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Abstract 

 
In this paper, I present an introduction to quantitative research methods in social sciences. The paper 
is intended for non-Economics undergraduate students, development researchers and practitioners 
who although unfamiliar with statistical techniques, are interested in quantitative methods to study 
social phenomena. The paper discusses conventional methods to assess the direction, strength and 
statistical significance of the correlation between two or more variables, and examines regression 
techniques and experimental and quasi-experimental research designs to establish causality in the 
analysis of public interventions.  

 

Introduction 
 
 
In social sciences, quantitative analysis is used to determine, in a given population, the 

relationship between an independent variable –a type of quantities that capture observed 

values of things that can be manipulated, and a dependent variable, the observed results of 

the manipulation of the independent variable. For instance, you could be interested in 

determining the relationship between years of schooling (in this case the independent 

variable) and wages paid to workers employed in the garment industry (the dependent 

variable). So you would need to collect information about the number of years of schooling 

among workers and their wages to determine that relationship. You might also be interested 

in determining the relationship between a balanced diet amongst school children (the 

independent variable) and their cognitive achievements (the dependent variable).2 In this 

case, you would need to collect information about food intake, for example, the number of 

meals per day, and carry out cognitive achievement tests in reading, mathematics and 

written language skills. 

 

Formally, the relationship between the independent and dependent variables is expressed 

as a function,       , where the letter “   is used to represent the value of the independent 

variable, the letter “   is used to represent the dependent variable, and the letter “f” is used 

                                                 
1
 Contact details at: United Nations University World Institute for Development Economics Research (UNU-

WIDER), Katajanokanlaituri 6 B, FI-00160 Helsinki, Finland. Email: miguel@wider.unu.edu 
2
 The independent variable is also referred to as ‘regressor’, ‘explanatory variable’, ‘predictor’, and/or 

‘exogenous variable’, whereas the dependent variable is also referred to as ‘regressand’, ‘explained variable’, 
‘target variable’ and/or ‘outcome variable’. 
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to denote “a function of”. So the term        can be read as y, the dependent variable, is a 

function of x, the independent variable. Following the previous example, researchers would 

be interested in hypothesising that “the levels of earnings (the dependent variable) is a 

function of years of schooling (the independent variable), that is, earnings = f (years of 

schooling), and then investigate the direction, strength and significance of that relationship. 

In statistics that relationship is known as correlation.  

 

1. Pearson’s product-moment correlation coefficient 
 
 

A conventional method to assess the direction and strength of a correlation between the two 

variables is the Pearson’s product-moment correlation coefficient, also known as Pearson’s 

rho, o simply Pearson’s r, which is the product of the linear relationship between a 

dependent and independent variable.3 Formally, the Pearson’s correlation coefficient is 

defined as the covariance of two variables divided by the product of their standard deviation. 

The concept of covariance can be understood as a measure of how much the two variables 

change together whereas the standard deviation is a measure of how much variation exists 

between the observed values of the two variables and the mean. In order to determine the 

significance of such correlations, you will need to use hypothesis testing and confidence 

levels methods. I return to this issue below in Section 3.  

 

The use of the Pearson’s r requires that the independent and dependent variables are 

measured continuously in interval or ratio scales.4 An interval variable allows us to identify 

equally spaced values in intervals although they have no meaningful zero value. A 

commonly referred example of an interval variable is temperature measured on the 

Fahrenheit scale, where a zero degree does not mean there is no temperature, but rather a 

very cold temperature, about -17.78 degrees Celsius. However, we rarely use interval 

variables in Social Sciences, so I focus instead on ratio scales.  

 

Ratio scale variables have the same properties of interval variables but they are distinct from 

interval variables in the sense that they have an identifiable zero point. Income, expenditure, 

revenues, costs, profits, and other continuous variables are examples of ratio scale 

variables. Important properties of ratio scales is that they can be measured, compared, and 

ranked in terms of size differences, so if, for instance, in a dataset you have two individuals, 

A and B, and A reports a monthly income of US $2000 while B, has an income of US $1000, 

                                                 
3
 It is called “Pearson correlation coefficient” in honour of Karl Pearson, a British mathematician who 

developed the method. 
4
 I discuss the case of nominal and ordinal variables in Section 4 
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we can say with certainty that individual A enjoys a greater income than individual B. Time 

and spatial measures can also be classified as ratio scale variables. For example, ‘age’ can 

be measured in months or years, whereas ‘distance’ can be measured in meters or 

kilometres. Following the previous example, if individual A is aged 40 and individual B, 20, 

we could hypothesise that there is a correlation between income and age.  

 

The direction of the correlation coefficient can take values between -1 and +1, going through 

zero. A positive correlation coefficient means that increases in the independent variable, x, is 

associated with an increase in the dependent variable, y, whereas a negative correlation 

coefficient means that an increase in the independent variable is associated with a decrease 

in the dependent variable. If your data shows that workers with more years of schooling 

receive higher wages, you could determine that there is a positive correlation between 

schooling and wages. This hypothetical case is illustrated in Figure 1, where the plotted 

points move from the lower left-hand corner upwards to the upper right-hand corner of the 

scattergram. Similarly, if your data shows that higher consumption of alcohol among workers 

is correlated with premature death, you may determine that there is a negative correlation 

between alcohol consumption and life expectancy. This is illustrated in Figure 2, where the 

plotted points move from the upper left-hand corner downwards to the lower right-hand 

corner of the scattergram.  
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Figure 1 Perfect positive correlation  

Pearson's r= 1 
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You must be aware of the fact that in many cases, the level of correlation between two 

variables may not be as clear as you might have thought, in either a positive or negative 

direction. For example, Figure 2 shows the correlation between the numbers of children 

living in a household, and the age of the household head. Clearly, the relationship between 

the two variables is not a straight line, which stems from the fact that the Pearson’s 

correlation coefficient shows a weak and negative association (r= -0.17).  

 

Researchers often make use of scattergrams to visually explore the relationship between 

dependent and independent variables. Scattergrams help you to inspect patterns and trends 

in the data, and detect potential problems that can invalidate the use of correlations as a 

statistical technique. In particular, there are two problems that require special attention:  
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First, the presence of extremely low and high values in the scattergram, what researchers 

commonly refer to as outliers. The presence of few outliers in a dataset, especially when the 

sample size of your data is not large, can lead to misleading results. For example, if you 

were examining the relationship between the numbers of children living in a household, and 

the age of the household head and you spotted two extreme values on the Y axis (Number 

of children within the household): one very high, 999, and the other, negative, -3, what could 

you conclude? The first value is far away from the rest, which would most probably be the 

result of a coding error, failing to declare in the statistical package, the missing value code of 

‘999’ for households that did not answer that particular question. Can you think of a 

household having 999 children! The second value, -3, would most probably indicate a data 

entry error, that is, the person entering the information from the questionnaires to a 

spreadsheet, typing by mistake -3 instead of 3. It would not make sense having a household 

with -3 children! Both coding errors and entry errors cause errors of measurement that can 

affect the interpretation of our results. Unfortunately, the identification of these errors is 

subjected to nature of the variable itself, and must be made on an individual basis. In that 

context, scattergrams become useful tools before they are fixed or removed.  

 

It is important emphasize the effect of outliers on the sample mean. If, for example, you have 

a sample of 10 families reporting the number of children, and two extreme outliers as 

described above are not treated appropriately, you could end up with a misleading 

interpretation of families having an average of 101.5 children (see Table 1). After correcting 

for outliers, the mean value goes down to the reasonable level of 2.4 children per family. 

Note that the median captures better the number of children in the sampled families than the 

mean, reflecting the fact that the median is particularly useful when we have small samples 

and skewed datasets. I discuss these and other measures of central tendency in Box 1 

below. 

 
 Table 1 The effect of outliers on sample the mean 

 
H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 Mean Median SD 

Before 
correcting 
for outliers 

2 3 4 3 2 1 3 1 -3 999 101.5 2.5 315.3 

After 
correcting 
for outliers 

2 3 4 3 2 1 3 1 3 
 

2.4 3.0  

 
 
In addition, you could also look at the standard deviation (SD) of your sample (315.35 in our 

example) and exclude those observations with values falling outside an range around the 

mean. For instance, if you decide to establish a range of ±2 standard deviations around the 
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mean (101.5), you will notice that H9 and H10 fall outside that range. If you exclude those 

observations from the sample, the mean will drastically fall from 101.5 to 2.4 children per 

family, a similar figure to the one obtained after correcting for outliers.5  

 

A second potential data issue may emerge from the presence of curvilinear or nonlinear 

associations. The statistics of correlation are built on the assumption of linear relationships 

between dependent and independent variables; however, in some cases, we may find a 

strong relationship between two variables even when your data do not show a straight line, 

and scattergrams can help you to detect this type of curvilinear trends. For example, 

researchers often find U-shaped curves when analysing the relationship between health care 

utilisation and age. This reflects the fact that small children and the elderly make use of 

health care services more intensively than young adults. On the contrary, researchers often 

find an inverted U-shaped curve when analysing the relationship between the probability of 

pregnancy and age of women. The likelihood of pregnancy is zero with small girls but began 

to rise steeply after they become teenagers to reach the peak in the mid-twenties and then 

began to gradually fall after reaching the thirties and again towards zero when they get into 

the late forties and fifties. The value of the Pearson’s r would in such cases reflect a low 

linear relationship, when in fact it shows a strong curvilinear association. 

 
Box 1. Measures of spread and central tendency 

 
It is often useful to find the midpoint or average of a set of values. The bad news is that there are 
three types of average in mathematics, known together as ‘measures of central tendency:  
 

 The mean is what most people are talking about when they refer to ‘the average.’ You calculate it 
by adding up all the values for the respondents in your dataset and then dividing them by the 
number of respondents (excluding those for whom there is a missing answer). How well the mean 
can represent a set of values therefore depends on how spread out or dispersed the values are 
around the mean. In addition, it is affected strongly by any extremely large or small numbers, and 
where this happens the distribution is said to be skewed.  

 The median (or middle point) is the middle value of a set, when the values are arranged in order of 
size. If there is an even number of cases, such as 12, the median falls between the two middle 
numbers, and the convention is to take the mean of the two. The median can be useful when your 
data is skewed, and also works better than the mean with small numbers of values.  

 The third type of average, is the mode, and is the value that occurs most frequently in a data set. 
You find it by counting the number of times each value occurs. There can be two or more modes 
and be used with any kind of data. And like the median, is not affected by extreme values.  

‘Measures of spread’ are logically linked to averages. They describe the way the data is arranged 
around the midpoint.  

                                                 
5
 There are other statistical techniques available to deal with outliers. A full discussion of these techniques is 

beyond the scope of this paper. However I suggest to consult the following texts: Barnett and Lewis (1985) 

Outliers in Statistical Data.  New York: John Wiley & Sons, 2d Ed, and Rousseeuw and Leroy (1987) Robust 

Regression and Outlier Detection. New York: John Wiley & Sons; and Iglewicz and Hoaglin (1993) How to 

Detect and Handle Outliers, American Society for Quality Control, Milwaukee, WI/ 

http://en.wikipedia.org/wiki/Data_set


7 

 

 The simplest measure is very easy to work out. It is called the range, and is found by subtracting 
the lowest value from the highest one. However, as with the mean, the range is affected strongly 
by extreme values. For example, if only one family has nine children and everyone else has one or 
two, the range is still nine.  

 There are a number of other ways of describing spread, including by the shape of the distribution 
in relation to the standard deviation. The standard deviation shows how much variation exists from 
the mean. A low standard deviation indicates that your data points tend to be close to the mean, 
whereas high standard deviation indicates that the data are spread out over a large range of 
values.  

 
Unfortunately there is no clear solution to this problem as there are not equivalent methods 

to the Pearson’s r when analysing nonlinear relationships. For some type of economic data 

that follows decreasing or decreasing slope curves, (e.g. income, expenditure, revenues, 

costs, or profits), you could adopt logarithmic functions to ‘linearise’ those variables that 

observe large range of values. However, you will need to identify the function that best 

describes your data, whether it follows a linear or nonlinear trend and then test its goodness 

of fit by applying hypothesis testing. I return to this issue in Section 3. 

 

2 Establishing the strength of a correlation 

 

A question that often emerged, and which is linked to the second objective of the Pearson’s 

r, relates to the issue of how to establish the strength of the correlation. In order words, how 

can you identify whether the Pearson’s correlation coefficient shows a strong or weak 

relationship? There is no strict guidance with regard to the interpretation of the Pearson’s r, 

as it may vary depending on the context and characteristics of the phenomenon that you 

investigate. As I discussed earlier, the Pearson’s r can range from high negative, -1, to high 

positive, +1, correlations. A correlation of r= 0.7 would obviously be stronger than a 

correlation of r= 0.5. In physics, researchers often expect very high correlations when testing 

natural phenomena, so they would be surprised to find, for instance, a Pearson’s r of 0.90 

when testing the linear relationship between volume of a gas and temperature. However, in 

social and behavioural sciences, it is much harder to established clear parameters for the 

size effect of correlations. It is often more of a matter of judgement by experienced 

researchers to establish parameters for weak or strong correlations; however, there are 

some hints that you may want to consider. Cohen, for example, has provided ambiguous 

guidelines, suggesting that Pearson’s correlation coefficients lying between -0.09 to 0.0, and 

0.0 to 0.09 would have zero effect; between -0.23 and -0.10, and 0.10 and 0.23 would have 

a small effect; between -0.36 and -0.24, and 0.24 and 0.36 would have a medium effect, and 

between -1.0 and -0.37, and 0.37 and 1.0 would have a large effect.6 

                                                 
6
 Cohen, J (1988) Statistical Power Analysis for the Behavioural Sciences. (2

nd
 Ed), Hillsdale, NJ: Erlbaum 

http://en.wikipedia.org/wiki/Mean
http://en.wikipedia.org/wiki/Mean
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One indicator that can help you to determine the strength of a correlation is the square of the 

correlation coefficient, or coefficient of determination,   , which provides an indication of the 

variance of the dependent variable that may be associated with the observed values of the 

independent variable. So if you look at the correlation coefficient of -0.17 between the 

numbers of children living in a household, and the age of the household head, depicted in 

Figure 3 above, you will find that    = (-0.17)2 = 0.029, meaning that only 2.9 percent of 

variance of children living in a household is associated with the age of the household head. 

In that context, it would be difficult to argue that this correlation is of any considerable 

importance. If you go back to the cut-offs provided by Cohen, and look at Table 2, you will 

see that a correlation coefficient of r = 0.31would be needed to explain a 10 percent variation 

between two variables.  

 
Table 2 Size effect of correlations 

   
 

   
 
 

Explained 
variance 

No effect 

0.00 
 

0.00 
 

0% 

0.05 
 

0.00 
 

0% 

0.07 
 

0.00 
 

0% 

0.09 
 

0.01 
 

1% 

Small effect 

0.10 
 

0.01 
 

1% 

0.15 
 

0.02 
 

2% 

0.20 
 

0.04 
 

4% 

0.23 
 

0.05 
 

5% 

Medium effect 

0.24 
 

0.06 
 

6% 

0.25 
 

0.06 
 

6% 

0.31 
 

0.10 
 

10% 

0.36 
 

0.13 
 

13% 

Large effect 

0.37 
 

0.14 
 

14% 

0.50 
 

0.25 
 

25% 

0.75 
 

0.56 
 

56% 

1.00 
 

1.00 
 

100% 

Source: Cohen (1988) 
 

 

3. Establishing the statistical significance of a correlation 
 

In order to establish the statistical significance of a correlation, researchers use statistical 

hypothesis testing to find out whether the value of the test statistic is sufficiently small or 

sufficiently large to reject the null hypothesis (denoted by H0) that the values of the 

dependent and independent variables result purely from chance, and hence are unrelated. 

To do so, you can adopt a one-tailed test if you have an expectation about the sign of a 

correlation, either positive or negative. For example, you may expect a priori, a positive 
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correlation between schooling and wages, and reject the null if the test statistic satisfies that 

expectation. In order words, you can accept the alternative hypothesis (denoted by H1) that 

the values of the dependent and independent variables are influenced by non-random 

forces. However, if you have no theory underpinning your expectations about the sign of the 

correlation coefficient, then you should adopt a two-tailed test.  

  

A full discussion on the properties of these test statistics lies beyond the scope of this book; 

although we can briefly say that both the one-tailed and two-tailed tests depend on the size 

of the Pearson’s coefficients and the sample size.7 The larger the sample size, the higher 

the reliability of the correlation coefficients even if the value of the Pearson’s correlation 

coefficients, r, is small in size. This is illustrated using the critical values of the Person’s r in 

Table 3. The first column from left to right shows the degrees of freedom, df, resulting from 

subtracting the number of variables involved in the correlation (i.e. two, the dependent and 

independent variables) from the number of observations, N, (your sample size). The degrees 

of freedom thus, show the number of values that are ‘free’ to vary in the determination of the 

statistical significance, and are expressed as df = N-2.  

 

Following the example presented in Figure 3 that shows a Pearson’s r (146)= -0.178, you 

could determine its level of statistical significance by following a few steps: first, decide 

whether you need a one-tailed or two-tailed test. Second, calculate the degrees of freedom 

and locate them in Table 3. As 148 households were interviewed for that study, df = 146 

(148-2). Third, look at the critical values corresponding to the Pearson’s r. To do so, read 

across the row that corresponds to the df, from left to right until you find a critical value 

greater than the estimated r. The p-values for that coefficient (i.e. the probability that the null 

hypothesis is true) will be found on the top of the column that corresponds to the critical 

value. So, if for example, r (146) = -0.17, you will see that its critical value (0.195) has a 

p<0.05 for a two-tailed test, and p<0.025, for a one-tailed test. In order words, the p-values 

are telling us that the probability of errors arising from declaring r to be determined by non-

random factors occurs 5 times in 100 by chance, meaning that we can be 95% confident 

(under the two-tailed test) that a relationship between the independent and dependent 

variable do exist.  

 

 

                                                 
7
 I remit the interested reader to statistics texts. For a general discussion, see Markin, M (2005) Statistics for the 

Social Sciences. London: Sage Publications 
8
 Correlation coefficients are read in absolute values, irrespective of their sign, which only indicates the 

direction of the relationship.   
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Table 3 Critical values for Pearson’s correlation coefficient r 

df =N-2 

Level of significance for a one-tailed test 

.05 .025 .01 .005 

Level of significance for a two-tailed test 

.10 .05 .02 .01 

1 .988 .997 .9995 .9999 
2 .900 .950 .980 .990 

3 .805 .878 .934 .959 

4 .729 .811 .882 .917 

5 .669 .754 .833 .874 

6 .622 .707 .789 .834 

7 .582 .666 .750 .798 

8 .549 .632 .716 .765 

9 .521 .602 .685 .735 

10 .497 .576 .658 .708 

20 .360 .423 .492 .537 

30 .296 .349 .409 .449 

40 .257 .304 .358 .393 

50 .231 .273 .322 .354 

60 .211 .250 .295 .325 

70 .195 .232 .274 .302 

80 .183 .217 .256 .284 

90 .173 .205 .242 .267 

100 .164 .195 .230 .254 

∞ .073 .087 .103 .114 

 

4. Cross-tabulations  
 
 
I have discussed in Section 3 some methods to assess the direction, strength and statistical 

significance of a linear correlation between two interval or ratio scale variables. However, 

more often than expected, datasets are integrated by discrete (or categorical) variables. 

These variables are called discrete because they take on discrete (or finite) values in the 

form of categories. As some of these categories are different in nature, it is useful to classify 

them into nominal or ordinal variables.  

 

Nominal variables are measured in terms of arbitrary distinctive categorical values that are 

not quantifiable, and which do not follow a given rank ordering. Examples of nominal 

variables are: gender (1=Male, 2=Female); ethnicity (e.g. 1=White, 2=Black, 3=Asian, 

4=Latino); marital status (1=Married, 2=Unmarried, 3=Divorced, 4=Widow). An important 

point to make here is that we cannot perform arithmetic operations (e.g. Male ÷ Female = ?) 

or apply logic functions (e.g. Married > Divorced) on nominal variables as they don’t follow 

equal intervals or ranks.   
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Researchers often transform ratio scales into a special case of nominal variables, 

dichotomous variables commonly known as dummy variables, in which responses take the 

values 1 to indicate the presence of a response, or 0, its absence. For example, if in your 

data you have a continuous ratio scale variable measuring the years of education of garment 

workers, running from zero to 12 years of schooling, you could separate those with 

completed secondary education from the rest to find out whether there is any relationship 

between ‘completed levels’ (instead of years) of schooling and income. In that case, you 

would need to generate a dummy with value 1 if worker i completed secondary education 

(12 years of schooling) and zero, otherwise. Researchers can also include in survey 

questionnaires nominal variables of this type, with a ‘yes’ or ‘no’ answer to capture 

behavioural responses where a choice or decision is involved. For example, when asking 

interviewees ‘are you employed?’ ‘Is your child attending school?’ or ‘Did you vote in the last 

general election?’, you would expect a dummy-type nominal response variable with values 1 

for a ‘yes’ response, and 0 for a ‘no’ response.9  

 

Ordinal variables are discrete variables too, but unlike nominal variables, they have non-

arbitrary distinctive values with meaningful ranks or orders. For example, the World Bank 

uses continuous data on countries’ gross national income per capita to classify countries by 

income groups: low income for $995 or less; lower middle income, $996–3,945; upper 

middle income, $3,946–12,195; and high income, $12,196 or more. Based on that 

classification you could generate an ordinal variable to rank countries in terms of per capital 

income: 1=low income, 2= lower middle income, 3= upper middle income and 4=high 

income.10 Similarly, demographic and health surveys usually collect subjective information 

about people’s health status. They ask: how would you describe your health?, followed by a 

set of possible answers: 1=very bad; 2=bad, 3=average, 4= good, and 5= very good. 

Although we cannot perform arithmetic operations on ordinal variables, because the interval 

between their scale points do not show equal distances (e.g. low income country + upper 

middle income country = ?), we can still perform logical operations (e.g. very good health is 

preferred to very bad health).   

 

In addition, categorical variables also allow us to combine two or more variables, for 

example, a dependent and independent variables, in a way that their frequencies can be 

cross-tabulated in a table. Cross-tabulations show the number of cases that occur jointly in 

each combination of categories, allowing us to identify associations (or correlations) between 

                                                 
9
 Survey questionnaires often use the number 2, instead of 0, to capture a ‘no’ response 

10
 World Bank’s country classifications, available at: http://data.worldbank.org/about/country-classifications   

http://data.worldbank.org/about/country-classifications
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the cross-tabulated categories. In other words, they help us to answers the following 

questions: Is there any relationship between two discrete variables? And if there is, how 

strong is it? For example, you may want to know whether there is a statistically significant 

correlation between households headed by women and the area of residence. The results 

from the cross-tabulation in Table 4 show a higher percentage of households headed by 

women in rural areas than in urban areas. You will need to back to your theories or think 

about the factors that may explain that difference before you investigate further into the data. 

Remember that a correlation that might be expected but is not found may be important to 

report as well. For example, most people would expect gender to affect school examination 

performance in different ways in relation to each subject – or that girls (or indeed boys) 

would simply do worse at everything. If girls and boys do equally well, this could be 

important.  

 

When we set up cross-tabulations, we usually have an idea about what the relationship 

between the data will mean. But there is always a possibility that any relationship is simply 

the result of chance, that is, it would not recur if you did the research again. This is why tests 

of significance are used: to help us see how reliable our findings are. But unlike the use of 

one-tailed or two-tailed tests, as done in Section 3, you will need now to use the Chi-square 

test to establish the statistically significant association between two categorical variables. 

The Chi-square statistic works in a similar fashion to the one-tailed and two-tailed tests, by 

allowing you to determine whether you should reject (or accept) the null hypothesis, H0, that 

the values of two categorical variables occur entirely by chance. The Chi-square statistic in 

the cross-tabulation presented in Table 4 shows a value of 7.28, which is statistically 

significant at 0.05 levels, meaning that we can be at least 95% certain that there is an 

association between households headed by women and the area of residence.  

 

A problem with the Chi-square statistic is that it becomes an unreliable indicator for 

measuring the strength of a correlation, especially if you have small samples.11 That problem 

stems from the dependency of the Chi-square statistic upon the sample size and the number 

of cells in the tabulation table. For that reason, researchers often use the Cramér's V statistic 

to measure the strength of a correlation. The Cramér's V statistic ranges from 0 to 1, with 0 

representing no correlation and 1, a perfect correlation. In Table 4, the Cramér's V statistic 

shows a value of -0.058, indicating a negative relationship between households headed by 

women and urban areas. Overall, the results show that although the association between 

                                                 
11

 In a 2 by 2 tabulation table, the Chi-square will test the underlying probabilities in each cell; and when the 

frequencies fall below 5 observations, those probabilities cannot be estimated with sufficient precision. That is 

why the Chi-square statistic should not be estimated with very small samples.  
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these two categorical variables is statistically significant, the strength of the association 

(measured by the Cramér's V coefficient) is very weak.  

   
Table 4 Correlations between households headed by women and the area of residence  

Sex of household 
head? 

Area of residence 
Rural = 0 Urban = 1 

Frequencies % Frequencies % 
Men =0  631 (53.84) 578 (59.65) 
Women =1 541 (46.16) 391 (40.35) 
Total    1172 (100.00)       969 (100.00) 

Chi-square statistic = 7.28, p< 0.05 
Cramér's V = -0.0583 

 

 
So unless you are working with a large, reasonably representative sample, it is unlikely that 

any correlation you identify will be statistically significant. It is bad practice to publish 

correlational data unless it reaches a reasonable level of significance. If you do so, you can 

seem to be misleading readers. There are statistical software packages that run cross-

tabulations easily (see Box 2 below). Using a computer is a much easier way of working out 

correlations for large datasets.  

 
 

Box 2. Popular Data analysis software 
 
A number of options are available in terms of computer software for quantitative analysis. 
 
Specialist statistical software 
 
These are specifically designed for this task and will therefore give you the most help with your project. They are 
set up to expect survey data and will easily carry out all the calculations you need (and many more): 
 
 SPSS (Statistical Package for the Social Sciences) allows you to analyse large quantities of data. In a 

spreadsheet format, each column represents a variable and each row represents a case. You can put in 
labels that keep information about the meaning of the data close to the numbers involved. SPSS produces 
high quality tables and graphs and the latest versions are quite user-friendly. It is worth buying if you expect 
to do more than one substantial survey (perhaps 60 or more respondents) with a quantitative element.12 

 
 STATA is a popular alternative to SPSS. It has equivalent functionality and is generally as widely used in 

academic institutions around the world. It features a relatively straightforward, user-friendly interface.
13

 

 
 R is a free and powerful software environment for statistical computing and graphics. It compiles and runs 

on a wide variety of UNIX platforms, Windows and MacOS. R provides a wide variety of statistical 
techniques, including linear and nonlinear modeling, classical statistical tests, time-series analysis, 
classification, clustering, etc. 14 

 
 PSPP is an open source substitute for commercial statistics programs – particularly SPSS, whose interface 

intentionally mimics. It offers a strong set of basic capabilities, including frequencies, cross-tabs comparison 
of means, linear regression and others.15 In recent years, PSPP has proven popular in the South.16   

                                                 
12

 For guidance on how to use SPSS, see, for example, Argyrous (2005). SPSS is available from SPSS UK Ltd., St. Andrews 

House, West St., Woking, Surrey, GU21 1EB. Tel: +44 (0)1483 71920, IBM worldwide and through sales offices located in 

a number of countries, listed at www.spss.com/worldwide/.  
13

 The University of California, Los Angeles maintains a useful website for guidance and links on using STATA at 

www.ats.ucla.edu/stat/stata/. STATA is available through a number of global distributors, listed at 

www.stata.com/worldwide/. 
14

 R can be download for free at http://www.r-project.org/  
15

 PSPP can be downloaded for free at www.gnu.org/software/pspp/.  

http://www.spss.com/worldwide/
http://www.ats.ucla.edu/stat/stata/
http://www.stata.com/worldwide/
http://www.r-project.org/
http://www.gnu.org/software/pspp/
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A very important note of caution: You must remember that you cannot be sure, even if you 

find a correlation that is statistically significant, which way causation goes (what is the cause 

and what is the effect). Just because variable A is associated with variable B that does not 

mean that changes in the former has caused changes in the latter. For example, if more 

charges are brought in areas where there are more police officers, is a higher level of crime 

the explanation or are more officers simply able to prosecute more cases? Other factors may 

be acting on the related variables and affect their behaviours. So, while correlations can 

establish associations between two (or more) variables, they cannot tell us anything about 

causality. In order to establish causality, you will need to employ regression analysis. 

 

5. Regression analysis 

 

 
As with correlation analysis, regression analysis is concerned with the study of the 

relationship of two (or more variables), but in addition, it helps you to test the proposition that 

that one (or more) independent variables are the cause, at least partly, of the way the 

dependent variable behaves.17 For example, you may be interested in analysing the extent 

to which the levels of formal education explain workers’ income. You may also be interested 

in exploring how much the price of a staple, say rice, affects its quantity demanded, or how 

much the demand for microcredits is affected by the rate of interest. Regression analysis will 

help you to test empirically your propositions, say, that the interest rate on loans has a linear 

(or direct) effect on the demand for microcredits.  

 

Formally, a regression equation is expressed as            , where   represents the 

dependent variable, and  , the independent variable. The subscript i refers to the ith 

population subgroup under analysis, for instance, individuals, households, villages, firms, 

countries, etc. If you have a multiple variable equation, with more than one independent 

variable, you can simply use subscripts to indicate each explanatory variable:               .  
 

The Greek letters   and   are known as the intercept and the slope coefficient, respectively. 

The intercept captures the conditional mean value of Y when X has zero value. For example, 

if you were analysing the effect of rice prices on household’s demand for that staple, the 

                                                                                                                                                        
16

 The South African Statistical Association, for instance, presented a 2006 conference which included an 

analysis of how PSPP can be used as a free replacement to SPSS. 
17

 In this section I discuss the two-variable regression model, and refer the reader to more specialised texts for 

the discussion of multiple linear regression analysis. For a basic introduction, see Gujarati, D (2003) Basic 

Econometrics. New York: McGraw Hill. Fourth Edition  



15 

 

intercept would tell you how much rice would be demanded by an average household if its 

price were zero. The slope coefficient provides the most important information in regression 

analysis, as it measures the rate of change in the mean value of Y relative to one unit 

change in the value of X. In order works, it gives us information about the way the dependent 

variable is expected to behave conditional upon given values of the independent variable(s).  

 

The letter u captures the residual or error term, a random variable determined by unknown 

factors that affect the value of the dependent variable. For example, in South Korea, data 

suggests that at the average retail price of US$ 287.8 per metric ton, the mean annual 

consumption of well milled rice per capita is 77 kilos.18 If there are individuals willing to 

consume 80 kilos of rice at the same price, so their quantity demanded exceeds the mean 

value of consumption (77 kilos) we can say the corresponding error term for these 

individuals is equal to 3 kilos or rice, implying that there are factors other than price that are 

driving up their demand for rice. The error term also captures measurement errors arising 

from the presence of extreme outliers in datasets.  

 

Now, before moving on to the interpretation of a regression equation, it is important to point 

out that regression analysis can only establish causality when there is an underlying theory 

explaining the relationship. In Economics, the law of demand provides the analytical 

foundations to predict a negative effect of a rice price increase on the demand of that staple, 

ceteris paribus, i.e. holding constant all other factors that may affect demand, e.g. household 

income; the price of substitutes, consumers’ taste, etc. In this sense, regression analysis 

does not imply causality per se; but rather, help you to test the underlying theory empirically, 

a process that methodologists called deductive analysis.  

 

After having that information at hand, we can now run a linear regression on the annual 

consumption of rice per capita in South Korea for a given range of prices ranging from US 

$287.81 per metric ton to US$ 520.55 in the 2005-2010 periods. This is illustrated in Figure 

4. The scattergram shows that at the price of US$ 287.8, the average annual consumption of 

rice per capita among farming households is 130.8 kilos vis-à-vis 77 kilos among non-

farming households, and as prices increase, the quantity demanded goes down. 

                                                 
18

 This information is based on South Korea’s Consumer Price Surveys and the Household Income and 
Expenditure Surveys, which are available on the Korea’s National Statistics Office(Kostat) website: 

http://kostat.go.kr/portal/english/surveyOutlines/4/1/index.static 

http://kostat.go.kr/portal/english/surveyOutlines/4/1/index.static
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Source: Author’ calculations with data from Korea’s National Statistics Office 

 
The regression line depicted in the scattergram reveals an inverse linear relationship 

between price and quantity demanded, meaning that the average annual consumption of 

rice per capita decreases with a price increase. But how large is that effect? In the case of 

farming households, the estimated regression equation is Y=               , which means 

that, other things held constant, for every dollar increase in the price of well milled rice, the 

average annual consumption per capital goes down by only 0.024 kilos (or 2.4 grams). In the 

case of non-farming households, the slope coefficient shows an even smaller effect (0.0113 

kilos). The results reveal a very weak responsiveness of both farming and non-farming 

households to rice price increases, what Economists call inelastic price elastic of demand.  

 

Note that the coefficient of determination,   , indicates that about 66% of the total variation 

in rice consumption among farming households, and 53% among non-farming households 

can be explained by the regression model. The intercepts   also show interesting 

information: Farming households would consume more rice every year (135.4 kilos per 

capita) relative to non-farming households (78.25 kilos per capita) if the prices were put 

down to zero. Given such difference in behaviour, you could hypothesise about the possible 

reasons that explain the results based on theory and the existing literature on the subject 

before considering introducing other explanatory variables to test your propositions 

empirically.  

 

y = -0.0242x + 135.41 

R² = 0.6577 

y = -0.0113x + 78.253 

R² = 0.529 

0 

20 

40 

60 

80 

100 

120 

140 

0 100 200 300 400 500 600 700 800 A
n

n
u

a
l 

co
n

su
m

p
ti

o
n

 o
f 

ri
ce

 p
e

r 
ca

p
it

a
 (

k
il

o
s)

 

Average Retail price of well milled rice 

(US Dollars per metric tone)  

Figure 4. Regression line of the price and consumption of rice in South 

Korea 
Regression line   

for farming  

households 

Regression line   

for non-farming  

households 



17 

 

A large number of regression techniques have been developed to determine causality. 

These techniques are used according to the research questions of the investigation, the type 

of research design, and type of available data.19 In particular, you will need to be aware of a 

major issue that arises from the analysis of the cause-effect relationship between two or 

more variables: the problem of confounding.  

 

6. The problem of confounding 
 
 
Confounding factors are variables that are causally correlated with the dependent and/or 

independent variables, and therefore can influence the observed relationship. For example, 

if you were interested in establishing the effect of a microcredit programme on women’s 

income, you would need to account for those observed and unobserved factors that can 

determine income. For example, observable factors can be associated with the level of 

women’s education, the number of children they have, or the physical infrastructure in the 

localities where they live. Unobservable factors can be attributed to individual 

entrepreneurial abilities and attitudes towards risks that can potentially affect women’s 

capacity to generate income.  

 

If women’s participation in the microcredit programme is based on a non-random selection 

process, some the unobserved factors could be determining selection. For example, if 

entrepreneurial and risk-loving women actively self-select to participate in the microcredit 

programme, they are more likely to achieve better outcomes, in terms of income, than 

women that do not actively seek to participate in the programme because of their risk-averse 

behaviour. Self-selection would mean thus that more able and entrepreneurial women that 

are also more likely to generate higher income would be more likely to join the microcredit 

programme. Under these circumstances, the comparison of the self-selected women with 

eligible women that did not seek participation would lead to spurious results.  

 

In addition, it is often the case that programme managers choose certain communities or 

groups under the expectation that these groups would benefit more from the intervention. 

Many microcredit programmes, for instance, embrace the goal of poverty reduction, and as 

result, their managers often operate in deprived locations where the poor live. But the non-

random process of programme placement can generate cofounding if there are omitted 

                                                 
19

 A full discussion of these techniques is beyond the scope of this book; however, I strongly recommend to 

discuss your research needs with quantitative specialists or consult the following texts: Wooldridge. J (2002) 

Econometric Analysis of Cross Section and Panel Data Cambridge Massachusetts: The MIT Press, and Greene, 

W. (2011) Econometric Analysis, New Jersey: Prentice Hall, 7
th

 Ed. 
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factors that are correlated with the dependent (or outcome) variables. These factors can be 

associated with local characteristics (e.g. public infrastructure, proximity to local markets, 

public security, etc.) that somehow can determine women’s income. So, if you were thinking 

to carry out a quantitative study to establish causation (in the development jargon this is 

called impact assessment or impact evaluation), you would need to keep in mind the 

problems of self-selection and non-random programme placement. It is in that context that 

quantitative research design becomes critical.  

 

7. Quantitative research designs  

 
There are different types of research design used to establish causality, mainly through the 

identification of the counterfactual. The concept of counterfactual refers to question of ‘what 

would have happened to programme beneficiaries in the absence of the intervention?’ The 

identification of the counterfactual can be done through experimental or quasi-experimental 

research designs that allow researchers to attribute (or not attribute) observed changes in 

outcomes to a programme or policy intervention. In the remaining of this paper, I briefly 

discuss these design protocols. 

 

7.1 Experimental research designs  
 
 
Experimental research designs make use of randomisation to select both the treatment 

group, i.e. the group to benefit from a policy intervention, and the control group, the 

comparison group, or placebo, which although probabilistically equivalent, does not benefit 

from policy. The most reliable research design in terms of internal validity is the pretest-

posttest randomized experimental design. With sufficiently large samples, the pretest-

posttest randomized experimental design allows you to assess, at the posttest stage, the 

differences in mean outcomes between the treatment and control groups, and if such 

differences are statistically significant, they can be attributed confidently to policy.   

 

The pretest-posttest randomized experimental design is illustrated in Figure 5. The letter R 

denotes a random assignment to treatment; the letter X represents the explanatory or impact 

variable that captures the effect of policy whereas the letter O represents the dependent or 

outcome variables measured before the intervention (O1) i.e. during the pretest stage, and 

after the intervention (O2), i.e. during the posttest stage. The pretest measure is of particular 

interest, as it allows to control for the effect of covariates, i.e. variables that are likely to 

affect the outcome of interest. As I discuss below, the pretest measure is obtained through a 

baseline survey that collects information on covariates, particularly the pre-treatment value 
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of the outcome. This will enable you to control for the variance observed in outcomes at the 

initial stage and thus improve the accuracy of your results. 

  

Figure 5. The pretest-posttest randomized experiment 

  Pretest 

measure 

Treatment Posttest 

measure 

Treatment 

group 
R O1 X O2 

     

Control 

group 
R 

O1  O2 

 

 
To illustrate this let us assume, following the previous example, that you are interested in 

operationalising a pretest-posttest randomized experimental design to assess the impact of 

a microcredit programme on women’s income. What would you need to do? Here are some 

guidelines: First, use recent census data to list your ‘subjects’ in the sample population 

(eligible women and their families). Second, use randomization to draw a statistically 

representative sample of the population while dividing the sample randomly into two groups: 

women selected to receive a microcredit (your treatment group) and eligible women that will 

not receive the microcredit, at least for the time being (your control group). You could divide 

the sample into more than two groups if you were interested in testing the effect of different 

programme features. Third, collect a baseline survey on the treatment and control groups 

before microcredits are given to women.  

 

Through the baseline survey, you will be able to collect pretest data on women’s income 

(your dependent variable or outcome of interest) and other key independent or explanatory 

variables. The pretest measures will also allow you to remove the effect of covariates after 

women receive microcredits, during the posttest measure stage. Fourth, after the 

microcredits had been distributed wait for a reasonable period to allow for the effects of 

microcredits (if any) to be observed. Fifth, collect the posttest measures through the endline 

survey, and finally, apply regression techniques to establish causality, i.e. whether or not 

microcredit has an effect on women’s income.20  

 

It is critical to ensure that your sample is representative of the population. You could follow 

different sampling techniques to strengthen the representativeness of the sample. For 

instance, adopt a stratified and by cluster sampling framework. Assuming the microcredit 

programme is expected to have full coverage of a province, you could randomly select a 

                                                 
20

 For a discussion on regression techniques in experimental studies, see Duflo, Glennerster and Kremer (2007) 

Using Randomisation in Development Economics Research: A Toolkit. CERP Discussion Paper 6059, London, 

and Khandker, Koolwal and Samad (2010) Handbook on Impact Evaluation. Quantitative Methods and 

Practices. Washington DC: The World Bank   
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sample of districts, wards, and villages within that province while adopting different 

geographical strata, e.g. urban and rural settings, northern, southern, eastern and western 

areas, etc. You could also use random stratification to ensure a proportional representation 

of population subgroups such as ethnic and religious groups, etc. These procedures will 

allow you to reduce the required sample size and the budget requirements without losing 

significant statistical power.  

 

A simpler version of a randomised experiment is known as posttest-only randomised 

experiment. Under this design, researchers assume that both the treatment and control 

groups are equivalent by the virtue of randomisation, so the outcomes of interest are 

measured and compare only after the treatment group had received the benefit. This is 

illustrated in Figure 6. The letter R denotes a random assignment to treatment; the letter X 

represents the explanatory or impact variable that captures the effect of policy, whereas the 

letter O represents the outcome of interest.  

 
 

 Figure 6. The posttest-only randomised experiment 

  Treatment Posttest 

measure 

Treatment 

group 
R X O 

    

Control 

group 
R  O 

 

 
After the treatment group receives treatment, i.e. in the posttest stage, researchers gather 

data through survey questionnaires (or other data collection instruments) in order to test for 

any statistical difference between the mean outcomes of the treatment and control groups. 

 

To illustrate this experimental design, let us assume that you are interested operationalising 

a randomised experiment to assess the effect of political awareness in an upcoming general 

election. In order to do so, you have designed a leaflet with information about the importance 

of exercising the political rights. What would you need to do next? First, you will need to 

collect a list of households living in your constituency. Second, divide the households into 

treatment and control by random assignment. Third, distribute the leaflet among the 

treatment households just before the generation election. Fourth, after the Election Day, 

collect data on the outcomes of interest, for example, information about whether or not 

eligible voters did actually vote, and analyse the difference in sample means. If you data 

show a larger voter turnout in the treatment group, vis-à-vis the control group, you could 
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conclude that political awareness through leaflets is an effective tool to tackle 

disenchantment and political indifference in election times. 

 

The posttest-only randomized experimental design is an appropriate approach to 

establishing causality when it is unfeasible to collect pretest measures, i.e. data before the 

policy intervention. It is also convenient in terms of budgetary and time requirements, relative 

to the pretest-posttest randomized experimental design; however, it becomes inappropriate 

in contexts where determining the extent of change in the outcome variables, or measuring 

the short-medium term effects from policy is the main objective of the study.21   

 

Over the last decade, randomised experiments have been designed for causal inference of a 

growing number of pilot projects, programmes and development policies. These studies 

range from interventions in the areas of education22, health care23, social protection24, 

microcredit 25 agriculture26 and other development fields, highlighting their applicability and 

importance in quantitative development research.27 However, even randomised experiments 

can be contaminated by spillover effects, occurring when members of the treatment and 

control group receive ‘treatment from other policies that affect outcomes. In addition, there 

are areas where randomized experiments are logistically or ethically unfeasible.  

 

For instance, it would be ethically unacceptable to use randomisation to separate food aid 

recipients from non-recipients in contexts of humanitarian crisis.28 Randomised experiments 

offer limited insights into questions that are concerned with long-term effects of programmes, 

or generalised impacts at national scale. In those cases, carefully design quasi-experimental 

                                                 
21 There are other modalities in the way randomized experiments have been designed. A detailed discussion on these designs 

can be found in: Campbell, D and Stanley, J (1966) Experimental and Quasi-Experimental Designs for Research, Boston: 

Houghton Mifflin Company; Shadish, W., Cook, T and Campbell, D (2001) Experimental and Quasi-Experimental Designs 

for Generalized Causal Inference,  Belmont, California: Wadsworth Publishing. 
22 Glewwe, P.,  M.  Kremer, S.  Moulin, and E.   Zitzewitz (2004): “Retrospective  Vs. Prospective  Analyses  of School 
Inputs:   The  Case of Flip Charts in Kenya,”  Journal  of Development Economics,  74, 251 268. 
23 Cohen, J. and Dupas, P. (2010) “Free distribution or Cost-sharing? Evidence from a Randomized Malaria Prevention 

Experiment”, Quaterly Journal of Economics, 15(1) 
24 Schultz, T. P. (2004): “School subsidies for the poor:  Evaluating the Mexican PROGRESA poverty program,” Journal of 
Development  Economics, 74(1), 199–250; and Hoddinott, J. & Skoufias, E. (2004) The impact of PROGRESA on food 

consumption. Economic Development and Cultural Change, 53, 37-61. 
25 Karlan, D. and Zinman, J (2011) Microcredit in Theory and Practice: Using Randomized Credit Scoring for Impact 

Evaluation, Science, 332(6035), pp. 1278-1284; Karlan, D. & Zinman, J. (2010) Expanding Credit Access: Using 

Randomized Supply Decisions to Estimate the Impacts. Review of Financial Studies, 23, 433-464; Banerjee, A., Duflo, E., 

Glennerster, R. & Kinnan, C. (2009) The Miracle of Microfinance? Evidence from a Randomized Evaluation. Cambridge, 

MA, MIT Department of Economics and Abdul Latif Jameel Poverty Action Lab. 
26 Duflo, E; Kremer, M. and Robinson, J.(forthcoming): Nudging Farmers to Use Fertilizer: Theory and Experimental 

Evidence from Kenya. American Economic Review 
27 For a review see Harrison, G., and J. A.  List (2004): “Field Experiments,” Journal of Economic Literature, XLII, 1013–
1059. 
28 See Bamberger, M, Rao, V., and Woolcock, M. (2010) Using Mixed Methods in Monitoring and Evaluation. Experiences 

from International Development. Policy Research Working Paper 5245, World Bank, and Bamberger, M. and White, H. 

(2007) Using Strong Evaluation Designs in Developing Countries: Experience and Challenges, Journal of Multi-Disciplinary 

Evaluation, Volume 4, Number 8, 58-73 

http://www.sciencemag.org/cgi/content/full/332/6035/1278?ijkey=H6MyQXD918qUc&keytype=ref&siteid=sci%20%20%20%20%20%20%20%20
http://www.sciencemag.org/cgi/content/full/332/6035/1278?ijkey=H6MyQXD918qUc&keytype=ref&siteid=sci%20%20%20%20%20%20%20%20
http://www.eric.ed.gov/ERICWebPortal/custom/portlets/recordDetails/detailmini.jsp?_nfpb=true&_&ERICExtSearch_SearchValue_0=EJ800319&ERICExtSearch_SearchType_0=no&accno=EJ800319
http://www.eric.ed.gov/ERICWebPortal/custom/portlets/recordDetails/detailmini.jsp?_nfpb=true&_&ERICExtSearch_SearchValue_0=EJ800319&ERICExtSearch_SearchType_0=no&accno=EJ800319
http://www.eric.ed.gov/ERICWebPortal/custom/portlets/recordDetails/detailmini.jsp?_nfpb=true&_&ERICExtSearch_SearchValue_0=EJ800319&ERICExtSearch_SearchType_0=no&accno=EJ800319
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methodologies, along with well grounded theory, can be important alternatives for the 

identification of the counterfactual to establish the causal inference of a public intervention.29 

In the following section, I discuss some of these quasi-experimental research designs.  

 

7.2 Quasi-experimental research designs  

 
 

Quasi-experimental studies are used when the identification of the counterfactual cannot be 

achieved through randomisation. These studies rely on complex econometric methods that 

aim at tackling cofounding, and can be grouped into two groups: non-equivalent pretest-

posttest groups design and non-equivalent posttest-only groups design. While the objective 

of this section is not to review these methods in detail, I briefly describe their main features. 

 

Non-equivalent pretest-posttest groups designs are largely used in development research to 

resemble the pretest-posttest randomized experiments discussed above, but with the only 

difference that the counterfactual is not establish through random assignment. This is 

illustrated in Figure 7, where the letter N denotes non-random assignment to treatment. 

Once the pretest and posttest measures are collected through baseline and endline surveys, 

researchers will need to apply econometric methods to deal with cofounding.  

 

Figure 7. The pretest-posttest randomized experiment 

  Pretest 

measure 

Treatment Posttest 

measure 

Treatment 

group 
N O1 X O2 

     

Control 

group 
N 

O1  O2 

 

 

Difference-in-difference, double difference or simply DID methods use pretest differences in 

outcomes between the treatment and control group to control for these differences before 

and after a policy intervention. Thus, the difference-in-difference estimates calculate the 

observed mean outcomes between the two groups under the assumption that both treatment 

and control groups would have followed a parallel trend overtime had the policy not been 

                                                 
29 See Ravallion (2009) Should Randomistas Rule? Economists’ Voice. February. Available at www.bepress.com/ev, and 

Deaton (2009) Instruments of Development: Randomization in the Tropics, and the Search for the Elusive Keys to Economic 

Development. NBER Working Paper No. w14690 

http://www.bepress.com/ev
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1335715##
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introduced. Variations of the difference-in-difference method can be found in an increasingly 

number of studies in development research.30  

 

Fixed-effects estimates are a special case, largely used when there are more than one 

treatment group or more than two observed periods. Note that the robustness of your results 

will depend on how strong your assumption is with regard to the parallel trend between the 

two groups. In order words, how credible is that the observed factors that cause cofounding 

are time-invariant, i.e. fixed overtime.31  

 

In contexts where pretest measures are not available, the counterfactual can be generated 

through complex econometric methods that rely on observed characteristics. These 

techniques belong to non-equivalent pottest only comparison-group studies (see Figure 8.) 

and include propensity score matching, regression discontinuity and instrumental variables. 

 

 
   Figure 8. The posttest-only randomised experiment 

  Treatment Posttest 

measure 

Treatment 

group 
N X O 

    

Control 

group 
N  O 

 
 
Among posttest-only quasi-experimental designs, propensity score matching (PSM) are 

regarded as the best possible alternative. PSM generate the counterfactual by modelling (or 

estimating) the probability of treatment on the basis of observed characteristics that are not 

supposed to be affected by the presence of the policy in question. The estimated probability 

(or propensity score) is then used to match an equivalent control group.32 The closer the 

propensity score, the better the match between the two groups. Once the treatment and the 

control group are identified, you will be able to measure the mean difference in outcomes 

between the groups even in the absence of randomisation. PSM have been widely used in 

                                                 
30

 Two classic examples are found in Gruber, J. and Poterba, J (2004) “Tax Incentives and the Decision to 
Purchase Health Insurance: Evidence from the Self-Employed,” Quarterly Journal of Economics, 109: pp:701-

34; and Card, D. and Krueger, A (1994) “Minimum Wages and Employment: A Case Study of the Fast-Food 

Industry in New Jersey and Pennsylvania,” American Economic Review, 84, pp:772-93 
31

 For a discussion on the limitations of the difference-in-difference method see Bertrand, M., Duflo. E and 

Mullainathan, S (2004) “How Much Should we Trust Differences-in-Differences Estimates?” Quarterly Journal 
of Economics, 119. pp: 249-76. 
32

 For a discussion on matching techniques, see Hirano, K, Imbens, G. and Ridder, G. (2003) “Efficient 
Estimation of Average Treatment Effects Using the Estimated Propensity Score”, Econometrica, 71(4): 1161–
89. 
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development research33; however, as matching techniques rely on the assumption that 

mean differences in outcomes just appear from differences in observables, they require 

large datasets, usually nationally representative household surveys, to oversample eligible 

programme beneficiaries. And that condition imposes analytical constraints in contexts 

where large and reliable datasets are not accessible.  

 

Sometimes the rule for programme eligibility can be exploited to generate a counterfactual. 

In those cases, the eligibility rule acts as threshold or cut-off to separate the treatment from 

the control group. For example, the retirement age of 65 acts as a cut-off to distinguish those 

who are eligible to receive a state pension from those who are not. You could exploit that 

well defined rule and measure the effect of that pension scheme on health outcomes through 

regression discontinuity methods. Regression discontinuity allows you to account for 

observed and unobserved heterogeneity within and between groups, and compare the mean 

outcomes of those who are just above the cut-off with those who are below. For example, 

you could compare the mean health outcomes of people aged 64 (just before retiring) with 

the mean health outcomes of people aged 66 (just after retiring).34  

 

A variation in the regression discontinuity method is the pipeline approach, which is used 

when programme managers decide to postpone the delivery of benefits among a group of 

eligible recipients (the control group) and compare their mean outcomes with those who 

received the benefit without delay (the treatment group). Pipeline studies thus exploit the 

variation in the timing of programme implementation and compare the outcomes of the two 

groups under the assumption that they are similar in terms of observed characteristics. 

Concerns about the reliability of pipeline studies emerge in contexts where the eligibility rule 

is not fully or consistently followed. For example, if politicians have incentives to benefit 

certain communities or groups first, and these groups are better-off than those who have 

been left to receive benefits later, that would cause selection bias and then spurious results 

in an impact analysis. To reduce these problems, you could combine regression 

discontinuity with matching methods to strengthen the internal validity of the study. 
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Finally, instrumental variables (IV) are econometric methods that allow for endogeneity in the 

process of causal inference. If you were going to use instrumental variables in your analysis, 

you would need to follow two-stages. First, to model the probability of participation within 

your sample population, using one or more exogenous variables (known as instrumental 

variables or instruments). These instruments must be correlated with programme 

participation, but uncorrelated with the outcomes of interest. In the second stage, you will 

need to estimate the effect of programme participation while including in the impact equation 

the predicted values from the first stage. Instrumental variables help you to predict the effect 

of a policy in contexts where the delivery of benefits is made on a non-random basis. 

 

A note of caution: instruments should be selected carefully. Instruments that are found to be 

correlated with unobserved characteristics that affect outcomes can exacerbate the bias. 

Fortunately, there are a number of techniques to test for the robustness of your instruments. 

You should apply these techniques or consult specialists in econometric methods to ensure 

that your results are reliable.35 That is why it is critical to understand the factors underlying 

programme participation. For example, if you were asked to assess the impact of a 

microcredit programme, and its manager follows the rule of lending to women who live within 

a given radius around branch, you could use that exogenous rule as instrument. To do so, 

you would need to collect information on the distance between the branch and the residence 

of active borrowers (your treatment group) and accepted applicants (your control group). 

Then estimate the correlation between distance (your instrument) and the probability of 

participation. The predicted values of that correlation would then allow you to control for 

cofounding when comparing the mean outcomes of the two groups.36  

 
 
Concluding remarks 
 
 

In this paper, I have briefly covered quantitative research methods that are widely used in 

development research. Some of these methods are complex and require high level of 

expertise in statistics, econometrics and research designs. If you are planning to undertake a 

study but don’t have a background in Economics, Statistics or Behavioural Sciences, it 

would be advisable to consult an expert in quantitative research methods, but always 
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keeping in mind the issues that I have discussed throughout this paper. In particular, 

remember that you research objectives will guide your methodological approach. Whether or 

not randomisation is feasible, in terms of context, and/or ethical, budgetary and time 

considerations, data collection will determine the selection of your methodology. If 

randomisation is not an option, the process of generating the counterfactual becomes an art. 

You will need to ensure that cofounding, i.e. the problems of self-selection and non-random 

programme placement, are appropriately addressed through quasi-experimental techniques. 

A well designed study will provide you with reliable information to make informed decisions 

about policy.  


