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Abstract 

Data Envelopment Analysis (DEA) is a widely applied nonparametric method for 

comparative evaluation of firms’ efficiency. A deficiency of DEA is that the efficiency scores 

assigned to each firm are sensitive to sampling variations, particularly when small samples 

are used. In addition, an upward bias is present due to dimensionality issues when the sample 

size is limited compared to the number of inputs and output. As a result, in case of small 

samples, DEA efficiency scores cannot be considered as reliable measures. The DEA 

Bootstrap addresses this limitation of the DEA method as it provides the efficiency scores 

with stochastic properties. However, the DEA Bootstrap is still inappropriate in the presence 

of small samples. In this context, we introduce a new method that draws on random data 

generation procedures, unlike Bootstrap which is based on resampling, and Monte Carlo 

simulations. 
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1. Introduction 

Data Envelopment Analysis (DEA) is a widely applied nonparametric method for assessing 

operational efficiency of homogeneous units. The units or, decision making units (DMUs) 

involved in the efficiency evaluation process are predominantly a sample of a broader 

population. Population data are either difficult to collect or unknown. Considering the 

nonparametric property of DEA, or even its limited statistical underpinning, the yielded 

efficiency scores are sensitive to sampling variations (Simar and Wilson 1998). Hence, the 

efficiency scores assigned to the sample DMUs should not be considered as “global” relative 

assessment measures, but rather solely as “local”. 

 

Another issue raised in the DEA literature is associated with the dimensionality “curse” that 

plagues DEA efficiency scores. A plethora of scholars highlight the upward bias of the DEA 

efficiency scores when the sample size is inadequate for the number of input and output 
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variables (Perelman and Santin 2009; Cooper et al. 2007; Simar 2007; Sherman and Zhu 2006; 

Coelli et al. 2005; Staat 2001; Smith 1997; Banker 1993). Cooper et al. (2007), Zhang and 

Bartels (1998), and Smith (1997) have defined an appropriate sample size for bias-free 

estimations of up to 160 units, or a sample adjusted accordingly to the number of utilized 

input and output variables. 

 

Bootstrap, and particularly the DEA Bootstrap put forth by Simar and Wilson (1998) tackles 

the problem of reliability of the DEA efficiency scores when sample data are utilized in the 

evaluation process. The DEA Bootstrap, or smoothed Bootstrap, is a combination of the 

original Bootstrap (Efron 1979) modified with a smoothing parameter (Silverman 1986) and 

DEA (Charnes et al. 1978). To be more precise, Simar and Wilson manage to estimate bias in 

the DEA efficiency scores that is due to sampling variations. They apply a smoothed 

Bootstrap for generating randomly sampled efficiency scores that are then used for estimating 

bootstrapped inputs (input-oriented approach) or outputs (output-oriented approach). 

Subsequently, the bootstrapped inputs or outputs are introduced to the DEA linear 

programming models for bias-corrected efficiency scores. The DEA Bootstrap inherits the 

virtues of the original Bootstrap without avoiding though its limitations. A major limitation of 

the Bootstrap method when it is applied to nonparametric settings is the minimum required 

sample data for estimating the variability of the population data (Chernick 2008). This 

weakness is also implied by Efron and Tibshirani (1998). In this context, Chernick (2008) 

proposed a minimum sample size of 50 observations for estimating reliable scores consistent 

with the population distribution. 

 

The proposed method overcomes the limitation of Bootstrap, particularly of the DEA 

Bootstrap, as it yields efficiency scores to DMUs that resemble, more so than those obtained 

by the DEA Bootstrap, the true efficiency scores when small samples of observations are 

available. The new method also cures the dimensionality problem of DEA as the adaptability 

of the estimated sample efficiency scores to the true population scores increases against the 

DEA Bootstrap results when more input and output variables are incorporated in the 

production process. 

 

2. Breakdown of the new bias-correction method 

The introduced method is not a resampling as Bootstrap, rather it draws on truncated random 

data generation processes to estimate the unknown population distribution from the 

empirical distribution . 

F

F̂

 

The scope of the new method is to estimate the population efficiency scores 

 ,  1, 2,...,
p

p m    by producing an estimator  of the population distribution F̂
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for the y
 -number outputs ( ). By applying DEA, for instance, the input-oriented 

Variable Returns to Scale (VRS) model (Banker et al., 1984) 
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every DMUi. In the following analysis we presume input orientation is applied. 

 

Based on the efficiency scores (i.e., ) assigned to the sample DMUs, a 

truncated random data generation process T is utilized to produce a sequence of 

pseudo-numbers  
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 for every DMU. Every sequence of pseudo-numbers originates 

from every single efficiency score or from a combination of a targeted efficiency score and 

the average scores of the sample. 
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where  is a user-defined credibility score that denotes the magnitude of a single efficiency 

score, and complementary of the sample mean efficiency scores, on the generation of a 

truncated random sequence of data (scores). In fact, there is inherent dependency between the 

efficiency scores of the sample DMUs that is due to the comparative assessment procedure 

applied through DEA. 

z

Moreover, 
*

x  represents the randomly generated data, the 
*

iox


expresses selected randomly 

generated replicas of the efficiency score for the  -number elements of the sequence, and 

 stands for the coefficient of variation. cv

 

The bias-corrected efficiency score for every DMU is defined as follows 

                           
* *( )   1, 2,..., ;  1, 2,...,
i io

s x i n
           (4) 

where s is a statistic (i.e., mean) 

 

It is straightforward that the bias is expressed as 
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The standard error of the proposed truncated random data generation (TRDG) process is 
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Taking into account equations (4) and (6), the confidence interval of the bias-corrected 

efficiency scores are formed as follows 
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where  denotes the level of significance, we prove that 
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where ub stands for the upper bound of the confidence interval of the bias-corrected 

efficiency scores. Acknowledging the inherit randomness in the proposed method, all the 

provided proofs or statements result from iterative procedures. In formulation (9), the 

probability, that is the average of L=1000 iterations, is equal to an infinitesimal value. The 

cases in which this infinitesimal probability is present are identified and presented in order to 

be avoided by the user of the proposed method. 

 

The inherit randomness in the proposed method is regarded as a drawback because it is a 

source of instability for the obtained results when the method is applied repeatedly. To 

overcome this drawback, a stabilization parameter   is introduced in the procedure that 

eliminates up to 99% the variation of the bias-corrected scores. The parameter   expresses 

the number of iterations for the formulations (2)-(7). The reported results are average scores. 

 

The proposed method for dealing with sampling variations and dimensionality issues in DEA 

is expressed by the following function 

                                         (10) 
*

ˆ ( , , , , , , var )ex ex TRDG
f cv z n

    

In formulation (10), two exogenous parameters  and  are included which denote 

the number of DMUs in the original sample and the number of input and output variables, 

respectively, that are utilized for defining the efficiency scores through DEA. These two 

parameters implicitly influence the bias-correction procedure. 

ex
n varex

 

Based on a numerical example and on the results that are tested through Monte Carlo so that 

to eliminate randomness, the proposed method yields better estimators ( ) for the 

population efficiency scores (

*TRDG

 ) than the DEA Bootstrap ( ) when the original sample 

consists of less than 50 DMUs. In addition, the adaptive power of s to 

*boot

*TRDG   increases 

against s when the number of input and output variables increases. 
*boot
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3. Conclusion 

In this paper, a new method for correcting bias in DEA efficiency scores is presented. 

Commonly, DEA yields overestimated efficiency scores when sample data rather than 

population data are used, and the number of DMUs is limited compared to the number of 

variables. In some studies, adequate sample sizes have been determined for obtaining 

unbiased efficiency scores. However, in many cases the required sample size cannot be 

collected (e.g., automobile industry, power companies, water companies). 

 

In this paper is presented a new method for correcting bias in DEA efficiency scores when 

small samples are available (i.e., n<50 DMUs). The new method enhances the applicability of 

DEA when the DEA Bootstrap fails due to the limited number of DMUs under evaluation, or 

the inadequate sample size compared to the number of input and output variables. The new 

approach does not draw on resampling but on an iterative truncated random number 

generation procedure. Despite the inherit randomness of the new method, the results are 

robust and the proposed procedure does not suffer from instability. In addition, it is proved 

that the results obtained by the proposed method are more adaptive to reality than those 

estimated by the DEA Bootstrap when small samples are available. 
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