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We address the problem of decomposing the risk of a multi-factor credit 

portfolio into marginal contributions through a fast analytical approach: it is 

based on Taylor polynomial expansion of the overall risk and on the subsequent 

partial derivatives with respect to the single exposures, exploiting the Euler 

principle. The proposed approximation, which also accommodates for an 

efficient treatment of obligors with similar risk profile, is suitable for large and 

complex bank portfolios; furthermore, it proves to perform quite well if tested 

against numerical techniques, among which we chose the Harrel-Davis 

estimator. The latter, aside from representing a benchmark measure, should 

however be applied in the case of very small and concentrated portfolios. In 

addition, a comparison with the most usual variance-covariance approach is 

drawn, emphasising its drawbacks in the correct representation of risk 

allocation.       

 

 

1 INTRODUCTION 

The  economic capital of a credit portfolio is a global measure that allows banks to understand the 

true risk of the lending activity, and on that subject a whole literature exists and a big effort is still 

on-going in order to improve the methodologies, which are becoming more and more 

sophisticated in their aim to reach the most accurate representation of risk. For the purposes of 
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internal risk management, portfolio economic capital is not enough, as the process of capital 

allocation requires total risk to be decomposed into individual risk contributions (at transaction or 

counterparty level).  

Theoretically, most standard risk measures can be decomposed as a sum of sensitivities or risk 

contributions that can be interpreted as marginal impacts on total portfolio risk.  The key property 

allowing for this decomposition is the risk measure being positive homogeneous, meaning that the 

risk or capital of a portfolio scales in proportion to the size of the portfolio. This is the case for 

instance of Expected Shortfall and Value at Risk (VaR), the latter being the focus of the present 

document. 

While in the context of a single factor infinitely granular model, like the model underlying the 

regulatory capital formulas, the decomposition is straightforward, in the framework of a 

multifactor credit portfolio model with a finite number of obligors there is no explicit analytical 

solution for deriving marginal contributions of the single exposures to the economic capital.  The 

most widespread approach to capital allocation is thus to adopt the marginal contribution of each 

exposure to the volatility of the portfolio loss distribution. This is the so called variance-covariance 

approach, which is considered to be intuitive and easy to compute, but, being based on the strong 

hypothesis that losses are Normally distributed, becomes misleading and can produce inconsistent 

results in the most realistic case of non-Normal credit losses. On the other hand, simulation-based 

approaches could be quite burdensome in particular for large portfolios: in fact, the marginal risks 

can be interpreted as expectations of losses on exposures, conditional on events in the tail of the 

loss distribution for the full portfolio. Each contribution depends on the probability of  a rare event 

(a default), which in turn depends on an even rarer event (an extreme loss for the portfolio). 

Ordinary Monte Carlo estimation is thus impractical, so that specific numerical techniques have to 

be used to overcome this problem. 

We present here an analytical approximation of portfolio VaR, based on the second order Taylor 

expansion of losses as suggested by Pykhtin (2004). VaR can thus be split into three components: 

the VaR of a calibrated asymptotic single risk factor model; the adjustment for industry 

concentration, casting a bridge between single and multi-factor structure; the granularity 

adjustment. While Pykthin’s method refers directly to the “actual” number of borrowers in the 

portfolio regardless of their similarities, our approach introduces some changes in order to 

facilitate the treatment of very large and complex portfolios. This is done first by clustering 

borrowers belonging to the same economic sector and sharing similar risk characteristics (e.g. the 

probability of default) and then by considering the name concentration inside the cluster, through 

the Hirschmann-Herfindahl index which measures the “effective” number of borrowers (see Gordy 

2003). Furthermore, the analytically approximated capital can be used in order to determine the 

marginal credit VaR of different borrowers and/or transactions. In fact, under some conditions 

that are respected in the case of the analytical formula, we can adopt the Euler allocation 

principle, stating that, if risk contributions are computed as first-order derivatives of total risk with 

respect to portfolio exposures, their sum amounts to the total risk. We developed a solution for 

those derivatives and, in order to understand to what extent the analytical approximation was 

acceptable, results have been compared with a measure of the “true” contributions. Many 

numerical methods can be applied for this purpose, as shown in the literature (see Glasserman, 
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2005, and Mausser, 2008). As a benchmark we chose here the H-D (Harrel-Davis, 1982) estimator, 

belonging to the general class of L-estimators, since it provides good performances in terms of 

both accuracy and stability. 

Some examples were drawn on test portfolios with different concentration characteristics, 

pointing out that the analytical approximation performs optimally, not only in terms of portfolio 

capital, which is close to the Monte Carlo outcome, but also for its allocation on single clusters: 

the contributions match in fact quite well the ones which are calculated through the HD estimator. 

On the other hand, the variance-covariance approach shows significant differences in the risk 

allocation profile if compared with the simulated benchmark. 

The convergence of the analytical approach towards simulated contributions could not be satisfied 

under certain circumstances. For instance, if there is a non-negligible concentration in the 

portfolio, the analytical allocation becomes less accurate, failing to match the true risk as 

estimated through numerical techniques. The identification of the boundaries inside which it is 

safely applicable is beyond the scope of this paper, as they cannot be detected in absolute terms 

because of their dependence on a plurality of factors like credit quality, asset correlations and so 

on. Still, whenever the amount of one or a few exposures is predominant in the portfolio, the 

application of numerical techniques for determining the correct risk contributions is advisable.  

A trade off does in fact exist between accuracy and computational effort (in terms of computing 

time and memory constraints), which must be evaluated taking into account both the complexity 

of the portfolio and the degree of concentration on single exposures. The analytical approximation 

we chose represents an effective trade off in the case of a large bank portfolio, but not necessarily 

for smaller or highly concentrated portfolios or sub-portfolios. 

This paper idea, which is to propose a fast analytical solution for determining risk contributions 

and compare it to a numerical benchmark, is not new in the literature. For instance, the seminal 

paper of Emmer and Tasche (2003) applies this concept, in the context of the one-factor credit risk 

setting: formulae are developed for both the granularity adjustment approach and for a semi-

asymptotic approach. Dullmann and Puzanova (2011) compute analytical marginal contributions in 

a multi-factor framework, comparing the results with those obtained through the importance 

sampling algorithm: however, this research was developed in a completely different context, with 

the aim of assessing individual banks’ weight on systemic risk.  

More recently, a similar philosophy has been adopted by Lutz and When (2012), who use the 

Cornish-Fisher expansion to derive analytical formulas for market risk contributions, pointing out 

the advantages in terms of computational efficiency of such a method if compared to simulation-

based approaches. 

The rest of the paper proceeds as follows. Section 2 describes all the assumptions underlying the 

multi-factor credit risk model and how Value At Risk approximation works. Section 3 explains the 

core derivatives involved in marginal risk allocation and the benchmark numerical solution 

adopted, while section 4 is devoted to some empirical examples. The last section concludes the 

paper. 
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2 STRUCTURE OF THE MULTI-FACTOR MODEL AND ANALYTICAL VALUE AT RISK 

SPECIFICATION 

In this section a typical multi-factor model is introduced. In such a model, the dependence 

structure among obligors is driven by a number of systematic risk factors related to sector 

dynamics. Let’s assume additionally that obligors who belong to the same sector with similar ��� 

and ���� are grouped into specific clusters �. Thus, the asset return of obligor � in sector �  
mapped onto cluster � can be represented by: 

�	,� = 
��� +�1 − 
����	������������������������������������������������������������������2.1� 
where �� is the sector risk factor, �	 the idiosyncratic factor and 
� the loading which measures the 

borrower i’s sensitivity to the systematic risk (its square defines the intra-sector correlation, that is 

the correlation between two firms sharing the same cluster). Variables �� and �	 follow Standard 

Normal distributions and are independent from each other. Furthermore, �� can be seen as a 

linear combination of independent and normally distributed factors ��: �� = � ��,����� !          with   � ��,�� = 1�� !  

in which the weights ��,� come from the inter-sector correlation matrix decomposition (i.e. by 

means of Cholesky or eigenvalues/eigenvectors decomposition of asset returns correlation). 

Hence, the asset correlation between obligor i in sector s associated for instance to cluster ", and 

obligor j in sector t related to cluster # is given by: 

$%

&�	,', �(,)* = +�1�������������������������������� �,�� = -�"./�� = 0
'
)�������������������������� �,�� = -�"./�� ≠ 0
'
) � ��,��2,��� ! � �,�� ≠ -��������������������  
The dependence structure in the multi-factor model is then fully described through the intra- and 

inter-sector correlation. The portfolio loss distribution, considering deterministic 34� and ��� 

parameters, can be written as 

���� =556	,�����1789,:;<=>�?@:�AB:
	 !

C
� ! �����������������������������������������������������2.2� 

where $ is the total number of clusters, D� represents the actual number of borrowers in each 

cluster, ���� is the loss given default per cluster � and 6	,� stands for the share of total exposure 

at default (34�) referred to obligor �. If �	,� falls below the threshold ΦF!�����1, obtained by 

inverting the cumulative Standard Normal distribution corresponding to the probability of default ���, obligor � defaults and the third summand of � becomes 1. A suitable transformation of 

equation �2.2�, aimed at embedding the concentration effect in case of large and heterogeneous 

portfolios, relies on the effective number of obligors D�∗, computed via Herfindahl–Hirschmann 

Index (HHI)
2
: 

                                                           
1
 due to an adverse realization of vector � containing the systemic factors. 

2
 D�∗ can be interpreted as the number of credits in a homogeneous portfolio with the equivalent degree of name 

concentration risk expressed by D�. 
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���� =56�����HHI�51789,:;<=>�?@:�AB:∗
	 !

C
� ! ������������������������������������������������2.3� 

with 6� = KL@:KL@       and    HHI� = � MKL@9,:KL@: N� = !B:∗B:	 !  

In addition, conditional on risk factors �, the number of defaults is binomially distributed, that is 

51789,:;<=>�?@:�A�~�B:∗
	 ! ℬ&D�∗, Q����* 

where  

Q���� = ΦRΦF!����� − 
���S1 − 
�� T 3 
It is worth noticing that if the portfolio is large enough (meaning that D�∗ tends to infinite), most of 

the idiosyncratic risk is diversified away and losses are mainly driven by systematic factors: in such 

a case, equation �2.3�, by applying the law of large numbers (see Gordy 2003), degenerates to the 

limiting loss distribution of an infinitely fine-grained portfolio that is: 

�U��� =56�����C
� ! Q����������������������������������������������������������������������2.4� 

The portfolio loss distribution �2.3� can be determined numerically through Monte Carlo 

simulations: in each scenario, the sector factors � as well as the idiosyncratic component are 

randomly generated. After running the simulation and sorting the loss outcomes, the W"X 

measure at a given confidence level � is calculated in the following conventional manner: W"XY��� ∶= [Y��� = �.,\] ∈ ℝ`ℙb� ≤ ]d ≥ �f 
Since the main drawback of this kind of models is the time-consuming calculation in case of large 

portfolios, an analytical approximation method as the one suggested by Pykhtin (2004) could be 

adopted. The basic idea behind the approach is to approximate the portfolio loss � of the multi-

factor framework with the loss �gU of an appropriately adjusted single factor model (ASRF): this is 

achieved by mapping the correlation structure into a single factor, let’s define it �g, whose 

correlations with respect to the original composite drivers (��)  are maximized
4
. Based on this, a 

Taylor series expansion is performed around the single-factor model. Entering into details, the 

approximated loss �gU is expressed as
5
: 

�gU&�g* =56�����C
� ! Q�&�g*�����������������������������������������������������������������2.5� 

                                                           
3
 Defined as conditional probability of default, obtained by simply quantifying the probability of the Gaussian process 

[1] being lower than threshold ΦF!�����, where Φ stands for the cumulative Normal distribution. 
4
 �g  can in fact be viewed as a linear combination of the � independent factors, that is �g = � #����� ! . In a nutshell, #� is 

the outcome of the following optimization problem: max)l&� m� � #���,��� !C� ! * such that  � #�� = 1�� ! . Pykhtin sets the 

weight m� as stand-alone W"XY of obligor (cluster) �, using ASRF model with correlation parameter equal to 
�. 
5
 where "� = 
� � ��,�#��� !  measures the maximizing correlation parameter. 
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Q�&�g* = ΦRΦF!����� − "��gS1 − "�� T 

Being �gU a deterministic monotonically decreasing function of �g, the quantile at level � is:  W"XY&�gU* ∶= [Y&�gU* = �gU&ΦF!�1 − ��*�����������������������������������������������������2.6� 
Next step consists in calculating a Taylor series expansion up to quadratic term in order to reduce 

the approximation error of �gU: let’s think the true portfolio loss as the variable �gU plus a 

stochastic perturbation o = � − �gU such that �p = �gU + �o with � indicating the extent of the 

perturbation. Setting ∆� = 1 to move from �r to �! the portfolio loss quantile becomes 

W"XY��� ≅ W"XYtuvw��� = W"XY��p�`p r + /W"XY��p�/� xp r + 12�/
�W"XY/�� xp r ������������������2.7� 

It can be shown that the first derivative, referred to the second hand-side term, is equal to zero
6
 

due essentially to the maximizing choice of "�. Furthermore, thanks to the work of Gourieroux et 

al. (2000), the second derivative applied to this framework can be written as 

12�/�W"XY/�� xp r = − 12�gU&�g*z {|&�g*z −|&�g*}�g + �gU&�g*
zz

�gU&�g*z~���g �<=>�!FY� ����������2.8� 
Expressions �gU&�g*z and �gU&�g*zzare the first and the second derivatives of equation �2.5�, 
evaluated in �g , whose calculation is straightforward, in fact:  

�gU&�g*z =56�C
� ! ���� �Q�&�g*z�����������������������������������������������������������2.9� 

and 

�gU&�g*zz =56�C
� ! �����Q�&�g*zz�������������������������������������������������������2.10� 

with 

Q�&�g*z = − ':�!F':���<=>�?@:�F':�g�!F':� �      and    Q�&�g*zz = − ':�!F':� <=>�?@:�F':�g�!F':� ��<=>�?@:�F':�g�!F':� � 

where � identifies the Normal density function. |&�g* and |&�g*z are respectively the variance of � conditional on �g  and its first derivative still 

calculated in �g7. A useful insight to be noticed is the standard decomposition in terms of 

systematic and idiosyncratic components of the latter two functions.  

In particular, |&�g* = |U&�g* + |�L&�g* and |&�g*z = |U&�g*z + |�L&�g*z where: 

|U&�g* = �"
b���`��`�gd = ������������������������������������������������������������������������������������������������������������������������������������� �2.11� 
���������������= 556	6(���	���(�Φ�&ΦF!�Q	&�g*�, ΦF!�Q(&�g*�; �	,(�g * − Q	&�g*Q(&�g*�C

( !
C
	 !  

                                                           
6
 See Pykhtin (2004) for proof. 

7
 By introducing some simple adjustments, the approach also accommodates for stochastic LGD setting. 
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|�L&�g* = �b�"
��`��`�gd = ������������������������������������������������������������������������������������������������������������������������������������ �2.12� 
����������������= 56	����	�HHI	�Q	&�g* − Φ�&ΦF!�Q	&�g*�,ΦF!�Q	&�g*�; �	,	�g *�C

	 !  

Equation �2.11� represents the variance of loss �U conditional on the single comparable factor �g, 
accounting for the correction due to the multi-factor setting; equation �2.12�, which is the 

expected value applied on the conditional variance of �, describes the effect of a finite number of 

loans, also known as granularity adjustment. Φ� is the normal bivariate cumulative distribution, 

whilst �	,(�g  has the meaning of conditional asset correlation between cluster � and 0. Equation �2.1�, 
referred to obligor � given a realization of the effective risk factor �g  (which shifts the mean of �	,�), 
can be rewritten in the general form with �	  standard normally distributed,   

�	,� = "��g +5&
���,� − "�#�*�
� ! �� +�1 − 
����	����������������������������������������2.13� 

which entails 

�	,(�g = 
	
( � ��,��2,��� ! − "	"(�1 − "	��1− "(� ����������������������������������������������������������2.14� 
Finally, as last computational step, first derivatives of �11� and �12� yield

8
: 

|U&�g*z = 2556	6(���	���(C
( !

C
	 ! Q	&�g*z ��

��Φ�
�ΦF!�Q(&�g*� − �	,(�g ΦF!�Q	&�g*��1 − &�	,(�g *� �

�− Q(&�g*��
�����������������2.15� 

|�L&�g*z =56	����	�HHI	C
	 ! Q	&�g*z ��

��1 − 2Φ�
�ΦF!�Q	&�g*� − �	,	�g ΦF!�Q	&�g*��1 − &�	,	�g *� �

�
��
�������������������������������������2.16� 

After having combined all the equations involved in the analytical approximation �2.7�, W"X can be 

split into three components: the first concerns the W"X of a calibrated asymptotic single risk factor 

model (ASRF) �gU, the second provides the adjustment for industry-concentration casting a bridge 

between single- and multi-factor structure (by inserting equations (2.11) and (2.15) into (2.8)), the 

third, also named granularity adjustment, measures the name concentration effect (by feeding 

equation (2.8) with (2.12) and (2.16)). This is summarized as follows: W"XY��� ≅ W"XYtuvw��� = W"XY&�gU* + ∆W"XY���U + ∆W"XY����L��������������������∆�' ¡�¢�£¤¥¦ ������������������������2.17� 
 

3 ANALYTICAL AND NUMERICAL CREDIT VAR CONTRIBUTION 

In addition to computing the total W"X, it is important to develop methodologies that properly 

attribute the overall risk to sub-portfolios, counterparties or even individual transactions. An 

                                                           
8
 For complete and rigorous proofs see Hibbeln (2010), appendix 5.5, paragraph 5.5.4. 
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appealing approach that could be adopted, in particular for analytical frameworks, is based on the 

Euler allocation principle: it suggests that risk contributions are computed as first-order derivative 

of total risk with respect to portfolio exposures, and that their sum amounts to the total risk (full 

allocation property). Following Tasche (2007), this allocation scheme is applicable when the risk 

measure function �Y is continuously differentiable and homogeneous of degree one that is, �Y�ℎ�� = ℎ�Y���, ℎ > 0; furthermore, it turns out that first derivatives are equivalent to the 

expected value of specific losses conditional on total risk (see Gourieroux et al. (2000)). 

In the case of W"X approximation, it can be easily shown that the two aforementioned properties 

hold. In fact, W"XYtuvw��� is by definition a continuously differentiable function and if all the 

exposures 6� involved in equations �2.6� and �2.8� scale by the quantity ℎ > 0, W"XYtuvw��� scales 

by the same magnitude too.     

Thus, in the light of previous findings, the following representation is carried out: 

W"XYtuvw��� =5 ©©6� W"XYtuvw���
C
� !  

 and W"XYtuvw���`�� = ©©6� W"XYtuvw��� = ����`� = W"XYtuvw������������������������������������3.1� 
Besides, the contributions in terms of industry and granularity effects read ©©6� W"XYtuvw��� = ©©6� W"XY&�gU* + ©©6� ∆W"XY���U + ©©6� ∆W"XY����L������������������3.2� 
As a next stage, in order to get closed form contributions, it is necessary to calculate the 

derivatives in 6� of �2.6� and �2.8�, which are respectively the first and the last two summands of �3.2�. 
As far as loss �2.6� is concerned, the first derivative leads to ©©6� W"XY&�gU* = ���� �Q�&�g*ª�g �<=>�!FY��������������������������������������������������3.3� 
Derivative of �2.8� is more burdensome, but basically it relies on quotient rule:  ©©6� ∆W"XY���U«�L = ¬2 ­�gU&�g*z®�¯F! 

���������������������������������������������× ±− ©©6� |&�g*z�gU&�g*z + |&�g*z ©©6� �gU&�g*z }�gU&�g*
zz

�gU&�g*z~� 
����������������������������������������������+ ² ©©6� |&�g*�gU&�g*z − |&�g* ©©6� �gU&�g*z³ 
�����������������������������������������������× }�gU&�g*zz�gU&�g*z + �g~ + |&�g*�gU&�g*z ©©6� }�gU&�g*

zz
�gU&�g*z~´���g �<=>�!FY� �������������������������3.4� 

What emerges from �3.4� is that the derivatives to be still evaluated concern �gU&�g*z, �¢g£��g�µµ¢g£��g�µ  , |&�g* 
and �|&�g*z. The first two present a simple solution that is 
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©©6� �gU&�g*z = ���� �Q�&�g*z�����������������������������������������������������������3.5� 
and 

©©6� }��gU&�g*
zz

�gU&�g*z ~ = ����Q�&�g*
zz� ­6	���	Q	&�g*z®C	 ! − ���� �Q�&�g*z� ­6	���	Q	&�g*zz®C	 !­� 6	���	Q	&�g*zC	 ! ®� ��������������3.6� 

Then, the derivatives of both  variance components with respect to the individual exposure weight 6� are 

©©6� |U&�g* = 2����56	���	�Φ�&ΦF!�Q�&�g*�, ΦF!�Q	&�g*�; ��,	�g * − Q�&�g*Q	&�g*�C
	 ! �������������������3.7� 

and ©©6� |�L&�g* = 26�HHI�������Q�&�g* − Φ�&ΦF!�Q�&�g*�, ΦF!�Q�&�g*�; ��,�� *������������������������������������3.8� 
whilst the corresponding derivatives of |&�g*z, needed to complete formula �3.4�,  yield to: 

������������� ©©6� |U&�g*z = 2����56	���	Q	&�g*z ��
��Φ�
�ΦF!�Q�&�g*� − �	,��g ΦF!�Q	&�g*��1 − &�	,��g *� �

�− Q�&�g*��
���C

	 !  

�������������������������������������+�2����56	���	Q�&�g*z ��
��Φ�
�ΦF!�Q	&�g*� − �	,��g ΦF!�Q�&�g*��1 − &�	,��g *� �

�− Q	&�g*��
���C

	 ! ������������3.9� 
and finally

9
 

©©6� |�L&�g*z = 26�HHI������Q�&�g*z ��
��1 − 2Φ�

�ΦF!�Q�&�g*� − ��,��g ΦF!�Q�&�g*��1 − &��,��g *� �
�
��
�����������������������3.10� 

So far, it has been proved that by applying Euler’s theorem on a closed-form and homogeneous W"X representation, it is possible to obtain capital charges at cluster (transaction or sub-portfolio 

as well) level which add up to the total W"X itself. However, as outlined by Tasche (2007), the 

accuracy of this kind of approach becomes questionable if there are very large exposures in the 

portfolio. In that case, numerical methods, despite their computational burden, might be more 

appropriate: for instance, a technique that has been found to perform well in practice in terms of 

both accuracy and stability relies on the Harrell-Davis (1982) estimator
10

, which belongs to the 

general class of L-estimators. For clarity sake, L-estimators compute a specific quantile estimate as 

                                                           
9
 A useful hint for the calculation of expression (3.9) relies on matrix algebra. In fact, the variance |U&�g*z could be 

expressed through the quadratic form |U&�g*z = 2¶�6�H6, with 6 being the vector of exposure, H the asymmetrical 

matrix which properly collects all the other terms in (2.15), ¶ the transpose operator. Thus, the derivative (3.9) follows 

the rule 2bH + ¶�H�d6. 
10

 Other approaches, e.g. based on conditional independence framework coupled with importance sampling 

technique, exist. For a complete and exhaustive review see Glasserman (2005), Mausser and Rosen (2008). 



10 

 

weighted average of multiple order statistics ����: in a sample of size · generated by means of 

Monte Carlo simulation, W"X' can be calculated as 

W"X¸̧ ¸̧ ¸̧ Y��� = 56Y,�,��
� ! �������������������������������������������������������������������3.11� 

with � 6Y,�,��� ! = 1. The HD estimator (see Mausser (2003)) is based on the fact that increasing 

the sample size ·, the expected value of order statistics �����·+1���� converges to the true W"XY���. 
Thus, an intuitive interpretation of weights 6Y,�,� is that they reflect somehow the probability of ���� being equal to the actual W"XY���: more specifically, Harrell-Davis find analytical weights in 

the form  6Y,�,� = I� �¹ b�· + 1��, �· + 1��1 − ��d − I��F!� �¹ b�· + 1��, �· + 1��1 − ��d�������������������3.12� 
where I8b", #d is the Incomplete Beta function. From another point of view, HD is then a bootstrap 

estimator of �����·+1���� according to which the expectation is computed analytically rather than 

by resampling. Since ���� = � �����C� ! , it becomes easy to show that the contribution of each risk � 

is 

W"X¸̧ ¸̧ ¸̧ Y���`�� = �b��`� = W"X¸̧ ¸̧ ¸̧ Y���d = 56Y,�,��
� ! ����������������������������������������������3.13� 

In the next paragraph, through some real life examples, analytical W"X contributions will be 

analysed, also in terms of industry and name concentration effects. Results will be compared  with 

Harrell-Davis allocation, treated as a benchmark.  

In common practices, the most widespread approach for assigning economic capital (usually 

meant as W"X minus the expected loss) to each exposure is the marginal contribution to the 

volatility of portfolio loss distribution; this is the so called variance-covariance approach, 

considered by many financial institutions to be an intuitive, simple and easy to compute risk 

measure. It works well provided that losses are Normally distributed, since in this case economic 

capital is a constant multiple of portfolio volatility. Due to the non-normality of credit loss 

distribution � and ��, volatility allocation becomes misleading and can produce inconsistent capital 

charges. The main shortcomings are that it misses the diversification property and that the 

contribution might exceed the loan exposure (Kalkbrener et al., 2004), in the sense that the capital 

allocated to a sub-portfolio (or transaction or counterparty) might exceed its risk capital calculated 

on a stand-alone basis. In following exercise, the variance-covariance and analytical W"X 

approaches will be compared, pointing out significant differences in the risk allocation profile. 
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4 APPLICATION TO REAL-LIFE CREDIT PORTFOLIOS 

For the purpose of illustrating the previous sections, some numerical examples are provided. They 

ground on a credit portfolio grouped into 10 clusters (�), with ��, ��� (fixed), 
� (intra-sector 

correlation) and 34� as indicated at the top of Table 1.   

Table 1 Characteristics of the four test-portfolios. 

Parameter c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 

EAD (mln €) 500 1000 1700 2000 1800 1100 900 600 300 100 

PD (bps) 1 2 5 10 25 70 170 450 1200 3000 

LGD  0,45 0,45 0,45 0,45 0,45 0,45 0,45 0,45 0,45 0,45 
�  0,65 0,63 0,61 0,59 0,57 0,55 0,53 0,51 0,49 0,47 

Portfolio 1           

Sector 1 1 1 2 2 2 3 3 3 3 1/HHI�  20 200 250 300 250 180 100 80 60 40 "�  0,52 0,50 0,48 0,45 0,43 0,42 0,48 0,46 0,44 0,42 

Portfolio 2           

Sector 1 1 1 2 2 2 3 3 3 3 1/HHI�  1 30 50 30 20 100 40 10 5 1 "�  0,52 0,50 0,48 0,45 0,43 0,42 0,48 0,46 0,44 0,42 

Portfolio 3           

Sector 1 1 1 1 1 1 2 3 3 3 1/HHI�  20 200 250 300 250 180 100 80 60 40 "�  0,60 0,58 0,56 0,54 0,52 0,51 0,42 0,42 0,40 0,38 

Portfolio 4           

Sector 1 1 1 1 1 1 2 3 3 3 1/HHI�  1 30 50 30 20 100 40 10 5 1 "�  0,60 0,58 0,56 0,54 0,52 0,51 0,42 0,42 0,40 0,38 

Total exposure is assumed to amount to 10 bln € and it is distributed among clusters so that the 

average PD equals 120 bps: the degree of name concentration is then expressed by HHI� index 

and the “effective” number of counterparties can be retrieved through 1/HHI�. Only three 

economic sectors are involved, implying a three factors model set-up whose correlation matrix is 

displayed in Table 2.  

Table 2 Correlation matrix among sectors. 

 Sector 1 Sector 2 Sector 3 

Sector 1 100 80 55 

Sector 2 80 100 40 

Sector 3 55 40 100 

Percentage values. 

Using the aforementioned parameters but with different name/sector concentration 

characteristics, four portfolios are introduced; this analysis allows us to assess the performance of 

closed-form contributions against the HD benchmark and the variance-covariance approach, also 

disentangling concentration effects on capital allocation. The four portfolios characteristics are 

here described: 
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• Portfolio 1 shows a granular distribution of exposures across clusters, as stated by the 

effective number of counterparties 1/HHI�. Sectors 1, 2 and 3 present a quite 

homogeneous dispersion, accounting for 32%, 49% and 19% of total exposure respectively. 

• Portfolio 2 holds the same sectorial distribution but it shows a higher name concentration 

resulting in the number of “effective” counterparties being lower; in particular, the first, 

fifth and the last three clusters contains a very few homogenous positions. 

• Portfolio 3 is characterized by a prominent sector concentration, since sector 1 covers 

around 80% of total exposure. The degree of name concentration is low and it is designed 

like Portfolio 1.  

• Portfolio 4 combines the features of portfolio 2 and 3 thus representing an example of high 

name/sector concentration setting. 

As a first stage, Table 3 focuses on the overall economic capital (3$Y)
11

, computed by using a 

99.9% confidence interval α. The analytical approach result is broken down into its one-factor, 

sectorial and name concentration components (second, third and fourth columns) and it is 

compared with the Monte Carlo  outcome shown in the last column; the latter comes from the 

simulation algorithm briefly described in paragraph 2, for which 100 million scenarios have been 

applied.  

What emerges is that the economic capital calculated through the analytical approach represents 

a very good approximation of the “true” result from the Monte Carlo framework; thus, the 

estimation error-gap between 3$Y��� and 3$Ytuvw��� appears to be very  small. 

Table 3 Comparison of closed-form approximation (forth column) and Monte-Carlo simulation 

(last column) for the sequence of illustrative portfolios.  

 3��� 3$Y&�gU* ∆W"XY���U ∆W"XY����L 3$Ytuvw��� 3$Y��� 
Portfolio 1 56 393 14 5 411 413 

Portfolio 2 56 393 14 34 440 440 

Portfolio 3 56 426 12 4 443 441 

Portfolio 4 56 426 12 32 471 469 

All figures are related to the total exposure and expressed in terms of bps, α-percentile is equal to 99.9%. 

ASRF component in the second column depends essentially on the sector concentration, which is 

more pronounced for portfolio 3 and 4, whilst the granularity adjustment increases substantially, 

as expected, for portfolio 2 and 4 (34 and 32 bps respectively).  

The marginal allocation at cluster level brings the analysis to equation �3.2�, which allows us to 

compute analytical risk contributions and their decomposition into industry/name concentration 

components; Table 4 exhibits these results:  

  

                                                           
11

 obtained by subtracting the expected loss 3��� from the VaR percentile that is 3$Y��� = W"XY��� − 3���.  
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Table 4 Analytical marginal contributions among clusters. 

 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 Total 

Portfolio 1            © ©6�¹ 3$Y&�gU* 1.5 4.7 15.1 24.6 40.0 46.1 86.2 89.4 62.3 22.7 392.5 © ©6�¹ ∆W"XY���U 0.2 0.7 2.0 7.5 9.6 8.1 -4.2 -5.4 -3.9 -1.2 13.6 © ©6�¹ ∆W"XY����L 0.1 0.0 0.1 0.1 0.5 0.6 1.8 1.5 0.4 0.0 5.0 © ©6�¹ 3$Ytuvw��� 1.8 5.4 17.1 32.3 50.1 54.8 83.8 85.5 58.8 21.5 411.1 

Portfolio 2            © ©6�¹ 3$Y&�gU*  1.5 4.7 15.1 24.6 40.0 46.1 86.2 89.4 62.3 22.7 392.5 © ©6�¹ ∆W"XY���U 0.2 0.7 2.0 7.5 9.6 8.1 -4.2 -5.4 -3.9 -1.2 13.6 © ©6�¹ ∆W"XY����L 2.0 -0.1 -0.2 3.1 9.8 -2.5 -0.7 12.2 7.3 3.5 34.3 © ©6�¹ 3$Ytuvw��� 3.7 5.3 16.9 35.3 59.4 51.7 81.4 96.2 65.7 25.0 440.4 

Portfolio 3            © ©6�¹ 3$Y&�gU*  2.2 7.1 22.5 40.6 64.0 70.6 67.3 76.1 54.9 20.8 426.1 © ©6�¹ ∆W"XY���U 0.4 1.3 3.9 6.7 9.7 9.3 6.1 -13.8 -8.7 -2.5 12.3 © ©6�¹ ∆W"XY����L 0.1 0.0 0.1 0.1 0.6 0.7 1.4 1.2 0.4 0.0 4.5 © ©6�¹ 3$Ytuvw��� 2.6 8.3 26.5 47.5 74.2 80.6 74.8 63.5 46.7 18.3 443.0 

Portfolio 4            © ©6�¹ 3$Y&�gU*  2.2 7.1 22.5 40.6 64.0 70.6 67.3 76.1 54.9 20.8 426.1 © ©6�¹ ∆W"XY���U 0.4 1.3 3.9 6.7 9.7 9.3 6.1 -13.8 -8.7 -2.5 12.3 © ©6�¹ ∆W"XY����L 2.1 -0.2 -0.4 3.5 11.6 -3.6 0.3 9.7 6.2 3.2 32.5 © ©6�¹ 3$Ytuvw��� 4.7 8.1 26.1 50.9 85.3 76.3 73.7 72.0 52.5 21.5 471.0 

All figures are related to the total exposure and expressed in terms of bps, α-percentile is equal to 99.9%. The first 

addendum of each portfolio is the ASRF VaR percentile contribution minus the expected loss. 

Some useful insights can be outlined. Regarding portfolios 1 and 2, the multifactor adjustment  

© ©6�¹ ∆W"XY���U recognises a diversification benefit
12

 starting from c7 up to c10 and a capital 

burden for the other clusters. The last four belong in fact to sector 3, which shows a lower degree 

of asset returns dependency (see Table 2). Due to the different sector distribution, a more 

relevant impact can be detected for clusters 8, 9, 10 of portfolios 3 and 4. Furthermore, a 

significant name concentration adjustment (© ©6�¹ ∆W"XY����L) emerges, as expected, for loans 

included in clusters 1, 4, 5, 8, 9, 10 where HHI� indexes have been chosen in order to generate 

concentration risk; the magnitude slightly changes as far as portfolios 2 or 4 are concerned. 

The first three components of each portfolio sum then up to the economic capital at cluster level, 

whose percentage contribution is compared with HD and variance/covariance approaches in 

Figure 1. 

                                                           
12

 that applies to the calibrated one-factor model © ©6�¹ 3$Y&�gU*. 
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Figure 1 Comparison among HD (blue bars), analytical (red bars) and variance/covariance (grey 

bars) - based contributions for economic capital at 99.9% confidence level. 

  

  
Risk contributions of each approach sum up to 100%, since they are computed on the overall economic capital. 

The main finding is that the analytical model appears very close to the numerical HD method that 

serves as a benchmark, whilst a complete different picture is found for variance/covariance 

approach. These figures confirm that assigning capital on the basis of the latter method might fail 

to properly represent the tail of the distributions and thus, as a consequence, their marginal risk 

allocation. The graph depicts in fact the under- or the over-estimation of risks along clusters.  

Another interesting issue to be noticed is that the accuracy of the analytical contribution improves 

as the degree of industry correlation increases; in this respect, since portfolios 3 and 4 are 

dominated by sector 1, which represents the main driver for around 80% of the total exposure,  

they display more accurate contributions. This occurs because in the limit situations of the whole 

exposure belonging to one single sector or of a 100% asset correlation matrix (perfect dependency 

among asset returns), the model reduces to the one-factor framework, thus easing the 

approximation of the “true” risks. 

 

5 CONCLUSION 

In this paper we have studied the modeling of the economic capital of a credit risk portfolio. In this 

context the main issue that is faced in a real world implementation is the problem of deriving the 

marginal contribution of a subcomponent of the portfolio (transaction, name, cluster of names, 

etc.) to its overall amount.   

Following the work of Pykhtin (2004), we have expressed the total economic capital using an 

analytical approximation based on a single factor model adjusted in order to account for 
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multifactor dependence and name concentration. This is achieved by approximating the true 

economic capital through a Taylor expansion up to the quadratic term.  

In this framework we applied the Euler rule to determine the marginal contribution to the total 

portfolio risk of a sub-portfolio component. This requires to compute the first order derivatives of 

the analytical approximation with respect to the sub-portfolio fraction of the total exposure. 

To test the effectiveness of the approach we defined four different portfolios, each one composed 

of credit exposures divided into ten clusters. We then computed the total economic capital as well 

as the cluster contributions to the total capital and compared the results obtained through three 

different methods: a full Monte Carlo with  an Harrel-Davis estimator which we consider the 

“relevant” benchmark, a Monte Carlo with the commonly used variance-covariance approach for 

determining the marginal contributions and the analytical approximation we developed in this 

paper. 

The outcomes of the test show that the analytical approximation works extremely well in 

comparison with the “true” results while the variance-covariance approach fails badly to attribute 

risks to most of the portfolio’s clusters. 

We consider the results obtained in this paper extremely interesting in the real world application 

of a portfolio model. In a commercial bank the typical size of the portfolio and the complexity of 

the reporting structure make the implementation of a full Monte Carlo very demanding in terms 

of  computing time and hence impossible to use in practice. We believe this to be the main reason 

for the use of simplified methods such as the variance-covariance model; this choice, although 

permitting a practical use of economic capital models in a day-by-day risk management activity, 

nevertheless comes at the price of an inaccurate description of the risk contributions. On the 

contrary, the analytical formula we obtained represents correctly, as shown, the risk 

contributions,  could be implemented in a rather straightforward way and does not require, even 

for very large portfolios, any special computing power.  
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