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Abstract

In this paper, we consider some identification, estimation and specification prob-

lems in a class of semi–linear time series models. Existing studies for the stationary

time series case have been reviewed and discussed. We also establish some new results

for the integrated time series case. In the meantime, we propose a new estimation

method and establish a new theory for a class of semi–linear nonstationary autore-

gressive models. In addition, we discuss certain directions for further research.
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1. Introduction

Consider a class of semi–linear (semiparametric) time series models of the form

yt = xτt β + g(xt) + et, t = 1, 2, · · · , n, (1.1)

where {xt} is a vector of time series regressors, β is a vector of unknown parameters, g(·) is an

unknown function defined on Rd, {et} is a sequence of martingale differences, and n is the number

of observations. This paper mainly focuses on the case of 1 ≤ d ≤ 3. As discussed in Section 2.2

below, for the case of d ≥ 4, one may replace g(xt) by a semiparametric single–index form g(xτt β).

Various semiparametric regression models have been proposed and discussed extensively in

recent years. Primary interest focuses on general nonparametric and semiparametric time series

models under stationarity assumption. Recent studies include Tong (1990), Fan and Gijbels (1996),

Härdle, Liang and Gao (2000), Fan and Yao (2003), Gao (2007), Li and Racine (2007), and

Teräsvirta, Tjøstheim and Granger (2010) as well as the references therein. Meanwhile, model

estimation and selection as well as model specification problems have been discussed for one specific

class of semiparametric regression models of the form

yt = xτt β + ψ(vt) + et, (1.2)

where ψ(·) is an unknown function and {vt} is a vector of time series regressors such that

Σ = E [(xt − E[xt|vt]) (xt − E[xt|vt])τ ] is positive definite. As discussed in the literature (see,

for example, Robinson 1988; Chapter 6 of Härdle, Liang and Gao 2000; Gao 2007; Li and Racine

2007), a number of estimation and specification problems have already been studied for the case

where both xt and vt are stationary and the covariance matrix Σ is positive definite. In recent

years, attempts have also been made to address some estimation and specification testing problems

for model (1.2) for the case where xt and vt may be stochastically nonstationary (see, for example,

Juhl and Xiao 2005; Chen, Gao and Li 2012; Gao and Phillips 2011).

The focus of our discussion in this paper is on model (1.1). Model (1.1) has different types

of motivations and applications from the conventional semiparametric time series model of the

form (1.2). In model (1.1), the linear component in many cases plays the leading role while the

nonparametric component behaves like a type of unknown departure from the classic linear model.

Since such departure is usually unknown, it is not unreasonable to treat g(·) as a nonparametrically

unknown function. In recent literature, Glad (1998), Martins–Filho, Mishra and Ullah (2008),

Fan, Wu and Feng (2009), and others have discussed the issue of reducing estimation biases

through using a potentially misspecified parametric form in the first step rather than simply

nonparametrically estimating the conditional mean function m(x) = E[yt|xt = x]. By comparison,

we are interested in such cases where the conditional mean function m(x) may be approximated by

a parametric function of the form f(x, β). In this case, the remaining nonparametric component

g(x) = m(x) − f(x, β) may be treated as a ‘small’ departure function in our discussion for both



estimation and specification testing. In the case of model specification testing, we treat model

(1.1) as an alternative when there is not enough evidence to suggest accepting a parametric true

model of the form yt = xτt β + et. In addition, model (1.1) will also be motivated as a model to

address some endogenous problems involved in a class of linear models of the form yt = xτt β + εt,

where {εt} is a sequence of errors with E [εt] = 0 but E [εt|xt] 6= 0. In the process of estimating

both β and g(·) consistently, existing methods, as discussed in the literature by Robinson (1988),

Härdle, Liang and Gao (2000), Gao (2007), and Li and Racine (2007) for example, are not valid and

directly applicable because Σ = E [(xt − E[xt|xt]) (xt − E[xt|xt])τ ] = 0. The main contribution

of this paper is summarised as follows. We discuss some recent developments for the stationary

time series case of model (1.1) in Section 2 below. Sections 3 and 4 establish some new theory for

model (1.1) for the integrated time series case and a nonstationary autoregressive time series case,

respectively. Section 5 discusses the general case where yt = f(xt, β) + g(xt) + et.

The organization of this paper is summarised as follows. Section 2 discusses model (1.1) for

the case where {xt} is a vector of stationary time series regressors. Section 2 also proposes an

alternative model to model (1.1) for the case where d ≥ 4. The case where {xt} is a vector of

nonstationary time series regressors is discussed in Section 3. Section 4 considers an autoregressive

case of d = 1 and xt = yt−1 and then establishes some new theory. Section 5 discusses some

extensions and then gives some examples to show why the proposed models are relevant and how

to implement the proposed theory and estimation method in practice. This paper concludes with

some remarks in Section 6.

2. Stationary models

Note in the rest of this paper that we refer to g(·) as a ‘small’ function if g(·) satisfies either

Assumption 2.1(i), or, Assumption 2.3(i), or, Assumption 3.1, or Assumption 4.2(ii) below. Note

also that the symbol “ =⇒D ” denotes weak convergence, the symbol “ →D ” denotes convergence

in distribution, and “ →P ” denotes convergence in probability.

In this section, we give some review about the development of model (1.1) for the case where

{xt} is a vector of stationary time series regressors. Some identification and estimation issues are

then reviewed and discussed. Section 2.1 discusses the case of 1 ≤ d ≤ 3, while Section 2.2 suggests

using both additive and single–index models to deal with the case of d ≥ 4.

2.1 Case of 1 ≤ d ≤ 3

While the literature may mainly focus on model (1.2), model (1.1) itself has its own motivations

and applications. As a matter of fact, there is also a long history about the study of model (1.1).

Owen (1991) considers model (1.1) for the case where {xt} is a vector of independent regressors

and then treats g(·) as a misspecification error before an empirical likelihood estimation method

is proposed. Gao (1992) systematically discusses model (1.1) for the case where {xt} is a vector of



independent regressors and then considers both model estimation and specification issues. Before

we start our discussion, we introduce an identifiability condition of the form in Assumption 2.1.

Assumption 2.1. (i) Let g(·) be an integrable function such that
∫
||x||i |g(x)|i dF (x) < ∞

for i = 1, 2 and
∫
xg(x)dF (x) = 0, where F (x) is the cumulative distribution function of {xt} and

|| · || denotes the conventional Euclidean norm.

(ii) For any vector γ, minγ E [g(x1)− xτ1γ]
2 > 0.

Note that Assumption 2.1(i) implies both the identifiability and the ‘smallness’ conditions on

g(·). Assumption 2.1(ii) is imposed to exclude any cases where g(x) is a linear function of x. Under

Assumption 2.1, parameter β is identifiable and chosen such that

E [yt − xτt β]
2 is minimised over β, (2.1)

which implies β = (E [x1x
τ
1 ])

−1E [x1y1] provided that the inverse matrix does exist. Note that the

definition of β = (E [x1x
τ
1 ])

−1E [x1y1] implies
∫
xg(x)dF (x) = 0, and vice versa. As a consequence,

β may be estimated by the ordinary least squares estimator of the form

β̂ =

(
n∑

t=1

xtx
τ
t

)−1( n∑

t=1

xtyt

)
. (2.2)

Gao (1992) then establishes an asymptotic theory for β̂ and a nonparametric estimator of g(·)
of the form

ĝ(x) =
n∑

t=1

wnt(x)
(
yt − xτt β̂

)
, (2.3)

where wnt(x) is a probability weight function and is commonly chosen as wnt(x) =
K(xt−x

h )∑n

s=1
K(xs−x

h )
,

in which K(·) and h are the probability kernel function and the bandwidth parameter, respectively.

As a result of such an estimation procedure, one may be able to determine whether g(·) is

small enough to be negligible. A further testing procedure may be used to test whether the null

hypothesis H0 : g(·) = 0 may not be rejected. Gao (1995) proposes a simple test and then shows

that under H0,

L̂1n =

√
n

σ̂1

(
1

n

n∑

t=1

(
yt − xτt β̂

)2
− σ̂20

)
→D N(0, 1), (2.4)

where σ̂21 and σ̂20 are consistent estimators of σ21 = E[e41]− σ40 and σ20 = E[e21], respectively.

In recent years, model (1.1) has been commonly used as a semiparametric alternative to a

simple parametric linear model when there is not enough evidence to suggest accepting the simple

linear model. In such cases, interest is mainly on establishing an asymptotic distribution of the test

statistic under the null hypothesis. Alternative models are mainly used in small sample simulation

studies when evaluating the power performance of the proposed test. There are some exceptions

that further interest is in estimating the g(·) function involved before establishing a closed–form

expression of the power function and then studying its large–sample and small–sample properties

(see, for example, Gao 2007; Gao and Gijbels 2008). Even in such cases, estimation of g(·)



becomes a secondary issue. Therefore, there has been no primary need to rigorously deal with

such an estimation issue under suitable identifiability conditions similar to Assumption 2.1.

To state some general results for β̂ and ĝ(·), we introduce the following conditions.

Assumption 2.2. (i) Let (xt, et) be a vector of stationary and α–mixing time series with

mixing coefficient α(k) satisfying
∑∞

k=1 α
δ

2+δ (k) < ∞ for some δ > 0, where δ > 0 is chosen such

that E
[
|x1ε1|2+δ

]
<∞, in which εt = et + g(xt).

(ii) Let E[e1|x1] = 0 and E[e21|x1] = σ2e < ∞ almost surely. Let also Σ11 = E [x1x
τ
1 ] be a

positive definite matrix.

(iii) Let p(x) be the marginal density of x1. The first derivative of p(x) is continuous in x.

(iv) The probability kernel function K(·) is a continuous and symmetric function with compact

support.

(v) The bandwidth h satisfies limn→∞ h = 0, limn→∞ nhd = ∞ and lim supn→∞ nhd+4 <∞.

Assumption 2.2 is a set of conditions similar to what has been used in the literature (such as,

Gao 2007; Li and Racine 2007; Gao and Gijbels 2008). As a consequence, its suitability may be

verified similarly.

We now state the following proposition.

Proposition 2.1 (i) Let Assumptions 2.1 and 2.2 hold. Then as n→ ∞
√
n
(
β̂ − β

)
→D N

(
0, σ21εΣ

−2
11

)
, (2.5)

where σ21ε = E
[
x1x

τ
1ε

2
1

]
+ 2

∑∞
t=2E [ε1εtx1x

τ
t ].

(ii) If, in addition, the first two derivatives of g(x) are continuous, we have as n→ ∞
√
nhd (ĝ(x)− g(x)− cn) →D N

(
0, σ2g(x)

)
(2.6)

at such x that p(x) > 0, where cn = h2(1+o(1))
2

(
g′′(x) + 2g′(x)p′(x)

p(x)

) ∫
uτuK(u)du and σ2g(x) =∫

K2(u)du

p(x) , in which p(x) is the marginal density of x1.

The proof of Proposition 2.1 is relatively straightforward using existing results for central limit

theorems for partial sums of stationary and α–mixing time series (see, for example, Fan and Yao

2003). Obviously, one may use a local–linear kernel weight function to replace wnt(x) in order to

correct the bias term involved in cn. Since such details are not essential to the primary interest of

the discussion of this kind of problem, we there omit such details here.

Furthermore, in a recent paper by Chen, Gao and Li (2011), the authors consider an extended

case of model (2.1) of the form

yt = f(xτt β) + g(xt) + et with xt = λt + ut, (2.7)

where f(·) is parametrically known, {λt} is an unknown deterministic function of t, and {ut} is

a sequence of independent errors. In addition, g(·) is allowed to be a sequence of functions of



the form gn(·) in order to directly link model (2.7) with a sequence of local alternative functions

under an alternative hypothesis as has been widely discussed in the literature (see, for example,

Gao 2007; Gao and Gijbels 2008). By the way, the finite–sample results presented in Chen, Gao

and Li (2011) further confirm that the pair (β̂, ĝ(·)) has better performance than a semiparametric

weighted least squares (SWLS) estimation method proposed for model (1.2), since the so–called

“SWLS” estimation method, as pointed out before, is not theoretically sound for model (1.1).

Obviously, there are certain limitations with the paper by Chen, Gao and Li (2011) and further

discussion may be needed to fully take issues related to endogeneity and stationarity into account.

As also briefly mentioned in the introduction, model (1.1) may be motivated as a model to

address a kind of ‘weak’ endogenous problem. Consider a simple linear model of the form

yt = xτt β + εt with E[εt|xt] 6= 0, (2.8)

where {εt} is a sequence of stationary errors.

Let g(x) = E[εt|xt = x]. Since {εt} is unobservable, it may not be unreasonable to assume that

the functional form of g(·) is unknown. Meanwhile, empirical evidence broadly supports either full

linearity or semi–linearity. It is therefore that one may assume that g(·) is kind of ‘small’ function

satisfying Assumption 2.1. Let et = εt − E[εt|xt]. In this case, model (2.8) can be rewritten

as model (1.1) with E[et|xt] = 0. In this case, g(xt) may be used as an ‘instrumental variable’

to address a ‘weak’ endogeneity problem involved in model (2.8). As a consequence, β can be

consistently estimated by β̂ under Assumption 2.1 and the so–called “instrumental variable” g(xt)

may be asymptotically ‘found’ by ĝ(xt).

2.2 Case of d ≥ 4

As discussed in the literature (see, for example, Chapter 7 of Fan and Gijbels 1996; Chapter

2 of Gao 2007), one may need to encounter the so–called “the curse of dimensionality” when

estimating high dimensional (with the dimensionality d ≥ 4) functions. We therefore propose

using a semiparametric single–index model of the form

yt = xτt β + g (xτt β) + et (2.9)

as an alternative to model (1.1). To be able to identify and estimate model (2.9), Assumption 2.1

will need to be modified as follows.

Assumption 2.3. (i) Let g(·) be an integrable function such that
∫
||x||i |g (xτβ0)|i dF (x) <∞

for i = 1, 2 and
∫
xg (xτβ0) dF (x) = 0, where β0 is the true value of β and F (x) is the cumulative

distribution function of {xt}.
(ii) For any vector γ, minγ E [g (xτ1β0)− xτ1γ]

2 > 0.

Under Assumption 2.2, β is identifiable and estimable by β̂. The conclusions of Proposition



2.1 still remain valid except the fact that ĝ(·) is now modified as

ĝ(u) =

∑n
t=1K

(
xτ
t β̂−u

h

)
yt

∑n
s=1K

(
xτ
s β̂−u
h

) . (2.10)

We think that model (2.9) is probably the most feasible and easily implementable alternative

to model (1.1), although there are some other alternatives. One of them is a semiparametric

single–index model of the form

yt = xτt β + g (xτt γ) + et, (2.11)

where γ is another vector of unknown parameters. As discussed in Xia, Tong and Li (1999),

model (2.11) is a better alternative to model (1.2) than to model (1.1). Another of them is a

semiparametric additive model of the form

yt = xτt β +
d∑

j=1

gj (xtj) + et, (2.12)

where each gj(·) is an unknown and univariate function. In this case, Assumption 2.1 may be

replaced by Assumption 2.4 below.

Assumption 2.4. (i) Let each gj(·) satisfy max1≤j≤d

∫
||x||i |gj (xj)|i dF (x) < ∞ for i = 1, 2

and
∑d

j=1

∫
xgj (xj) dF (x) = 0, where each xj is the j–th component of x = (x1, · · · , xj , · · · , xd)τ

and F (x) is the cumulative distribution function of {xt}.
(ii) For any vector γ, minγ E

[∑d
j=1 gj (xtj)− xτt γ

]2
> 0, where each xtj is the j–th component

of xt = (xt1, · · · , xtj , · · · , xtd)τ .

Under Assumption 2.4, β is still identifiable and estimable by β̂. The estimation of {gj(·)}
however involves an additive estimation method, such as the marginal integration method discussed

in Chapter 2 of Gao (2007). Under Assumptions 2.2 and 2.4 as well as some additional conditions,

asymptotic properties may be established for the resulting estimators of gj(·) in a similar way to

Section 2.3 of Gao (2007).

We have so far discussed some issues for the case where {xt} is stationary. In order to es-

tablish an asymptotic theory in each individual case, various conditions may be imposed on the

probabilistic structure {et}. Both our own experience and the literature show that it is relatively

straightforward to establish an asymptotic theory for β̂ and ĝ(·) under either the case where {et}
satisfies some martingale assumptions or the case where {et} is a linear process. In Section 3

below, we provide some necessary conditions before we establish a new asymptotic theory for the

case where {xt} is a sequence of nonstationary regressors.

3. Nonstationary models

This section focuses on the case where {xt} is stochastically nonstationary. Since the paper

by Chen, Gao and Li (2011) already discusses the case where nonstationarity is driven by a



deterministic trending component, this section focuses on the case where the nonstationarity of

{xt} is driven by a stochastic trending component. Due to the limitation of existing theory, we

only discuss the case of d = 1 in the nonstationary case.

Before our discussion, we introduce some necessary conditions.

Assumption 3.1. (i) Let g(·) be a real function on R1 = (−∞,∞) such that
∫
|x|i |g(x)|i dx <

∞ for i = 1, 2 and
∫
xg(x)dx 6= 0.

(ii) In addition, let g(·) satisfy
∫ ∣∣∫ eixyyg(y)dy

∣∣ dx <∞ when
∫
xg(x)dx = 0.

In comparison with Assumption 2.1, there is no need to impose a condition similar to Assump-

tion 2.1(ii), since Assumption 3.1 itself already excludes the case where g(x) is a simple linear

function of x.

In addition to Assumption 3.1, we will need the following conditions.

Assumption 3.2. (i) Let xt = xt−1 + ut with x0 = 0 and ut =
∞∑
i=0

ψiηt−i, where {ηt} is a

sequence of independent and identically distributed random errors with E[η1] = 0, 0 < E[η21] =

σ2η < ∞ and E
[
|η1|4+δ

]
< ∞ for some δ > 0, in which {ψi : i ≥ 0} is a sequence of real numbers

such that
∞∑
i=0

i2 |ψi| < ∞ and
∞∑
i=0

ψi 6= 0. Let ϕ(·) be the characteristic function of η1 satisfying

|r|ϕ(r) → 0 as r → ∞.

(ii) Suppose that {(et,Ft) : t ≥ 1} is a sequence of martingale differences satisfying E[e2t |Ft−1] =

σ2e > 0, a.s., and E
[
e4t |Ft−1

]
<∞ a.s. for all t ≥ 1. Let {xt} be adapted to Ft−1 for t = 1, 2, · · · , n.

(iii) Let En(r) =
1√
n

[nr]∑
t=1

et and Un(r) =
1√
n

[nr]∑
t=1

ut. There is a vector Brownian motion (E,U)

such that (En(r), Un(r)) =⇒D (E(r), U(r)) on D[0, 1]2 as n→ ∞, where =⇒D stands for the weak

convergence.

(iv) The probability kernel function K(·) is a bounded and symmetric function. In addition,

there is a real function ∆(x, y) such that, when h is small enough, |g(x+ hy)− g(x)| ≤ h ∆(x, y)

for all y and
∫
K(y)∆(x, y)dy <∞ for each given x.

(v) The bandwidth h satisfies h→ 0, nh2 → ∞ and nh6 → 0 as n→ ∞.

Similar sets of conditions have been used in Gao and Phillips (2011), Li et al (2011), and Chen,

Gao and Li (2012). The verification and suitability of Assumption 3.2 may be given in a similar

way to Remark A.1 of Appendix A of Li et al (2011).

Since {xt} is nonstationary, we replace equation (2.1) by a sample version of the form

1

n

n∑

t=1

[yt − xtβ]
2 is minimised over β, (3.1)

which implies β̂ =
(∑n

t=1 x
2
t

)−1
(
∑n

t=1 xtyt) as has been given in equation (2.2). A simple expression

implies

n
(
β̂ − β

)
=

(
1

n2

n∑

t=1

x2t

)−1(
1

n

n∑

t=1

xtet

)
+

(
1

n2

n∑

t=1

x2t

)−1(
1

n

n∑

t=1

xtg(xt)

)
. (3.2)



Straightforward derivations imply as n→ ∞

1

n2

n∑

t=1

x2t =
1

n

n∑

t=1

x2tn =⇒D

∫ 1

0
U2(r)dr, (3.3)

1

n

n∑

t=1

xtet =
1√
n

n∑

t=1

xtnet =⇒D

∫ 1

0
U(r)dE(r), (3.4)

where xtn = xt√
n
.

In view of equations (3.2)–(3.4), in order to establish an asymptotic distribution for β̂, it is

expected to show that as n→ ∞
1

n

n∑

t=1

xtg(xt) →P 0. (3.5)

To be able to show (3.5), we need to consider the case of
∫
xg(x)dx = 0 and the case of

∫
xg(x)dx 6= 0 separately. In the case of

∫
xg(x)dx 6= 0, existing results (such as, Theorem 2.1 of

Wang and Phillips 2009) imply as n→ ∞

1√
n

n∑

t=1

xtg(xt) =
dn

n

n∑

t=1

(dnxtn) g(dn xtn) →D LU (1, 0) ·
∫ ∞

−∞
zg(z)dz, (3.6)

where dn =
√
n and LU (1, 0) is the local–time process associated with U(r). This then implies as

n→ ∞
1

n

n∑

t=1

xtg(xt) =
1√
n
· 1√

n

n∑

t=1

xtg(xt) →P 0. (3.7)

In the case of
∫
xg(x)dx = 0, existing results (such as, Theorem 2.1 of Wang and Phillips 2011)

also imply as n→ ∞
√

1√
n

n∑

t=1

xtg(xt) =

√
dn

n

n∑

t=1

(dnxtn) g(dn xtn) →D

√
LU (1, 0) ·N(0, 1) ·

√∫ ∞

−∞
z2g2(z)dz, (3.8)

where N(0, 1) is a standard normal random variable independent of LU (1, 0). This shows that

equation (3.5) is also valid for the case of
∫
xg(x)dx = 0.

We therefore summarise the above discussion into the following proposition.

Proposition 3.1 (i) Let Assumptions 3.1 and 3.2(i)–(iii) hold. Then as n→ ∞

n
(
β̂ − β

)
→D

(∫ 1

0
U2(r)dr

)−1 ∫ 1

0
U(r)dE(r). (3.9)

(ii) If, in addition, Assumption 3.2(iv)(v) holds, then as n→ ∞
√√√√

n∑

t=1

K

(
xt − x

h

)
(ĝ(x)− g(x)) →D N

(
0, σ2g

)
, (3.10)

where σ2g = σ2e
∫
K2(u)du.

The proof of (3.9) follows from equations (3.2)–(3.8). To show (3.10), one may be seen that

ĝ(x)− g(x) =
n∑

t=1

wnt(x)et +
n∑

t=1

wnt(x) (g(xt)− g(x)) +
n∑

t=1

wnt(x)xt
(
β − β̂

)
. (3.11)



The first two terms may be dealt with in the same way as in existing studies (such as the

proof of Theorem 3.1 of Wang and Phillips 2009). To deal with the third term, one may have the

following derivations:

n∑

t=1

wnt(x)xt = h ·
∑n

t=1K
(
xt−x
h

) (
xt−x
h

)
∑n

t=1K
(
xt−x
h

) + x = oP (1) (3.12)

by the fact that
∫
uK(u)du = 0 and an application of Theorem 2.1 of Wang and Phillips (2011).

Equations (3.11) and (3.12), along with (3.9), complete the proof of (3.10).

Meanwhile, as in the stationary case, model (1.1) can also be considered as an alternative model

to a simple linear model of the form yt = xτt β + et in the nonstationary case. A nonparametric

test of the form

L̂2n =

∑n
t=1

∑n
s=1, 6=t ês K

(
xt−xs

h

)
êt√

2
∑n

t=1

∑n
s=1, 6=t ê

2
s K

2
(
xt−xs

h

)
ê2t

(3.13)

has been proposed to test H0 : P (g(xt) = 0) = 1 and studied in recent years (see, for example,

Gao et al 2009a; Li et al 2011; Wang and Phillips 2012), where êt = yt − xτt β̂, in which β̂ is the

ordinary least squares estimator based on model (1.1) under H0. Obviously, Assumption 2.1 is no

longer needed for this kind of testing problem.

This section has so far considered the case where {xt} is an integrated time series. In Section

4 below, we consider an autoregressive version of model (1.1) and then discuss stationary and

nonstationary cases separately.

4. Nonlinear autoregressive models

Consider an autoregressive version of model (1.1) of the form

yt = xτt β + g(xt) + et, (4.1)

where xt = (yt−1, · · · , yt−d)
τ , and the others are the same as before.

As has been discussed in the literature (see, for example, Tong 1990; Masry and Tjøstheim 1995;

Chapter 6 of Härdle, Liang and Gao 2000), {yt} can be stochastically stationary and α–mixing

when β satisfies Assumption 4.1(i) below and g(·) satisfies Assumption 4.1(ii) below.

Assumption 4.1. (i) Let β = (β1, · · · , βd)τ satisfy yd−β1yd−1− · · ·−βd−1y−βd 6= 0 for any

|y| ≥ 1.

(ii) Let g(x) be bounded on any bounded Borel measurable set and satisfy g(x) = o (||x||) as

||x|| → ∞.

Under Assumption 4.1, {yt} is stationary and α–mixing. This, along with Assumption 2.1,

implies that the estimation of β and g(·) may be done in the same way as in Section 2.1 for the

case of 1 ≤ d ≤ 3 and in Section 2.2 for the case of d ≥ 4. Therefore, discussion of model (4.1) is

relatively straightforward.



In the rest of this section, we then focus on the case where {yt} is nonstationary and discuss

about how to estimate β and g(·) consistently. To present the main ideas of our discussion, we

focus on the case of d = 1 to imply a semiparametric autoregressive model of the form

yt = βyt−1 + g(yt−1) + et. (4.2)

While model (4.2) might look too simple, as discussed below, the study of the nonstationarity

of {yt} may not be so easy at all. This is mainly because the nonstationarity may be driven by

either the case of β = 1, or, the case where the functional form of g(·) may be too ‘explosive’,

or a mixture of both. Our interest of this section is to focus on the case where g(·) is a ‘small’

departure function and the true value of β is β = 1. In a recent paper by Gao, Tjøstheim and Yin

(2012), the authors discuss a threshold version of model (4.2), in which g(·) is being treated as a

conventional unknown function (not necessarily a ‘small’ function) defined on a compact subset.

In a similar fashion to (3.1), we estimate β by minimising

1

n

n∑

t=1

[yt − yt−1β]
2 over β, (4.3)

which implies β̂ =
(∑n

t=1 y
2
t−1

)−1
(
∑n

t=1 yt−1yt). The unknown departure function g(·) can then be

estimated by

ĝ(y) =
n∑

t=1

wnt(y)
(
yt − β̂yt−1

)
with wnt(y) =

K

(
yt−1−y

h

)

∑n

s=1
K

(
ys−1−y

h

) . (4.4)

When β = 1, we have

β̂ − 1 =

(
n∑

t=1

y2t−1

)−1( n∑

t=1

yt−1et

)
+

(
n∑

t=1

y2t−1

)−1( n∑

t=1

yt−1g(yt−1)

)
. (4.5)

To establish an asymptotic distribution for β̂, we will need to understand the probabilistic

structure of {yt}. Obviously, {yt} is not integrated unless g(·) ≡ 0. Thus, existing theory for the

integrated time series case is not applicable here. We therefore impose some specific conditions on

g(·) and {et} to ensure that certain probabilistic structure can be deduced for {yt}.

Assumption 4.2. (i) Let {et} be a sequence of independent and identically distributed

continuous random errors with E[e1] = 0 and 0 < E[e21] = σ2e < ∞. Let {et} and {ys} be

independent for all s < t. In addition, the probability density, p(x), of e1 satisfies infx∈Cp p(x) > 0

for all compact sets Cp.

(ii) Let g(y) be twice differentiable and the second derivative of g(y) be continuous in y ∈ R1 =

(−∞,∞). In addition,
∫
|g(y)|i πs(dy) < ∞ for i = 1, 2, where πs(·) is the invariant measure of

{yt}.
(iii) Furthermore,

∫
|yg(y)|i πs(dy) <∞ for i = 1, 2.

Assumption 4.2(i) is needed to show that {yt} can be a λ–null recurrent Markov chain with

λ = 1
2 . Assumption 4.2(ii) is required to restrict that the functional form of g(·) is not too



‘explosive’ in a similar fashion to Assumption 4.1(ii). If the functional form of g(·) is too ‘explosive’

in this case, the nonstationarity of {yt} may be too strong to be controllable. Assumption 4.2(iii)

imposes additional integrability conditions on yg(y) in a way similar to Assumption 3.1(i) for

the integrated case. Note that we need not require
∫
yg(y)πs(dy) = 0 and then discuss this case

specifically as in Section 3.

In order to establish an asymptotic theory for (β̂, ĝ(·)), we need to introduce the following

proposition.

Proposition 4.1. Let Assumption 4.2(i)(ii) hold. Then {yt} is a λ–null recurrent Markov

chain with λ = 1
2 .

The proof of Proposition 4.1 follows similarly from that of Lemma 3.1 of Gao, Tjøstheim and

Yin (2012). More details about null recurrent Markov chains are available in Karlsen and Tjøstheim

(2001) and Appendix A of Gao, Tjøstheim and Yin (2012). Proposition 4.1 shows that {yt} is a

nonstationary Markov chain, although it cannot be an integrated time series when g(·) 6= 0. As a

consequence, one may establish the following asymptotic theory in Proposition 4.2 below.

Proposition 4.2. (i) Let Assumption 4.2 hold. Then as n→ ∞

n
(
β̂ − 1

)
→D

(
Q2(1)− σ2e

)

2
∫ 1
0 Q

2(r)dr
, (4.6)

where Q(r) = σeB(r)+M 1

2

(r)µg, in which B(r) is the conventional Brownian motion, M 1

2

(t) is the

Mittag–Leffler process as defined in Karlsen and Tjøstheim (2001, p 388) and µg =
∫
g(y)πs(dy).

(ii) If, in addition, Assumption 3.2(iv)(v) holds, then as n→ ∞
√√√√

n∑

t=1

K

(
yt−1 − y

h

)
(ĝ(y)− g(y)) →D N(0, σ2g), (4.7)

where σ2g = σ2e
∫
K2(u)du.

The proof of Proposition 4.2 is given in Appendix A below. Note that Proposition 4.2 shows

that the super rate–n of convergence is still achievable for β̂ even when {yt} is not an integrated

time series. In addition, Q(r) = σeB(r) when µg = 0. In other words, β̂ retains the same

asymptotic behaviour as if {yt} were integrated when the ‘small’ departure function g(·) satisfies
∫
g(y)πs(dy) = 0. Meanwhile, the asymptotic theory of ĝ(·) remains the same as in the integrated

case (see, for example, Proposition 3.1(ii)).

Remark 4.1. (i) While Assumptions 4.1 and 4.2 are assumed respectively for the stationary

and nonstationary cases, there are some common features in both assumptions. To present the

main ideas in this discussion, we focus on the case of d = 1 in Assumption 4.1(i). When |β| < 1,

Assumption 4.1(ii) basically requires that the rate of g(y) decaying to infinity is slower than that of

|y| → ∞ in order to ensure that {yt} is stochastically stationary. In the case of β = 1, in addition to

the ‘smallness’ condition in Assumption 4.2(iii), Assumption 4.2(ii) also imposes certain conditions



on the rate of divergence of g(·) to deduce that {yt} is a nonstationary Markov chain, although,

in the case of g(·) 6= 0, {yt} is not an integrated time series. This is mainly because it may be

impossible to study such nonlinear autoregressive models when g(·) behaves too ‘explosive’.

(ii) {yt} could be generated recursively by a nonlinear autoregressive time series of the form

yt = yt−1 + g(yt−1) + et if β = 1 and g(·) were known. In the paper by Granger, Inoue and

Morin (1997), the authors propose some parametric specifications for g(·) and treat g(·) as a

stochastic trending component. The authors then suggest estimating g(·) nonparametrically before

checking whether g(·) is negligible. Gao et al (2009b) further consider this model and propose a

nonparametric unit–root test for testing H0 : g(·) = 0. As pointed out above, what we have

been interested in this section is to deal with the case where g(·) is not negligible, but is a ‘small’

departure function satisfying Assumption 4.2(ii)(iii). Proposition 4.2 implies that model (4.2) may

generate a class of “nearly integrated” time series models when β = 1 and
∫
g(y)πs(dy) = 0.

This may motivate us to further develop some general theory for the so–called class of “nearly

integrated” time series models.

5. Extensions and examples of implementation

Since many practical problems (see, for example, Examples 5.1 and 5.2 below) may require the

inclusion of a general polynomial function as the main mean function of yt, model (1.1) may need

to be extended to accommodate a general class of parametric functions. In this case, model (1.1)

can be written as

yt = f(xt, β) + g(xt) + et, (5.1)

where f(x, β) is a parametrically known function indexed by a vector of unknown parameters β.

In the stationary case, equation (2.1) now becomes

E [yt − f(xt, β)]
2 is minimised over β. (5.2)

In the integrated time series case, equation (3.1) can be replaced by minimising

1

n

n∑

t=1

[yt − f(xt, β)]
2 over β, (5.3)

which is similar to the discussion used in Park and Phillips (2001). Obviously, various other

identifiability conditions imposed in Sections 2 and 3 can be modified straightforwardly. Thus,

further discussion is omitted here.

In the autoregressive time series case, model (5.1) becomes

yt = f(yt−1, β) + g(yt−1) + et, (5.4)

and equation (4.3) is now replaced by minimising

1

n

n∑

t=1

[yt − f(yt−1, β)]
2 over β. (5.5)



In the threshold case where g(y) = ψ(y) I [y ∈ Cτ ] and f(y, β) = β y I [y ∈ Dτ ], in which ψ(·)
is an unknown function, Cτ is a compact set indexed by parameter τ and Dτ is the complement

of Cτ , Gao, Tjøstheim and Yin (2012) show that {yt} is a a sequence of 1
2–null recurrent Markov

chains under Assumption 4.2(i)(ii). In general, further discussion about model (5.4) is needed and

therefore left for future research.

Examples 5.1–5.3 below show why the proposed models and estimation methods are relevant

and how the proposed estimation methods may be implemented in practice.

Example 5.1. This data set consists of quarterly consumer price index (CPI) numbers of 11

classes of commodities for 8 Australian capital cities spanning from 1994 to 2008 (available from

the Australian Bureau of Statistics at www.abs.gov.au). Figure 5.1 below gives the scatter plots

of the log food CPI and the log all–group CPI.
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Figure 5.1. Scatter plots of the log food CPI and the log all–group CPI.

Figure 5.1 shows that either a simple linear trending function or a second–order polynomial

form may be sufficient to capture the main trending behaviour for each of the CPI data sets.

Similarly, many other data sets available in climatology, economics and finance also show that

linearity remains the leading component of the trending component of the data under study.

Figure 5.2 clearly shows that it is not unreasonable to assume a simple linear trending function for

a disposable income data set (a quarter data set from the first quarter of 1960 to the last quarter

of 2009 available from the Bureau of Economic Analysis at http://www.bea.gov).

The following example is the same as Example 5.2 of Li et al (2011). We use this example to

show that in some empirical models, a second–order polynomial model is more accurate than a

simple linear model.

Example 5.2. In this example, we consider the 2–year (x1t) and 30–year (x2t) Australian

government bonds, which represent short–term and long–term series in the term structure of
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Figure 5.2. Plot of the disposable income data

interest rates. Our aim is to analyze the relationship between the long–term data {x2t} and short–

term data {x1t}. We first apply the transformed versions defined by yt = log(x2t) and xt = log(x1t).

The time frame of the study is during January 1971 to December 2000, with 360 observations for

each of {yt} and {xt}.
Consider the null hypothesis defined by

H0 : yt = α0 + β0xt + γ0x
2
t + et, (5.6)

where {et} is an unobserved error process.

In case there is any departure from the second–order polynomial model, we propose using a

nonparametric kernel estimate of the form

ĝ(x) =
n∑

t=1

wnt(x)
(
yt − α̂0 − β̂0xt − γ̂0x

2
t

)
, (5.7)

where α̂0 = −0.2338, β̂0 = 1.4446, γ̂0 = −0.1374, and {wnt(x)} is as defined in (3.2), in which

K(x) = 3
4(1 − x2)I{|x| ≤ 1} and an optimal bandwidth ĥoptimal is chosen by a cross–validation

method.

Figure 5.3 shows that the relationship between yt and xt may be approximately modelled by a

second–order polynomial function of the form y = −0.2338 + 1.4446 x− 0.1374 x2.

The following example is the same as Example 4.5 of Gao, Tjøstheim and Yin (2012). We use

it here to show that a parametric version of model (4.2) is a valid alternative to a conventional

integrated time series model in this case.

Example 5.3. We look at the logarithm of the British pound/American dollar real exchange

rate, yt, defined as log(et) + log(pUK
t ) − log(pUSA

t ), where {et} is the monthly average of the

nominal exchange rate, and {pit} denotes the consumption price index of country i. These CPI
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Figure 5.3: (a) provides the scatter chart of (yt, xt) and a nonparametric kernel regression plot ŷ = m̂(x);

(b) gives p–values of the test for different bandwidths; and (c) is the plot of ĝ(x) and its values are

between −5× 10−3 and 5× 10−3.

data come from website: http://www.rateinflation.com/ and the exchange rate data are available

at http://www.federalreserve.gov/, spanning from January 1988 to February 2011, with sample

size n = 278.

Our estimation method suggests that {yt} approximately follows a threshold model of the form

yt = yt−1 − 1.1249 yt−1I[|yt−1| ≤ 0.0134] + et. (5.8)

Note that model (5.7) indicates that while {yt} does not necessarily follow an integrated time

series model of the form yt = yt−1+et, {yt} behaves like a “nearly integrated” time series, because

the nonlinear component g(y) = −1.1249 y I[|y| ≤ 0.0134] is a ‘small’ departure function with an

upper bound of 0.0150.

6. Conclusions and discussion
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Figure 5.4. yt = log(et) + log(pUK
t )− log(pUSA

t ).

This paper has discussed a class of “nearly linear” models in Sections 2–4. Section 2 has

summarised the history of model (1.1) and then explained why model (1.1) is important and has

different theory to what has been commonly studied for model (1.2). Sections 3 and 4 have further

explored such models to the nonstationary cases with the co-integrating case being discussed in

Section 3 and the autoregressive case being discussed in Section 4. As shown in Sections 3 and 4,

respectively, while the conventional “local–time” approach is applicable to establish the asymptotic

theory in Proposition 3.1, one may need to develop the so–called “Markov chain” approach for the

establishment of the asymptotic theory in Proposition 4.2.

As discussed in Remark 4.1, model (4.2) introduces a class of non–integrated but “nearly

integrated” autoregressive time series models. Such a class of nonstationary models, along with a

class of nonstationary threshold models proposed in Gao, Tjøstheim and Yin (2012), may provide

existing literature with two new classes of nonlinear nonstationary models as alternatives to the

class of integrated time series models already commonly and popularly studied in the literature.

It is hoped that such models proposed in (4.2) and Gao, Tjøstheim and Yin (2012) along with

the technologies developed could motivate us to develop some general classes of nonlinear and

nonstationary autoregressive time series models.
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Appendix A

In order to help the reader of this paper, we introduce some necessary notation and useful



lemmas for the proof of Proposition 4.2.

Let {yt} be a null–recurrent Markov chain. It is well–known that for a Markov chain on a

countable state space which has a point of recurrence, a sequence split by the regeneration times

becomes independent and identically distributed (i.i.d.) by the Markov property (see, for example,

Chung 1967). For a general Markov process that does not have an obvious point of recurrence, as

in Nummelin (1984), the Harris recurrence allows one to construct a split chain that decomposes

the partial sum of the Markov process {yt} into blocks of i.i.d. parts and the negligible remaining

parts.

Let zt only take the values 0 and 1, and {(yt, zt), t ≥ 0} be the split chain. Define

τk =





inf{t ≥ 0 : zt = 1}, k = 0,

inf{t > τk−1 : zt = 1}, k ≥ 1,

(A.1)

and denote the total number of regenerations in the time interval [0, n] by T (n), that is,

T (n) =





max{k : τk ≤ n}, if τ0 ≤ n,

0, otherwise.

(A.2)

Note that T (n) plays a central role in the proof of Proposition 4.2 below. While T (n) is not

observable, it may be replaced by TC(n)
πs(IC) (see, for example, Lemma 3.6 of Karlsen and Tjøstheim

2001), where TC(n) =
∑n

t=1 I [yt ∈ C], C is a compact set and IC is the conventional indicator

function. In addition, Lemma 3.2 of Karlsen and Tjøstheim (2001) and Theorem 2.1 of Wang

and Phillips (2009) imply that T (n) is asymptotically equivalent to
√
nLB(1, 0), where LB(1, 0) =

limδ→0
1
2δ

∫ 1
0 I[|B(s)| < δ]ds is the local–time process of the Brownian motion B(r).

We are now ready to establish some useful lemmas before the proof of Proposition 4.2. The

proofs of Lemmas A.1 and A.2 below follow similarly from those of Lemmas 2.2 and 2.3 of Gao,

Tjøstheim and Yin (2012), respectively.

Lemma A.1 Let Assumption 4.2(i)(ii) hold. Then as n→ ∞

1√
n

[nr]∑

t=1

et +
1√
n

[nr]∑

t=1

g(yt−1)=⇒D σe B(r) +M 1

2

(r) µg ≡ Q(r), (A.3)

where M 1

2

(r), µg and Q(r) are the same as defined in Proposition 4.2.

Lemma A.2 Let Assumption 4.2 hold. Then as n→ ∞

1

T (n)

n∑

t=1

yt−1g(yt−1) →P

∫ ∞

−∞
yg(y)πs(dy), (A.4)

1

n2

n∑

t=1

y2t−1 →D

∫ 1

0
Q2(r) dr, (A.5)

1

n

n∑

t=1

yt−1et →D
1

2

(
Q2(1)− σ2e

)
. (A.6)



Proof of Proposition 4.2. The proof of the first part of Proposition 4.2 follows from Lemma

A.2 and

n
(
β̂ − 1

)
=

(
1

n2

n∑

t=1

y2t−1

)−1(
1

n

n∑

t=1

yt−1et

)

+

(
1

n2

n∑

t=1

y2t−1

)−1(
T (n)

n

1

T (n)

n∑

t=1

yt−1g(yt−1)

)
. (A.7)

The proof of the second part of Proposition 4.2 follows similarly from that of Proposition

3.1(ii).
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