal work of White (1980), researchers in economics and elsewhere have made valid 

inferences in the presence of unknown heteroskedasticity by estimating coefficients using OLS 

and using White’s heteroskedasticity-consistent covariance estimator in place of the usual OLS 

covariance matrix. Newey and West (1987) extended consistent covariance estimation by 
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developing an estimator that is robust to both heteroskedasticity and serial correlation. While the 

motivation behind the White and Newey-West estimators is the same – to construct a consistent 

covariance matrix for least squares parameters – controlling for temporal dependence of 

unknown form is a demanding task. 

 Consider the least squares regression model: 

 

 𝑦𝑡 = 𝐱𝑡′𝜷 + 𝜀𝑡,        
[1]  

 

where  𝜷 and 𝐱𝑡 are 𝑘 × 1 vectors of estimable parameters and covariates, respectively; 𝜀𝑡 is a 

mean zero error term (scalar) that is possibly serially correlated and conditionally 

heteroskedastic, with 𝐸[𝜀𝑡|𝐱𝑡] = 0. With serially correlated and heteroskedastic errors, the 

asymptotic covariance of the ordinary least squares estimator of 𝜷 is: 

 

 Asy. Var [𝒃] =(𝐗′𝐗)−1�∑ ∑ 𝐸�𝐱𝑡𝜀𝑡𝜀𝑗𝐱𝑗′�𝑇𝑗=1𝑇𝑡=1 �(𝐗′𝐗)−1,    [2] 

 
 

where 𝐗 is the full 𝑇 × 𝑘 matrix of covariates. The difficulty lies in suitably estimating the 

autocovariance matrix, the middle term in equation [2], using the least squares residuals (𝑒𝑡) as 

point-wise realizations of the true population disturbances.  Newey and West (1987) show that a 

positive semi-definite, consistent covariance estimator can be constructed by appropriately 

weighting the sample autocovariances, 𝐱𝑡𝑒𝑡 = 𝐱𝑡(𝑦𝑡 − 𝐱𝑡′𝒃), in such a way that the dependence 

between observations goes to zero as the distance between observations increases. They suggest 

using a kernel spectral density estimator evaluated at frequency zero, which requires choosing a 

kernel function and a bandwidth parameter.  

 For a given dataset, one can arguably choose among many such kernel/bandwidth pairs to 

construct a consistent covariance estimator. Since the estimated covariance matrix approaches a 
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constant value as 𝑇 tends towards infinity, HAC-based test statistics typically have a normal 

(single linear hypotheses) or chi-squared (multiple linear hypotheses) limiting distribution. 

However, in finite samples, the choice of kernel and bandwidth can severely distort test statistics 

based on these distributions. That is to say, the choice of kernel and bandwidth introduces finite 

sampling bias, the extent to which depends on sample size and the underlying DGP. For this 

reason, Andrews (1991), Newey and West (1994), and others, have developed data-dependent 

bandwidth selection procedures (taking the kernel as given) under the premise of minimizing the 

mean-squared error of the HAC covariance matrix. While these selection procedures provide 

guidance for the analyst and generally perform better than HAC covariance estimators using an 

arbitrary choice for bandwidth and kernel, Monte Carlo experiments suggest that these data-

dependent HAC covariance estimators do not fully resolve the tendency for HAC covariance 

estimators to over-reject the null hypothesis when it is true (Andrews 1991; Andrews and 

Monahan 1992; Newey and West 1994; den Haan and Levin 1997; Cushing and McGarvey 

1999). 

 To increase the performance of HAC covariance estimators, Andrews and Monahan 

(1992) suggest prewhitening the sample autocovariances using a first-order vector-

autoregression [VAR(1)] filter. The VAR(1) filter estimates the value of an autoregressive root 

based on the first-order autocovariance. After filtering this autoregressive root, the 

autocovariances of the prewhitened residuals may decline more rapidly toward zero, thereby 

reducing the bias of the kernel-based estimator (Haan and Levin 1997). Andrews and Monahan 

(1992) show that prewhitening can provide benefits even when the true DGP is not a low-order 

VAR process. A fairly standard practice involves constructing a HAC covariance estimator by 

using a prewhitening filter, choosing a kernel, and selecting a bandwidth based on one of the 
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data-dependent selection methods. Alternative approaches include parametric spectral density 

estimators (see den Haan and Levin 1997) and using the limiting distributions derived by Keifer 

and Vogelsang (2005) for HAC-based test statistics, which serve as better finite sampling 

distributions for HAC tests than do the normal or chi-squared distributions.  

3. HAC Covariance Estimators for Panel Data 

 HAC covariance estimation with panel data is not new. In fact, recent versions of the 

statistical software packages Limdep and Stata include procedures for estimating two panel HAC 

covariance estimators. The first is a panel extension of the Newey-West estimator (NW-HAC).
5
 

The second is the cluster-robust estimator (A-HAC).
6
  

Consider the following panel model specification  

 𝑦𝑖𝑡 = 𝐱𝑖𝑡′ 𝜷 + 𝑢𝑖 + 𝜀𝑖𝑡,        [3] 

 

where the data from the 𝑛 cross-section units are stacked and 𝑢𝑖 is a mean-zero, unobserved unit-

specific effect. As before, the 𝜀𝑖𝑡 are possibly serially correlated and conditionally 

heteroskedastic disturbances. For convenience, and with a slight abuse of notation, the model in 

[3] can be written as 

 

 𝐲𝑖 = 𝐗𝑖𝜷 + 𝐢𝑢𝑖 + 𝜺𝑖,        [4] 

 

where 𝐲𝑖 and 𝜺𝑖 are 𝑇 × 1 vectors specific to unit 𝑖, 𝐗𝑖 is a 𝑇 × 𝑘 matrix of covariates for unit 𝑖, 𝐢 
is a 𝑇 × 1 column of 1s and 𝑢𝑖 is defined as before. Assuming away the unit-specific effect for 

the moment, under the assumption that cross-section units are independent, the asymptotic 

covariance matrix for the OLS estimator is 

 

Asy. Var [𝒃] = 𝑛𝑇(∑ 𝐗𝑖′𝑛𝑖=1 𝐗𝑖)−1{𝑛−1∑ 𝐕𝑖𝑛𝑖=1 }(∑ 𝐗𝑖′𝑛𝑖=1 𝐗)−1.  [5] 
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HAC covariance estimators differ in how they estimate 𝐕𝑖 = 𝐸[𝐗𝑖′𝜺𝑖𝜺𝑖′𝐗𝑖] = 𝐸[𝐗𝑖′𝛀𝑖𝐗𝑖].7
 A-

HAC, in contrast to the HAC covariance estimators used for time-series data, uses all 

autocovariances (i.e. bandwidth equals 𝑇) and no kernel function to weight them. In particular,  

 𝐕�𝑖𝐴−𝐻𝐴𝐶 = 𝑇−1𝐗𝑖′𝐞𝑖𝐞𝑖′𝐗𝑖       [6] 

 

where the 𝐞𝑖 are the OLS residuals. The resulting covariance estimator is consistent for large 𝑛 

and fixed 𝑇, but not for fixed 𝑛 and large 𝑇 (Arellano 2003). NW-HAC uses the Bartlett kernel, 

which is computationally simple 

 

 𝑤𝑡𝑗 = 1 − |𝑡−𝑗|𝑚𝑖   for |𝑡 − 𝑗| < 𝑚𝑖;   𝑤𝑡𝑗 = 0 for |𝑡 − 𝑗| ≥ 𝑚𝑖
   

[7] 

 

where 𝑚𝑖 is the bandwidth parameter and 𝑤𝑡𝑗 is the weight given to the 𝑡𝑗th
 sample 

autocovariance. Let 𝐖 = [𝑤𝑡𝑗] denote a 𝑇 × 𝑇 matrix of Bartlett kernel weights. NW-HAC 

estimates 𝐕𝑖 with  

 𝐕�𝑖𝑁𝑊−𝐻𝐴𝐶 = 𝑇−1𝐗𝑖′((𝐞𝑖𝐞𝑖′) • 𝐖)𝐗𝑖,      [8] 

 

where “•” denotes the Hadamard product operator. For the panel specification (equation [4]), if 𝐸[𝑢𝑖|𝐗𝑖] ≠ 0, in which case consistency of the OLS estimator for 𝜷 generally requires the 

inclusion of unit-specific fixed effects in 𝐗 (i.e. a fixed-effects model is estimated), A-HAC is 

consistent in 𝑛 and NW-HAC is consistent in 𝑇.   

Suppose that we seek an alternative to the fixed effects estimator, for instance in a case 

where we wish to estimate coefficients on time-invariant variables, such as subject 

characteristics or treatment indicators, and we are comfortable with the assumption of zero 
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correlation between 𝑢𝑖 and included covariates. In this case, under standard assumptions we can 

instead consistently estimate 𝜷 using OLS (without including the fixed-effects). A-HAC remains 

consistent in 𝑛, but NW-HAC is no longer consistent. The intuition behind the inconsistency of 

NW-HAC is reasonably straightforward. When there is an underlying random effects structure, 

the OLS residuals are pointwise estimates of 𝐢𝑢𝑖 + 𝐞𝑖, and the variance of the random effect, 𝜎𝑢2, 

appears (unweighted) in every element of 𝛀𝑖 (see Greene 2002, pp. 294). Thus, the Bartlett 

kernel (or any kernel) used for NW-HAC scales the off-diagonal terms of 𝛀𝑖 and thus 

underestimates them. In the case of no heteroskedasticity or serial correlation, for example, all 𝛀𝑖 off-diagonal elements simply equal 𝜎𝑢2 but NW-HAC would instead use 𝑤𝑡𝑗𝜎𝑢2 < 𝜎𝑢2. 

I propose an extension of NW-HAC, which I refer to as RE-HAC, which is consistent 

in 𝑇 while allowing for a unit-specific random effect. To be clear, this is a covariance matrix for 

the OLS estimator, 𝒃, and not for the random effects estimator. The extension involves simply 

incorporating the variance of the random effect, 𝜎𝑢2, into 𝐕𝑖. This requires estimates of the 

population disturbances 𝜺 (to which the kernel should be applied) and an estimate of 𝜎𝑢2 (which 

should appear in every element of 𝛀𝑖). The residuals from a fixed effects model are consistent 

estimates of 𝜺. There are several available consistent estimators for 𝜎𝑢2 
as discussed in Greene 

(2002, p. 297-298).  

Then, it can be shown that a consistent estimator for 𝐕𝑖 under the assumption of random 

effects is   

 

 𝐕�𝑖𝑅𝐸−𝐻𝐴𝐶 = 𝑇−1𝐗𝑖′((𝐞𝑖𝐞𝑖′) • (𝐖 + 𝜎�𝑢2𝐢𝐢′))𝐗𝑖.     [9] 

 

The proof of consistency is straightforward; here I just illustrate this through two polar cases. 

First, if 𝜎𝑢2 = 0 (i.e. there is no unobserved unit effect) then RE-HAC is equivalent to NW-HAC, 
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the properties of which are known. Second, under the assumption of random effects but no serial 

correlation or conditional heteroskedasticity, the estimator reduces to  

 𝐸[𝐕�𝑖𝑅𝐸−𝐻𝐴𝐶] = 𝑇−1𝐗𝑖′(𝜎𝜀2𝐈+𝜎𝑢2𝐢𝐢′)𝐗𝑖 ,     [10] 

 

where 𝐈 is a 𝑇 × 𝑇 identity matrix. Plugging [10] into [5] yields the (consistent) asymptotic 

covariance matrix for 𝒃 under the standard assumptions for a random effects model.
8
    

 Important practical considerations for NW-HAC and RE-HAC are, as in the case of time-

series HAC covariance estimators, the choice of bandwidth and prewhitening filter. For the 

procedures for NW-HAC available in Stata and Limdep the user must specify the bandwidth that 

is common to all 𝑖 and there is no prewhitening filter option. Alternatively, one might apply one 

of the data-dependent bandwidth selection methods developed for time-series models (e.g. 

Andrews 1991; Newey and West 1994). One option would be to apply a data-dependent 

selection method separately for each cross-section unit (which would result in bandwidths that 

vary across units). Alternatively, if one desired a single bandwidth, one might rely on averaging 

(e.g. taking the average unit-specific bandwidths or applying the selection method to averaged 

residuals). For the purpose of conducting Monte Carlo simulations, I use the popular AR(1) data-

dependent bandwidth selection procedure of Andrews (1991) applied to each cross-section unit.
9
 

No prewhitening filter is used. 

4.   Monte Carlo Experiment 

 In this section, I present results from a Monte Carlo experiment in order to help assess the 

accuracy of the three HAC covariance estimators described above, and to compare them to some 

familiar estimators. I consider a linear regression with an intercept 𝛽1= 0.5 and one intercept 

shifter 𝛽2= 5: 
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 𝑦𝑖𝑡 = 0.5 + 5𝑥𝑖𝑡 + 𝑢𝑖 + 𝜀𝑖𝑡,       [11]  

 

where 𝑥𝑖𝑡 = 1 for t > ½ 𝑇 and equals 0 otherwise. This simple model is intended to correspond 

with a within-subjects design and two experimental treatment conditions with an equal number 

of decision periods. The most extensive DGP considered includes a unit-specific AR(2) serial 

correlation pattern, as well as a unit-specific random effect:  

 

 𝜀𝑖𝑡 = 𝜌1𝑖𝜀𝑖,𝑡−1 + 𝜌2𝑖 𝜀𝑖,𝑡−2 + 𝜂𝑖𝑡      [12]
 

 
𝜂𝑖𝑡~𝑁𝑜𝑟𝑚𝑎𝑙(0, 1 − 𝑟) 𝜎𝑢2~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝑟) 

 

The parameter 𝑟 determines the relative within versus between unit variation. In particular, 𝜎𝑢2 + 𝜎𝜂2 = 1 and 𝑟 = 𝜎𝑢2/(𝜎𝑢2 + 𝜎𝜂2). Four values of 𝑟 = {0.0, 0.3, 0.6, 0.9} are explored. By 

placing restrictions on the DGP above, there are four basic serial correlation cases: (1) no serial 

correlation [𝜌1𝑖  = 0, 𝜌2𝑖 = 0]; (2) an AR(1) process that is common to all units [𝜌1𝑖 = 𝜌1;  𝜌2𝑖 = 0]; 

(3) an AR(2) process that is common to all units [𝜌1𝑖 = 𝜌1;  𝜌2𝑖 = 𝜌2]; and (4) an AR(2) process 

that differs across units. For the AR(1) case, 𝜌1 = {0.0, 0.3, 0.6, 0.9}. For the AR(2) common 

process case, two sets of values are explored: 𝜌1= 0.4, 𝜌2= 0.2; and 𝜌1= 0.5, 𝜌2= 0.4. For the 

AR(2) heterogeneous process case, draws from a uniform distribution with supports -.2 and .2 

are added to the two sets of values: 𝜌1𝑖= 0.4 + U[-.2, .2], 𝜌2𝑖= 0.2 + U[-.2, .2]; and 𝜌1𝑖= 0.2 + U[-

.2, .2], 𝜌2𝑖= 0.4 + U[-.2, .2]. The interaction of each distinct serial correlation process with the 

four values of 𝑟 leads to 32 distinct parameter settings.  

Simulation results for four combinations produced with the cross-section and time 

dimensions 𝑛 = {5, 30} and 𝑇 = {20, 50} are reported. The cross-section dimensions thus capture 
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a reasonable number of replications for group-level (i.e. 𝑛 = 5) and individual-level (i.e. 𝑛 = 30) 

outcomes, and the time dimensions capture a small and a moderate number of game repetitions. 

For each {𝑛, 𝑇} combination, reported results for each of the 32 parameter settings are based on 

1,000 simulation repetitions. In the simulations, the coefficients 𝛽1 and 𝛽2 are estimated using 

OLS along with four sets of standard errors: RE-HAC, A-HAC, NW-HAC, and uncorrected OLS 

(OLS). Further, the model is estimated using a standard FGLS random effects model (RE) and a 

random effects estimator that assumes a common AR(1) error process (RE-AR1). Simulations 

are carried out using Limdep (version 9) software.
10

  

 Tables 1-4 present Monte Carlo experiment results where each table corresponds to a 

particular {𝑛, 𝑇} combination. In particular, reported are the empirical probabilities of rejecting 

the null hypotheses 𝛽1= 0.5 and 𝛽2= 5 (consistent with the DGP) based on t-tests. 5% critical 

values were used so that the nominal level is 0.05. Thus, rejection probabilities that are close to 

0.05 suggest that the test has the correct size, whereas probabilities above (below) 0.05 suggest 

over-rejection (under-rejection) under the null hypothesis. The coefficient estimators performed 

well under all scenarios, and common statistics corresponding with the coefficient estimators 

(e.g. bias, efficiency, mean-squared error) are omitted for brevity.
11

 Several interesting patterns 

emerge with respect to the three HAC covariance estimators. First, as conjectured above, 

hypothesis tests using NW-HAC are severely distorted – in many cases by a factor of 5 or higher 

– in the presence of unit effects (i.e. 𝑟 > 0) for all considered sample sizes. The rejection rates 

have a similar pattern to those involving the usual OLS standard errors, which are of course 

biased in the presence of a unit-specific effect. In particular, the null hypothesis with respect to 𝛽1 is rejected too often and the rejection rates for  𝛽2 are too low, with less than a 1% rejection 
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rate for relatively moderate (𝑟 = 0.6) or large (𝑟 = 0.9) between-unit variation. Performance 

under both random effects and serial correlation reveals a similar pattern. 

 The new RE-HAC standard errors are an improvement over NW-HAC, although there 

are size distortions evident in some simulations.  

[Table 1 Here] 

For 𝑛 = 5, 𝑇 = 20, rejection rates for 𝛽1 are about 2.5 times too large – on average – across 

scenarios. This size distortion increases with 𝑟. For 𝛽2, the tendency to over-reject the null 

remains, but is less severe for the no serial correlation DGP. For the serial correlation DGPs, the 

size distortion of 𝛽2 increases as the degree of serial correlation increases. Across these settings, 

the average size is about 0.15 or 3 times the significance level. The size of the test statistics 

improve with increases in 𝑛 and/or 𝑇. With 𝑛 = 30, rejection rates for  𝛽1 have approximately the 

correct size.  

[Table 2 Here] 

Although there is improvement, the tendency to over-reject the null for 𝛽2 remains. Even with 𝑛 

= 30 and 𝑇 = 50, the rejection rates for 𝛽2 are about 2.5 times too large for moderate values of 𝑟 

and a moderate degree of serial correlation. RE-HAC in particular performs poorly under the 

AR(2) specification, especially with 𝜌2= 0.4, and this is presumably due to the use of the AR(1)-

based bandwidth selection procedure. Overall, for 𝛽1, the RE-HAC rejection rates are similar to 

tests based on RE-AR1. For 𝛽2, however, RE-AR1 performs much better when the DGP is 

random effects with AR(1) serial correlation – which is to be expected since the estimator is fully 

consistent with the DGP; but, the performance of the two estimators is comparable under AR(2) 

serial correlation. 
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 The size of tests based on A-HAC is rather promising. For each {𝑛, 𝑇} combination, 

there is very little variation in the rejection rates across the DGPs. For 𝑛 = 5, rejection rates are 

approximately 3 times too high. For 𝑛 = 30, however, tests have approximately the correct size: 

about 0.06 or 6%. There is no evidence of improvement with respect to an increase in 𝑇.  

[Tables 3 and 4 Here] 

One interesting observation is that for 𝑛 = 30 and the AR(1) DGP, the size of A-HAC tests is 

closer to the nominal 5% level than for RE-AR1. In other words, even though RE-AR1 is fully 

consistent with the DGP, A-HAC is more accurate for this sample size. In comparison to RE-

HAC, A-HAC rejection rates are closer to the nominal level for the serial correlation DGPs for 𝑛 

= 30, and for 𝑛 = 5 with high degrees of serial correlation. RE-HAC rejection rates are closer to 

the nominal level for 𝑛 = 5 for the no serial correlation DGP and the AR(1) DGP with a low or 

moderate degree of serial correlation. 

5.   Further Explorations  

The results from the Monte Carlo experiment motivate some further explorations. First, 

the lack of size variation across DGPs for A-HAC, and its improvement for an increase in 𝑛, 

suggests that a degrees of freedom correction, based on 𝑛, is justified. In fact, Stata and Limdep 

both estimate 𝐕𝑖 using  
𝑛𝑛−1𝐕�𝑖𝐴−𝐻𝐴𝐶. For 𝑛 = 5, the size of A-HAC tests using this degrees of 

freedom adjustment improves from about 0.15 to 0.12. For 𝑛 = 30 the improvement is from 

about 0.06 to 0.055. Thus, the degrees of freedom correction appears desirable although for small 𝑛 the size distortion remains. This same degrees of freedom adjustment does not appear justified 

for RE-HAC, as size improves for an increase in 𝑇 as well as 𝑛 and under no serial correlation 

and no random effects the size is approximately correct for the sample sizes explored. 
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 Second, the superior performance of A-HAC over RE-HAC for 𝑛 = 30 begs the question 

of whether it is desirable to set bandwidth equal to 𝑇 rather than use a bandwidth selection 

method. To gain some insight, several RE-HAC simulations were conducted where bandwidth 

was simply set equal to 𝑇. The result was that RE-HAC rejection rates are approximately equal 

to A-HAC. For example, with 𝑛 = 5, 𝑇 = 50, r = .6 and 𝜌1= 0.6, the rejection rate is .143 for 𝛽1 

and .163 for 𝛽2. For the same sample size, but with r = .9, �̅�1= 0.2 and �̅�2= 0.4 the rates are .149 

and .157, respectively. Similar results are obtained for the other three {𝑛, 𝑇} combinations. 

 Third, given the relative performance of RE-HAC over A-HAC with 𝑛 = 5 and low to 

moderate AR(1) serial correlation, I explored the effect of using a prewhitening filter. Using the 

VAR(1) prewhitening procedure proposed by Andrews and Monahan (1992), I find that test 

statistics are much closer to the correct size for 𝑇 = 20 and 𝑇 = 50. In particular, even for 𝜌1= 

0.9, the rejection rates for the AR(1) DGP approximate those from the analogous no serial 

correlation DGP. In other words, there is no additional distortion from the serial correlation and 

what is left is the distortion due to the random effect (which is also present for the RE and RE-

AR1 estimators). One caveat, however, is that the prewhitening helps very little for the case of 

AR(2) serial correlation. What is happening is that the filter essentially removes all the first-

order serial correlation and the bandwidth selection procedure, based on an AR(1) serial 

correlation model, leads to a bandwidth choice that is too small. The small bandwidth fails to 

capture the second-order serial correlation. When a higher-order process is suspected, the 

bandwidth selection procedure of Newey and West (1994) is likely preferable, as it is not based 

solely on an AR(1) process.  
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6.   Recommendations  

Experimentalists analyzing panel data, like any analysts, should initially examine their 

data to discern important properties. One can look at the time-series properties of the data by 

usual time-series methods. For example, plotting the data against time can be used to examine 

for trends. And, one can gain insight as to the type of autoregressive and/or moving average 

process at play by examining the partial autocorrelation function and the autocorrelation 

function. Wooldridge (2002) proposes a test of AR(1) serial correlation for panel data, which 

requires minimal assumptions.
12

 There are a number of proposed approaches for unit-root 

testing, and a review of this literature is provided by Baltagi and Kao (2000). If serial correlation 

is a concern, which is likely for data from repeated-game experiments, this study provides some 

recommendations on how to proceed using HAC covariance estimators for panel data. 

 So what is the bottom line? When there is a moderate (or large) number of cross-section 

units per treatment, which is normal for experiments when data are at the participant-level, the 

Monte Carlo results suggest that A-HAC (a.k.a. the “cluster-robust” covariance estimator) or the 

covariance estimator proposed in this study (RE-HAC) with bandwidth equal to 𝑇 are desirable 

covariance estimators for OLS when there are unobserved unit effects and/or serial correlation of 

unknown form.
13,14

 Hypothesis tests based these HAC covariance estimators have approximately 

the correct size. As such, the HAC covariance estimators are as accurate as the RE or RE-AR1 

estimator, even when one of the latter estimators are fully consistent with the DGP. When the 

structure of the serial correlation is misspecified, RE-AR1 or related estimators will lead to 

biased tests, and A-HAC will be preferred in such instances. Evidence from previous Monte 

Carlo studies (Bertrand, Duflo, and Mullainathan 2004; Kezdi 2004) provides additional support 

for A-HAC. 
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 On the other hand, if the number of cross-section units per treatment is small, which is 

more likely when data are at the group-level, such as a case where the experimentalist wishes to 

analyze measures of market or social efficiency, recommendations are less clear. A-HAC (or 

RE-HAC with bandwidth equal to 𝑇) standard errors tend to be too small. RE-HAC in tandem 

with a prewhitening filter and data-dependent bandwidth selection appears to have promise, but 

additional research is warranted. Certainly an analyst who is uncertain about the underlying DGP 

should look to the RE-HAC estimator, rather than assume a particular structure for the serial 

correlation as there may be greater size distortion due to misspecification. And it is noted that 

estimators like RE-AR1 that place structure on the serial correlation, even if approximately 

correctly specified, produce biased test statistics in small samples (see, for example, Table 1).  

 On a final note, the HAC covariance estimators investigated are generalizations of the 

oft-used White’s (1980) heteroskedasticity-consistent covariance estimator. As such, although 

the Monte Carlo simulations here do not consider DGPs with conditional heteroskedasticity, A-

HAC and RE-HAC are likewise robust to conditional heteroskedasticity of unknown form. In 

fact, conditional heteroskedasticity is unlikely to cause any additional size distortions. Evidence 

in support of these claims for A-HAC can be found in Bertrand, Duflo, and Mullainathan (2004) 

and Kezdi (2004). 
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Table 1.   Monte Carlo Results: Null Rejection Probabilities for 𝒏 = 5, 𝑻 = 20 

 

             RE-HAC A-HAC NW-HAC RE-AR1 RE OLS 

              β1 β2 β1 β2 β1 β2 β1 β2 β1 β2 β1 β2 

No serial correlation 

r=.0 .041 .065 .136 .155 .057 .051 .045 .072 .035 .047 .046 .046 

r=.3 .109 .075 .151 .160 .252 .013 .099 .068 .097 .053 .320 .026 

r=.6 .124 .075 .143 .160 .265 .004 .118 .068 .122 .053 .453 .008 

r=.9 .133 .075 .142 .160 .192 .000 .135 .068 .133 .053 .561 .001 

AR(1) serial correlation, common across units 

r=.0,  ρ1=.3 .078 .114 .135 .146 .101 .090 .055 .086 .085 .144 .128 .132 

r=.3,  ρ1=.3 .112 .120 .153 .147 .231 .038 .095 .079 .111 .138 .341 .089 

r=.6,  ρ1=.3 .120 .120 .146 .147 .242 .009 .111 .078 .119 .138 .450 .043 

r=.9,  ρ1=.3 .130 .120 .142 .147 .189 .001 .130 .078 .131 .138 .560 .007 

r=.0,  ρ1=.6 .100 .179 .136 .153 .151 .117 .062 .104 .150 .299 .270 .261 

r=.3,  ρ1=.6 .104 .192 .135 .152 .199 .076 .084 .101 .121 .293 .387 .217 

r=.6,  ρ1=.6 .119 .192 .144 .152 .219 .032 .105 .101 .137 .293 .446 .143 

r=.9,  ρ1=.6 .126 .192 .134 .152 .192 .004 .118 .101 .130 .293 .560 .027 

r=.0,  ρ1=.9 .080 .261 .135 .175 .176 .103 .096 .135 .107 .492 .415 .351 

r=.3,  ρ1=.9 .076 .253 .142 .159 .196 .083 .090 .112 .115 .483 .444 .329 

r=.6,  ρ1=.9 ..086 .253 .134 .159 .184 .056 .096 .112 .107 .483 .457 .277 

r=.9,  ρ1=.9 .116 .253 .142 ,159 .188 .016 .126 .112 .131 .483 .528 .141 

AR(2) serial correlation, common across units 

r=.0,  ρ1=.4, ρ2=.2 .115 .213 .136 .152 .179 .140 .099 .146 .137 .296 .269 .264 

r=.3,  ρ1=.4, ρ2=.2 .109 .218 .134 .150 .232 .079 .097 .150 .123 .287 .391 .202 

r=.6,  ρ1=.4, ρ2=.2 .128 .218 .146 .150 .240 .032 .115 .150 .134 .287 .453 .131 

r=.9,  ρ1=.4, ρ2=.2 .125 .218 .135 .150 .195 .003 .125 .150 .128 .287 .562 .022 

r=.0,  ρ1=.2, ρ2=.4 .125 .232 .135 .153 .198 .158 .120 .206 .130 .275 .251 .231 

r=.3,  ρ1=.2, ρ2=.4 .121 .231 .137 .151 .253 .083 .109 .217 .124 .268 .385 .173 

r=.6,  ρ1=.2, ρ2=.4 .130 .231 .144 .151 .255 .032 .123 .217 .132 .268 .455 .107 

r=.9,  ρ1=.2, ρ2=.4 .128 .231 .133 .151 .197 .002 .125 .217 .129 .268 .560 .018 

AR(2) serial correlation, heterogeneous across units 

r=.0, 𝝆�𝟏=.4, 𝝆�𝟐=.2 .089 .216 .121 .150 .172 .135 .075 .155 .112 .293 .274 .246 

r=.3, 𝝆�𝟏=.4, 𝝆�𝟐=.2 .110 .215 .145 .143 .229 .069 .106 .166 .121 .295 .389 .203 

r=.6, 𝝆�𝟏=.4, 𝝆�𝟐=.2 .135 .215 .146 .143 .241 .029 .128 .166 .145 .295 .485 .128 

r=.9, 𝝆�𝟏=.4, 𝝆�𝟐=.2 .156 .215 .163 .143 .224 .002 .161 .166 .161 .295 .576 .024 

r=.0, 𝝆�𝟏=.2, 𝝆�𝟐=.4 .098 .239 .121 .150 .197 .145 .091 .220 .108 .264 .261 .223 

r=.3, 𝝆�𝟏=.2, 𝝆�𝟐=.4 .113 .220 .146 .143 .247 .066 .118 .220 .117 .261 .380 .181 

r=.6, 𝝆�𝟏=.2, 𝝆�𝟐=.4 .138 .220 .152 .143 .255 .026 .133 .220 .142 .261 .485 .104 

r=.9, 𝝆�𝟏=.2, 𝝆�𝟐=.4 .158 .220 .161 .143 .232 .002 .161 .220 .158 .261 .574 .015 
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Table 2.   Monte Carlo Results: Null Rejection Probabilities for 𝒏 = 30, 𝑻 = 20 

 

             RE-HAC A-HAC NW-HAC RE-AR1 RE OLS 

              β1 β2 β1 β2 β1 β2 β1 β2 β1 β2 β1 β2 

No serial correlation 

r=.0 .044 .060 .062 .065 .051 .045 .051 .064 .033 .049 .050 .048 

r=.3 .062 .057 .064 .054 .195 .002 .060 .056 .058 .040 .319 .013 

r=.6 .067 .057 .066 .054 .151 .000 .073 .056 .066 .040 .435 .002 

r=.9 .071 .057 .072 .054 .102 .000 .072 .056 .071 .040 .522 .000 

AR(1) serial correlation, common across units 

r=.0,  ρ1=.3 .063 .089 .055 .052 .086 .061 .034 .053 .074 .112 .131 .103 

r=.3,  ρ1=.3 .070 .089 .068 .059 .178 .012 .066 .052 .072 .120 .347 .058 

r=.6,  ρ1=.3 .076 .089 .071 .059 .149 .000 .069 .052 .078 .120 .472 .020 

r=.9,  ρ1=.3 .068 .089 .072 .059 .110 .000 .069 .052 .069 .120 .548 .000 

r=.0,  ρ1=.6 .056 .146 .053 .053 .114 .077 .053 .080 .100 .271 .257 .239 

r=.3,  ρ1=.6 .066 .142 .062 .053 .132 .024 .061 .078 .089 .270 .388 .175 

r=.6,  ρ1=.6 .071 .142 .065 .053 .121 .005 .069 .078 .077 .270 .460 .090 

r=.9,  ρ1=.6 .073 .142 .069 .053 .113 .000 .071 .078 .076 .270 .541 .004 

r=.0,  ρ1=.9 .036 .154 .068 .057 .115 .035 .064 .083 .054 .439 .396 .291 

r=.3,  ρ1=.9 .040 .162 .065 .050 .107 .031 .071 .088 .059 .446 .395 .261 

r=.6,  ρ1=.9 .039 .162 .062 .050 .111 .017 .070 .088 .053 .446 .439 .209 

r=.9,  ρ1=.9 .051 .162 .060 .050 .095 .001 .058 .088 .058 .446 .497 .057 

AR(2) serial correlation, common across units 

r=.0,  ρ1=.4, ρ2=.2 .060 .168 .050 .054 .139 .087 .069 .113 .094 .267 .267 .230 

r=.3,  ρ1=.4, ρ2=.2 .070 .160 .062 .051 .156 .026 .070 .111 .083 .262 .397 .156 

r=.6,  ρ1=.4, ρ2=.2 .070 .160 .064 .051 .139 .003 .071 .111 .077 .262 .470 .081 

r=.9,  ρ1=.4, ρ2=.2 .074 .160 .067 .051 .116 .000 .072 .111 .077 .262 .550 .002 

r=.0,  ρ1=.2, ρ2=.4 .069 .197 .053 .056 .156 .102 .072 .176 .080 .236 .249 .202 

r=.3,  ρ1=.2, ρ2=.4 .072 .189 .065 .054 .174 .026 .075 .168 .081 .230 .391 .139 

r=.6,  ρ1=.2, ρ2=.4 .073 .189 .065 .054 .156 .003 .075 .168 .074 .230 .468 .065 

r=.9,  ρ1=.2, ρ2=.4 .074 .189 .068 .054 .118 .000 .072 .168 .074 .230 .547 .000 

AR(2) serial correlation, heterogeneous across units 

r=.0, 𝝆�𝟏=.4, 𝝆�𝟐=.2 .051 .186 .062 .075 .134 .095 .055 .140 .069 .294 .269 .230 

r=.3, 𝝆�𝟏=.4, 𝝆�𝟐=.2 .060 .195 .071 .078 .167 .044 .059 .142 .074 .312 .380 .201 

r=.6, 𝝆�𝟏=.4, 𝝆�𝟐=.2 .066 .195 .068 .078 .142 .007 .069 .142 .070 .312 .459 .120 

r=.9, 𝝆�𝟏=.4, 𝝆�𝟐=.2 .065 .195 .069 .078 .105 .000 .067 .142 .067 .312 .537 .007 

r=.0, 𝝆�𝟏=.2, 𝝆�𝟐=.4 .057 .211 .062 .073 .145 .103 .061 .195 .066 .260 .260 .211 

r=.3, 𝝆�𝟏=.2, 𝝆�𝟐=.4 .064 .217 .072 .081 .189 .041 .063 .216 .073 .279 .370 .176 

r=.6, 𝝆�𝟏=.2, 𝝆�𝟐=.4 .064 .217 .068 .081 .158 .004 .067 .216 .066 .279 .460 .094 

r=.9, 𝝆�𝟏=.2, 𝝆�𝟐=.4 .065 .217 .070 .081 .106 .000 .066 .216 .066 .279 .530 .004 
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Table 3.   Monte Carlo Results: Null Rejection Probabilities for 𝒏 = 5, 𝑻 = 50 

 

             RE-HAC A-HAC NW-HAC RE-AR1 RE OLS 

              β1 β2 β1 β2 β1 β2 β1 β2 β1 β2 β1 β2 

No serial correlation 

r=.0 .042 .056 .155 .167 .059 .049 .042 .062 .037 .052 .055 .049 

r=.3 .142 .057 .146 .165 .375 .007 .138 .059 .141 .050 .501 .025 

r=.6 .144 .057 .143 .165 .330 .002 .146 .059 .144 .050 .637 .006 

r=.9 .134 .057 .136 .165 .251 .000 .133 .059 .134 .050 .723 .001 

AR(1) serial correlation, common across units 

r=.0,  ρ1=.3 .066 .115 .156 .171 .101 .099 .044 .069 .082 .155 .152 .150 

r=.3,  ρ1=.3 .138 .109 .151 .164 .298 .021 .135 .065 .139 .154 .511 .104 

r=.6,  ρ1=.3 .142 .109 .144 .164 .297 .006 .146 .065 .146 .154 .628 .047 

r=.9,  ρ1=.3 .139 .109 .138 .164 .229 .001 .141 .065 .140 .154 .714 .003 

r=.0,  ρ1=.6 .083 .154 .151 .172 .135 .123 .050 .088 .159 .337 .318 .324 

r=.3,  ρ1=.6 .120 .156 .139 .163 .210 .049 .111 .079 .151 .307 .510 .251 

r=.6,  ρ1=.6 .138 .156 .150 .163 .244 .013 .139 .079 .146 .307 .609 .184 

r=.9,  ρ1=.6 .145 .156 .144 .163 .215 .001 .150 .079 .149 .307 .701 .046 

r=.0,  ρ1=.9 .084 .228 .148 .150 .174 .121 .081 .105 .183 .599 .565 .530 

r=.3,  ρ1=.9 .100 .232 .145 .158 .180 .104 .095 .105 .166 .585 .581 .506 

r=.6,  ρ1=.9 .115 .232 .146 .158 .188 .068 .113 .105 .157 .585 .619 .474 

r=.9,  ρ1=.9 .137 .232 .145 .158 .210 .018 .143 .105 .155 .585 .684 .333 

AR(2) serial correlation, common across units 

r=.0,  ρ1=.4, ρ2=.2 .103 .192 .148 .170 .179 .153 .085 .144 .168 .348 .339 .333 

r=.3,  ρ1=.4, ρ2=.2 .125 .186 .140 .161 .312 .101 .130 .136 .152 .326 .529 .263 

r=.6,  ρ1=.4, ρ2=.2 .141 .186 .151 .161 .408 .041 .143 .135 .149 .326 .617 .182 

r=.9,  ρ1=.4, ρ2=.2 .146 .186 .145 .161 .478 .003 .149 .135 .151 .326 .703 .043 

r=.0,  ρ1=.2, ρ2=.4 .121 .232 .146 .164 .231 .202 .118 .227 .163 .343 .344 .327 

r=.3,  ρ1=.2, ρ2=.4 .136 .228 .140 .162 .389 .137 .137 .224 .151 .326 .533 .256 

r=.6,  ρ1=.2, ρ2=.4 .145 .228 .151 .162 .487 .067 .147 .224 .148 .326 .622 .175 

r=.9,  ρ1=.2, ρ2=.4 .147 .228 .145 .162 .551 .006 .149 .224 .149 .326 .703 .042 

AR(2) serial correlation, heterogeneous across units 

r=.0, 𝝆�𝟏=.4, 𝝆�𝟐=.2 .091 .192 .157 .150 .181 .136 .084 .167 .174 .399 .405 .380 

r=.3, 𝝆�𝟏=.4, 𝝆�𝟐=.2 .133 .198 .160 .140 .325 .096 .142 .168 .164 .400 .556 .336 

r=.6, 𝝆�𝟏=.4, 𝝆�𝟐=.2 .142 .198 .154 .140 .420 .049 .143 .168 .156 .400 .673 .255 

r=.9, 𝝆�𝟏=.4, 𝝆�𝟐=.2 .149 .198 .150 .140 .475 .008 .155 .168 .153 .400 .742 .074 

r=.0, 𝝆�𝟏=.2, 𝝆�𝟐=.4 .111 .244 .156 .150 .232 .168 .131 .251 .167 .397 .399 .373 

r=.3, 𝝆�𝟏=.2, 𝝆�𝟐=.4 .141 .248 .160 .140 .398 .142 .147 .252 .160 .389 .554 .329 

r=.6, 𝝆�𝟏=.2, 𝝆�𝟐=.4 .148 .248 .155 .140 .490 .065 .150 .252 .157 .389 .670 .243 

r=.9, 𝝆�𝟏=.2, 𝝆�𝟐=.4 .149 .248 .151 .140 .549 .010 .152 .252 .152 .389 .740 .064 
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Table 4.   Monte Carlo Results: Null Rejection Probabilities for 𝒏 = 30, 𝑻 = 50 

 

             RE-HAC A-HAC NW-HAC RE-AR1 RE OLS 

              β1 β2 β1 β2 β1 β2 β1 β2 β1 β2 β1 β2 

No serial correlation 

r=.0 .032 .057 .057 .069 .050 .052 .037 .062 .031 .055 .048 .055 

r=.3 .057 .057 .057 .064 .282 .002 .058 .060 .056 .056 .499 .023 

r=.6 .061 .057 .062 .064 .213 .000 .062 .060 .061 .056 .633 .006 

r=.9 .063 .057 .064 .064 .124 .000 .063 .060 .063 .056 .696 .000 

AR(1) serial correlation, common across units 

r=.0,  ρ1=.3 .061 .105 .056 .066 .092 .087 .037 .072 .084 .159 .139 .156 

r=.3,  ρ1=.3 .058 .095 .059 .064 .210 .010 .057 .063 .062 .140 .489 .091 

r=.6,  ρ1=.3 .061 .095 .062 .064 .182 .000 .060 .063 .062 .140 .619 .027 

r=.9,  ρ1=.3 .063 .095 .063 .064 .124 .000 .059 .063 .063 .140 .696 .000 

r=.0,  ρ1=.6 .058 .122 .061 .068 .103 .095 .043 .084 .128 .319 .316 .308 

r=.3,  ρ1=.6 .053 .124 .055 .060 .150 .019 .056 .072 .074 .314 .498 .250 

r=.6,  ρ1=.6 .055 .124 .059 .060 .144 .001 .056 .072 .063 .314 .598 .156 

r=.9,  ρ1=.6 .063 .124 .062 .060 .102 .000 .063 .072 .064 .314 .685 .013 

r=.0,  ρ1=.9 .048 .163 .067 .060 .099 .077 .056 .072 .100 .579 .565 .502 

r=.3,  ρ1=.9 .046 .173 .060 .064 .123 .069 .058 .079 .082 .600 .556 .499 

r=.6,  ρ1=.9 .054 .173 .061 .064 .117 .034 .055 .079 .076 .600 .581 .456 

r=.9,  ρ1=.9 .051 .173 .058 .064 .097 .002 .058 .079 .063 .600 .652 .289 

AR(2) serial correlation, common across units 

r=.0,  ρ1=.4, ρ2=.2 .064 .156 .060 .069 .133 .121 .071 .137 .131 .339 .326 .320 

r=.3,  ρ1=.4, ρ2=.2 .059 .153 .055 .060 .251 .060 .059 .128 .073 .333 .510 .256 

r=.6,  ρ1=.4, ρ2=.2 .059 .153 .060 .060 .342 .013 .058 .128 .062 .333 .609 .157 

r=.9,  ρ1=.4, ρ2=.2 .064 .153 .063 .060 .389 .000 .065 .128 .064 .333 .688 .013 

r=.0,  ρ1=.2, ρ2=.4 .085 .203 .060 .067 .194 .163 .095 .204 .125 .339 .336 .324 

r=.3,  ρ1=.2, ρ2=.4 .061 .196 .057 .059 .344 .105 .067 .197 .072 .338 .512 .246 

r=.6,  ρ1=.2, ρ2=.4 .061 .196 .060 .059 .426 .024 .058 .197 .062 .338 .609 .151 

r=.9,  ρ1=.2, ρ2=.4 .064 .196 .064 .059 .483 .000 .065 .197 .064 .338 .688 .012 

AR(2) serial correlation, heterogeneous across units 

r=.0, 𝝆�𝟏=.4, 𝝆�𝟐=.2 .050 .162 .044 .070 .122 .100 .064 .160 .099 .386 .395 .357 

r=.3, 𝝆�𝟏=.4, 𝝆�𝟐=.2 .061 .157 .058 .055 .223 .063 .063 .149 .075 .403 .524 .309 

r=.6, 𝝆�𝟏=.4, 𝝆�𝟐=.2 .057 .157 .056 .055 .301 .018 .060 .149 .065 .403 .604 .220 

r=.9, 𝝆�𝟏=.4, 𝝆�𝟐=.2 .055 .157 .057 .055 .355 .000 .056 .149 .057 .403 .689 .033 

r=.0, 𝝆�𝟏=.2, 𝝆�𝟐=.4 .064 .200 .047 .071 .163 .133 .082 .241 .097 .373 .382 .351 

r=.3, 𝝆�𝟏=.2, 𝝆�𝟐=.4 .065 .187 .058 .057 .293 .091 .068 .219 .071 .392 .522 .286 

r=.6, 𝝆�𝟏=.2, 𝝆�𝟐=.4 .061 .187 .057 .057 .378 .030 .064 .219 .066 .392 .607 .197 

r=.9, 𝝆�𝟏=.2, 𝝆�𝟐=.4 .056 .187 .057 .057 .426 .000 .056 .219 .057 .392 .689 .025 
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1
 Note that the idea for this paper originated in 2002, when panel data analysis was the exception rather than the rule 

for drawing inferences from experimental data. Although panel data models are increasing used for analyzing 

repeated-game experiment data, and indeed more and more researchers have relied on using cluster-robust standard 

errors, it remains common for journal referees to request simple statistical tests even when their validity is 

questionable.  

2
 Indeed, on numerous occasions I have reviewed papers that simply mention heteroskedasticity when justifying the 

use of cluster-robust standard errors. Further, it is fairly common for some to use the standard random effects 

estimator in tandem with cluster-robust standard errors. This approach is internally inconsistent, as the random 

effects estimator assumes a specific form of within-unit serial correlation but the use of cluster-robust standard 

errors suggests that the assumed form of serial correlation is incorrect. 

3
 Data sets of this sort tend to be labeled as “time-series cross-section” or TSCS data. 

4
 A prewhitening filter attempts to remove some correlation in the residuals from a regression model, which has 

been shown to improve the performance of HAC-based techniques (see Andrews and Monahan 1992). 

5
 Stata’s newey command (with option force) produces standard OLS coefficients (without any adjustment for a 

fixed or random-effects structure) along with the NW-HAC estimator. Limdep estimates an equivalent NW-HAC 

estimator, but with a fixed-effects estimator for model coefficients.  

6
 This covariance estimator is produced when one specifies the cluster option for Stata or Limdep’s regress 

command. To estimate a fixed-effects model with A-HAC errors in Stata, one can jointly use the cluster and fe 

options for Stata’s xtreg command. 

7
 For purpose of identification, the HAC covariance estimators considered here require that 𝑛 ≥ 𝑘. 

8
 Of course, this estimator would be inefficient, and the standard FGLS random effects estimator for β is preferable. 

9
 As suggested by Andrews (1991), to calculate the bandwidths I use a weight of 0 for the autoregressive parameter 

associated with the model intercept and a weight of 1 on other autoregressive parameters. See Andrews (1991) for 

details on using this procedure. 

10
 OLS and random effects models are estimated using canned procedures in Limdep. RE-AR1 uses an estimate of ρ 

from a fixed effects model. To construct the RE-HAC covariance estimator I use the estimate of 𝜎𝑢2 generated by 

Limdep’s random effects estimator. 

11
 These statistics are available upon request. 
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12

 There is a user-written program available to run this test in Stata (Drukker, 2003). 

13
 Since there are canned procedures in Stata and Limdep for A-HAC (with the degrees of freedom correction 

discussed above), it is likely preferable from the practitioner’s viewpoint.  

14
 If a fixed-effects structure is preferred or assumed, then a fixed effects coefficient estimator with A-HAC is 

recommended.  


