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Traditional sufficient conditions for Nash

implementation may fail on Internet

Haoyang Wu ∗

Abstract

The Maskin’s theorem is a fundamental work in the theory of mechanism design.
In this paper, we propose that if agents report messages to the designer through
channels (e.g., Internet), agents can construct a self-enforcing agreement such that
any Pareto-inefficient social choice rule satisfying monotonicity and no-veto will not
be Nash implementable when an additional condition is satisfied. The key points are:
1) The agreement is unobservable to the designer, and the designer cannot prevent
the agents from constructing such agreement; 2) The agents act non-cooperatively,
and the Maskin mechanism remain unchanged from the designer’s perspective.

Key words: Mechanism design; Nash implementation; Social choice.

1 Introduction

The theory of mechanism design has been developed and applied to many
branches of economics for decades. Nash implementation is a cornerstone of
the mechanism design theory. The Maskin’s theorem [1] provides an almost
complete characterization of social choice rules (SCRs) that are Nash imple-
mentable: when the number of agents is at least three, the sufficient conditions
for Nash implementation are monotonicity and no-veto, and the necessary con-
dition is monotonicity. Note that an SCR is specified by a designer, a desired
outcome from the designer’s perspective may not be desirable for the agents
(See Table 1 in Section 3.1).

The Maskin mechanism (page 394, [2]) constructed in the proof of Maskin’s
sufficiency theorem is an abstract mechanism. People seldom consider how
the designer actually receives messages from agents. Roughly speaking, there
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are two distinct manners: direct and indirect manner. In the former manner,
agents report their messages to the designer directly (e.g., speak face to face,
hand over, etc), thereby the designer can know exactly that a message is
reported by an agent himself, not by any other device. In the latter manner,
agents report messages to the designer through channels (e.g., Internet, cable
etc). Thereby, when the designer receives a message from a channel, he cannot
know what has happened on the other side of the channel: whether the message
is reported by an agent himself, or generated by some device authorized by
an agent.

Traditionally, nobody notice the difference between the two manners in the
Maskin mechanism. However, in this paper, we will point out that traditional
sufficient conditions on Nash implementation may fail if agents report mes-
sages to the designer in an indirect manner. The rest of the paper is organized
as follows: Section 2 recalls preliminaries of the mechanism design theory given
by Serrano [2]; Section 3 is the main part of this paper, where we will pro-
pose a self-enforcing agreement to help agents break through the restriction
of Maskin’s sufficiency theorem. Section 4 draws the conclusion.

2 Preliminaries

Let N = {1, · · · , n} be a finite set of agents with n ≥ 3, A = {a1, a2, · · · } be a
finite set of social outcomes. The information held by the agents is summarized
in the concept of a state. The true state is not verifiable by the designer.
We denote by t a typical state and by T the domain of possible states. At
state t ∈ T , each agent j ∈ N is assumed to have a complete and transitive
preference relation ºt

j over the set A. We denote by ºt= (ºt
1, · · · ,ºt

n) the
profile of preferences in state t, and denote by ≻t

j the strict preference part of
ºt

j.

Fix a state t, we refer to the collection E = 〈N,A, (ºt
j)j∈N〉 as an environment.

Let ε be the class of possible environments. A social choice rule (SCR) F is a
mapping F : ε → 2A\{∅}. A mechanism Γ = ((Mj)j∈N , g) describes a message
or strategy set Mj for agent j, and an outcome function g :

∏

j∈N Mj → A.
Mj is unlimited except that if a mechanism is direct, i.e., Mj = Tj.

An SCR F satisfies no-veto if, whenever a ºt
j b for all b ∈ A and for ev-

ery agent j but perhaps one k, then a ∈ F (E). An SCR F is monotonic if
for every pair of environments E and E ′, and for every a ∈ F (E), when-
ever a ºt

j b implies that a ºt′

j b, there holds a ∈ F (E ′). We assume that
there is complete information among the agents, i.e., the true state t is com-
mon knowledge among them. Given a mechanism Γ = ((Mj)j∈N , g) played in
state t, a Nash equilibrium of Γ in state t is a strategy profile m∗ such that:
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∀j ∈ N, g(m∗(t)) ºt
j g(mj,m

∗
−j(t)),∀mj ∈ Mj. Let N (Γ, t) denote the set of

Nash equilibria of the game induced by Γ in state t, and g(N (Γ, t)) denote
the corresponding set of Nash equilibrium outcomes. An SCR F is Nash im-

plementable if there exists a mechanism Γ = ((Mj)j∈N , g) such that for every
t ∈ T , g(N (Γ, t)) = F (t).

Maskin [1] provided an almost complete characterization of SCRs that were
Nash implementable. The main results of Ref. [1] are two theorems: 1) (Neces-

sity) If an SCR is Nash implementable, then it is monotonic. 2) (Sufficiency)
Let n ≥ 3, if an SCR is monotonic and satisfies no-veto, then it is Nash im-
plementable. In order to facilitate the following investigation, we briefly recall
the Maskin mechanism given by Serrano [2] as follows:

Consider a mechanism Γ = ((Mj)j∈N , g), where agent j’s message set is Mj =
A × T × Z+, Z+ is the set of non-negative integers. A typical message sent
by agent j is described as mj = (aj, tj, zj). The outcome function g is defined
in the following three rules: (1) If for every agent j ∈ N , mj = (a, t, 0) and
a ∈ F (t), then g(m) = a. (2) If (n − 1) agents j 6= k send mj = (a, t, 0) and
a ∈ F (t), but agent k sends mk = (ak, tk, zk) 6= (a, t, 0), then g(m) = a if
ak ≻t

k a, and g(m) = ak otherwise. (3) In all other cases, g(m) = a′, where a′

is the outcome chosen by the agent with the lowest index among those who
announce the highest integer.

3 Nash implementation on Internet

This section is the main part of this paper. In the beginning, we will show an
example of SCR which satisfies monotonicity and no-veto. It is Nash imple-
mentable although all agents dislike it. Then, we will propose a self-enforcing
agreement using complex numbers, by which the agents may break through
the Maskin’s sufficiency theorem and make the SCR not Nash implementable.

3.1 A Pareto-inefficient SCR that satisfies monotonicity and no-veto

Let N = {Apple, Lily, Cindy}, T = {t1, t2}, A = {a1, a2, a3, a4}. In each
state t ∈ T , the preference relations (ºt

j)j∈N over the outcome set A and the
corresponding SCR F are given in Table 1. The SCR F is Pareto-inefficient

from the agents’ perspectives because in state t2, all agents unanimously prefer
a Pareto-optimal outcome a1: for each agent j ∈ N , a1 ≻t2

j a2 ∈ F (t2).

Table 1: An SCR satisfying monotonicity and no-veto is Pareto-inefficient

from the agents’ perspectives.
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State t1 State t2

Apple Lily Cindy Apple Lily Cindy

a3 a2 a1 a4 a3 a1

a1 a1 a3 a1 a1 a2

a2 a4 a2 a2 a2 a3

a4 a3 a4 a3 a4 a4

F (t1) = {a1} F (t2) = {a2}

Suppose the true state is t2. At first sight, (a1, t1, 0) might be a unanimous mj

for each agent j, because by doing so a1 would be generated by rule 1 of the
Maskin mechanism. However, Apple has an incentive to unilaterally deviate
from (a1, t1, 0) to (a4, ∗, ∗) in order to trigger rule 2 (where ∗ stands for any
legal value), since a1 ≻t1

Apple a4, a4 ≻t2

Apple a1; Lily also has an incentive to

unilaterally deviate from (a1, t1, 0) to (a3, ∗, ∗), since a1 ≻t1

Lily a3, a3 ≻t2

Lily a1.

Note that either Apple or Lily can certainly obtain her expected outcome
only if just one of them deviates from (a1, t1, 0) (If this case happened, rule
2 would be triggered). But this condition is unreasonable, because all agents
are rational, nobody is willing to give up and let the others benefit. Therefore,
both Apple and Lily will deviate from (a1, t1, 0). As a result, rule 3 will be
triggered. Since Apple and Lily both have a chance to win the integer game,
the winner is uncertain and the final outcome is also uncertain between a3

and a4.

To sum up, although every agent prefers a1 to a2 in state t2, a1 cannot be
yielded in Nash equilibrium. Indeed, the Maskin mechanism makes the Pareto-
inefficient outcome a2 be Nash implementable in state t2.

Can the agents find a way to break through the Maskin’s sufficiency theorem
and let the Pareto-efficient outcome a1 be Nash implementable in state t2?
Interestingly, we will show that the answer may be “yes” if agents report mes-
sages to the designer through channels (e.g., Internet). In what follows, first
we will define some matrices with complex numbers, then we will propose a
self-enforcing agreement to help agents break through the Maskin’s sufficiency
theorem.
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3.2 Definitions

Definition 1: Let Î , σ̂ be two 2× 2 matrices, and
−→
C ,

−→
D be two basis vectors:

Î ≡






1 0

0 1




 , σ̂ ≡






0 1

1 0




 ,

−→
C ≡






1

0




 ,

−→
D ≡






0

1




 . (1)

Hence, Î
−→
C =

−→
C , Î

−→
D =

−→
D ; σ̂

−→
C =

−→
D , σ̂

−→
D =

−→
C .

Definition 2: For n ≥ 3 agents, suppose each agent j ∈ N possesses a basis

vector.
−→
ψ 0 is defined as the tensor product of n basis vectors

−→
C :

−→
ψ 0 ≡

−→
C ⊗n ≡ −→

C ⊗ · · · ⊗ −→
C

︸ ︷︷ ︸

n

≡













1

0

· · ·
0













2n×1

(2)

−→
C ⊗n contains n basis vectors

−→
C and 2n elements.

−→
C ⊗n is also denoted as−−−−−−→

C · · ·CCn. Similarly,

−−−−−−→
C · · ·CDn ≡ −→

C ⊗ · · · ⊗ −→
C

︸ ︷︷ ︸

n−1

⊗−→
D =













0

1

· · ·
0













2n×1

(3)

Obviously, there are 2n possible vectors:
−−−−−−→
C · · ·CCn, · · · ,

−−−−−−→
D · · ·DDn.

Definition 3: Ĵ ≡ 1√
2
(Î⊗n + iσ̂⊗n), i.e.,

Ĵ ≡ 1√
2




















1 i

· · · · · ·
1 i

i 1

· · · · · ·
i 1




















2n×2n

, Ĵ+ ≡ 1√
2




















1 −i

· · · · · ·
1 −i

−i 1

· · · · · ·
−i 1




















2n×2n

(4)
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where the symbol i denotes an imaginary number, and Ĵ+ is the conjugate
transpose of Ĵ .

Definition 4:

−→
ψ 1 ≡ Ĵ

−→
ψ 0 =

1√
2

















1

0

· · ·
0

i

















2n×1

(5)

Definition 5: For θ ∈ [0, π], φ ∈ [0, π/2],

ω̂(θ, φ) ≡






eiφ cos(θ/2) i sin(θ/2)

i sin(θ/2) e−iφ cos(θ/2)




 . (6)

Ω̂ ≡ {ω̂(θ, φ) : θ ∈ [0, π], φ ∈ [0, π/2]}. Hence, Î = ω̂(0, 0).

Definition 6: For j = 1, · · · , n, θj ∈ [0, π], φj ∈ [0, π/2], let ω̂j = ω̂(θj, φj),

−→
ψ 2 ≡ [ω̂1 ⊗ · · · ⊗ ω̂n]

−→
ψ 1. (7)

The dimension of ω̂1 ⊗ · · · ⊗ ω̂n is 2n × 2n. Since only two elements in
−→
ψ 1 are

non-zero, it is not necessary to calculate the whole 2n × 2n matrix to yield−→
ψ 2. Indeed, we only need to calculate the leftmost and rightmost column of

ω̂1 ⊗ · · · ⊗ ω̂n to derive
−→
ψ 2.

Definition 7:
−→
ψ 3 ≡ Ĵ+−→ψ 2.

Suppose
−→
ψ 3 = [η1, · · · , η2n ]T , let ∆ = [|η1|2, · · · , |η2n|2]. It can be easily

checked that Ĵ , ω̂j (j = 1, · · · , n) and Ĵ+ are all unitary matrices. Hence,

|−→ψ 3|2 = 1. Thus, ∆ can be viewed as a probability distribution, each element
of which represents the probability that we randomly choose a vector from the

set of all 2n possible vectors {−−−−−−→C · · ·CCn, · · · ,
−−−−−−→
D · · ·DDn}.

Definition 8: Condition λ contains five parts. The first three parts are defined
as follows:
λ1: Given an SCR F , there exist two states t̂, t̄ ∈ T , t̂ 6= t̄ such that â ºt̄

j ā

(for each j ∈ N , â ∈ F (t̂), ā ∈ F (t̄)) with strict relation for some agent; and
the number of agents that encounter a preference change around â in going
from state t̂ to t̄ is at least two. Denote by N̂ the set of these agents and
l = |N̂ | the number of these agents.
λ2: Consider the state t̄ specified in condition λ1, if there exists another t̂′ ∈ T ,
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t̂′ 6= t̂ that satisfies λ1, then â ºt̄
j â′ (for each j ∈ N , â ∈ F (t̂), â′ ∈ F (t̂′))

with strict relation for some agent.
λ3: Consider the outcome â specified in condition λ1, for any state t ∈ T , â is
top ranked for each agent j ∈ N\N̂ .

3.3 An agreement using complex numbers

As specified before, in this paper we will discuss how the traditional results
on Nash implementation will be changed when agents report messages to the
designer through channels. We assume that:

1) Each agent has a unique channel connected with the designer. The agents
report messages to the designer through these channels.

2) After the designer claims the outcome function g, if all agents anticipate
the SCR F appeared in rule 1 of g satisfies condition λ (given in Definition
8 and 11), agents can negotiate and construct an agreement ComplexMessage

as shown in Fig. 1. The algorithm MessageComputing is given in Definition
9. In the initial configuration, the computer controls all channels.

3) Each agent can freely decide whether to leave his channel to the computer
and let the computer send a message to the designer, or to take back his
channel and send his message to the designer by himself. If any agent deviates
from the initial configuration and chooses the latter option, then this deviation
is observable to the rest agents and all of them will choose the latter option
too, i.e., all agents will take back their channels and send their messages to
the designer by themselves. If all agents leave their channels to the computer,
the algorithm MessageComputing works, i.e., calculates m1, · · · ,mn and sends
them to the designer through channels.
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Definition 9: The algorithm MessageComputing is defined as follows:
Input: (θj, φj, aj, tj, zj) ∈ [0, π/2] × [0, π] × A × T × Z+, j = 1, · · · , n.
Output: mj ∈ A × T × Z+, j = 1, · · · , n.
Step 1: Reading (θj, φj) from each agent j ∈ N .
Step 2: Computing the leftmost and rightmost columns of ω̂1 ⊗ · · · ⊗ ω̂n.

Step 3: Computing
−→
ψ 2 = [ω̂1 ⊗· · ·⊗ ω̂n]

−→
ψ 1,

−→
ψ 3 = Ĵ+−→ψ 2, and the probability

distribution ∆.
Step 4: Randomly choosing a vector from the set of all 2n possible vectors

{−−−−−−→C · · ·CCn, · · · ,
−−−−−−→
D · · ·DDn} according to the probability distribution ∆.

Step 5: For each agent j ∈ N , let mj = (â, t̂, 0) (or mj = (aj, tj, zj)) if the

j-th basis vector of the chosen vector is
−→
C (or

−→
D), where â, t̂ are specified in

condition λ1.
Step 6: Sending m = (m1, · · · ,mn) to the designer through channels 1, · · · , n.

Definition 10: Suppose λ1 and λ2 are satisfied and m = (m1, · · · ,mn) is
computed by MessageComputing. Suppose the true state is t̄ specified in con-
dition λ1. $C···CC , $C···CD, $D···DC and $D···DD are defined as the payoffs to the
n-th agent in state t̄ when the chosen vector in Step 4 of MessageComputing

is
−−−−−−→
C · · ·CCn,

−−−−−−→
C · · ·CDn,

−−−−−−→
D · · ·DCn or

−−−−−−→
D · · ·DDn respectively.

Definition 11: Suppose conditions λ1, λ2 and λ3 are satisfied and the true
state is t̄, consider each message mj = (aj, tj, zj), where aj is top-ranked for
each agent j. The rest two parts of condition λ are defined as:
λ4: For each agent j ∈ N , let him be the n-th agent, $C···CC > $D···DD.
λ5: For each agent j ∈ N̂ , let him be the n-th agent, $C···CC > $C···CD cos2(π/l)+
$D···DC sin2(π/l).

It can be seen from Fig. 1 that after the agreement ComplexMessage is con-
structed, each agent j ∈ N independently faces two options:
• S(j, 0): leaving his channel to the computer, and submitting (θj, φj, aj, tj, zj)
to the algorithm MessageComputing.
• S(j, 1): taking back his channel, and submitting (aj, tj, zj) to the designer
by himself.

To sum up, if agents report messages to the designer through channels and all
agents anticipate the SCR F appeared in rule 1 of g satisfies condition λ, they
can construct the agreement ComplexMessage after the designer claims the
outcome function g. The timing steps of the Maskin mechanism are updated
as follows:
Time 1: The designer claims the outcome function g to all agents;
Time 2: The agents construct the agreement ComplexMessage;
Time 3: Each agent j ∈ N chooses an option between S(j, 0) and S(j, 1), and
m1, · · · ,mn are sent through channels.
Time 4: The designer receives m = (m1, · · · ,mn) from n channels;
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Time 5: The designer announces the outcome g(m).

3.4 Main result

Proposition 1: For n ≥ 3, suppose agents send messages to the designer
through channels (e.g., Internet). Consider an SCR F that satisfies mono-
tonicity and no-veto. If condition λ is satisfied, then in state t̄ the agents can
construct a self-enforcing agreement ComplexMessage to make the Pareto-
inefficient outcome F (t̄) not be implemented in Nash equilibrium.

Proof : Since λ1 and λ2 are satisfied, then there exist two states t̂, t̄ ∈ T , t̂ 6= t̄
such that â ºt̄

j ā (for each j ∈ N , â ∈ F (t̂), ā ∈ F (t̄)) with strict relation

for some agent, and N̂ contains the agents that encounter a preference change
around â in going from state t̂ to t̄ (l = |N̂ | ≥ 2). Suppose the true state is t̄,
now let us check what will happen after the agents construct the agreement
ComplexMessage in Time 2.

From the viewpoints of agents, after constructing ComplexMessage, there are
two possible cases in Time 3:
1) Suppose every agent j ∈ N chooses S(j, 0), then the algorithm Message-

Computing works. Consider the following strategy profile: each agent j ∈ N\N̂
submits (θj, φj) = (0, 0), (aj, tj, zj) = (â, t̂, 0); each agent j ∈ N̂ submits
(θj, φj) = (0, π/l). According to Lemma 1 (see Appendix), this strategy pro-
file is a Nash equilibrium of Γ in state t̄. In Step 4 of MessageComputing, the

chosen vector is
−−−−−−→
C · · ·CC. In Step 5 of MessageComputing, mj = (â, t̂, 0) for

each j ∈ N . Therefore, in Time 5, g(m) = â /∈ F (t̄). Each agent j’s payoff is
$C···CC .
2) Suppose some agent j ∈ N chooses S(j, 1), i.e., takes back his channel
and reports mj to the designer by himself. Then according to assumption 3
(see Section 3.3), all of the rest agents will observe this deviation, thereby
take back their channels and submit messages to the designer by themselves.
According the Maskin mechanism, in Time 5, the final outcome will be either
F (t̄) by rule 1, or uncertain by rule 3 (i.e., each agent j’s payoff is $D···DD).

According to conditions λ1 and λ4, it is not profitable for any agent j to
choose S(j, 1), i.e., unilaterally take back his channel and send a message to
the designer by himself. As Telser pointed out in page 28, Line 2 [3]: “A party

to a self-enforcing agreement calculates whether his gain from violating the

agreement is greater or less than the loss of future net benefits that he would

incur as a result of detection of his violation and the consequent termination

of the agreement by the other party... Hence both parties continue to adhere

to an agreement if and only if each gains more from adherence to, than from

violations of, its terms.” Therefore, it can be seen that ComplexMessage is
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a self-enforcing agreement among the agents. Put differently, although the
agents collaborate to construct ComplexMessage in Time 2, they do not require
a third-party to enforce it after then and the game is still non-cooperative.

To sum up, in state t̄, the agents can construct a self-enforcing agreement Com-

plexMessage to make the Pareto-inefficient outcome F (t̄) not be implemented
in Nash equilibrium. ¤

Let us reconsider Table 1. Let t̂ = t1, â = a1, t̄ = t2, ā = a2. Suppose the true
state is t2. Since both Apple and Lily encounter a preference change around
a1 in going from state t1 to t2, condition λ1 is satisfied. Obviously, λ2 and λ3

are also satisfied. Consider the strategy profile as follows:

(θApple, φApple) = (0, π/2), (aApple, tApple, zApple) = (a4, ∗, ∗);
(θLily, φLily) = (0, π/2), (aLily, tLily, zLily) = (a3, ∗, ∗);
(θCindy, φCindy) = (0, 0), (aCindy, tCindy, zCindy) = (a1, t1, 0).

Let Cindy be the first agent, and for any agent j ∈ {Apple, Lily}, let her
be the last agent. Consider the payoff to the third agent, suppose $CCC = 3
(the corresponding outcome is a1), $CCD = 5 (the corresponding outcome is
a4 if j = Apple, and a3 if j = Lily), $DDC = 0 (the corresponding outcome is
a3 if j = Apple, and a4 if j = Lily), $DDD = 1 (the corresponding outcome
is uncertain between a3 and a4). Let Cindy be the last agent and consider
her payoff, suppose $CCC = 3 and $DDD = 1. Hence, λ4 and λ5 are satisfied.
According to Proposition 1, in state t2, the outcome implemented in Nash
equilibrium is a1, and F (t2) is not Nash implementable although the SCR F
satisfies monotonicity and no-veto.

Remark 1: Some reader may argue that the agreement ComplexMessage is
a wrapper to the Maskin mechanism that changes the game substantially and
henceforth it has no implication on the original Maskin mechanism. However,
this viewpoint is not true. Actually, ComplexMessage is unobservable to the
designer because it is hidden behind channels and the designer cannot prevent
the agents from constructing such agreement. From the designer’s perspective,
no matter whether the agents construct the agreement ComplexMessage on
the other side of channels or not, the Maskin mechanism remain unchanged
and the designer acts in the same way: i.e., claims the outcome function g,
receives messages m = (m1, · · · ,mn) from channels and announces the final
outcome g(m).

Remark 2: Although the time and space complexity of MessageComputing

are exponential with the number of agents, i.e., O(2n), it works well when the
number of agents is not very large. For example, the runtime of MessageCom-

puting is about 0.5s for 15 agents, and about 12s for 20 agents (MATLAB 7.1,
CPU: Intel (R) 2GHz, RAM: 3GB).

10



Remark 3: The problem of Nash implementation requires complete informa-
tion among all agents. In the last paragraph of Page 392 [2], Serrano wrote:
“We assume that there is complete information among the agents... This as-

sumption is especially justified when the implementation problem concerns a

small number of agents that hold good information about one another”. Hence,
the fact that MessageComputing is suitable for small-scale cases (e.g., less than
20 agents) is acceptable for Nash implementation.

4 Conclusion

In this paper, we propose a self-enforcing agreement to help agents avoid a
Pareto-inefficient social choice rule if agents report messages to the designer
through channels and condition λ is satisfied. Put differently, traditional suffi-
cient conditions for Nash implementation may fail on Internet. With the rapid
development of network economics, it will be more and more common that
agents communicate with the designer through Internet. In the future, there
are many works to do to study the self-enforcing agreement further.
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Appendix

Lemma 1: Suppose condition λ is satisfied and the algorithm MessageCom-

puting works. Consider the following strategy profile:
1) Each agent j ∈ N\N̂ submits (θj, φj) = (0, 0), (aj, tj, zj) = (â, t̂, 0);

2) Each agent j ∈ N̂ submits (θj, φj) = (0, π/l);
then this strategy profile is a Nash equilibrium of Γ in state t̄, where t̄ is
specified in condition λ1.

Proof : The proof consists of two parts.

Part 1. Let the last l agents be N̂ . Consider the following strategy profile:
each agent j = 1, · · · , (n − l) submits (θj, φj) = (0, 0), (aj, tj, zj) = (â, t̂, 0);
each agent j = (n− l+1), · · · , (n−1) submits (θj, φj) = (0, π/l), then we will
prove the optimal value of (θn, φn) for the n-th agent is (0, π/l).

Since condition λ1 is satisfied, then l ≥ 2. Let

Ĉl ≡ ω̂(0, π/l) =






ei π

l 0

0 e−i π

l






2×2

, thus, Ĉl ⊗ Ĉl =













ei 2π

l

1

1

e−i 2π

l













22×22

,

Ĉl ⊗ · · · ⊗ Ĉl
︸ ︷︷ ︸

l−1

=













ei
(l−1)

l
π

∗
· · ·

e−i
(l−1)

l
π













2l−1×2l−1

.

Here we only explicitly show the up-left and bottom-right entries because only
these two entries are useful in the following discussions. The other entries in
diagonal are simply represented as symbol ∗. Note that

Î ⊗ · · · ⊗ Î
︸ ︷︷ ︸

n−l

=













1

1

· · ·
1













2n−l×2n−l

,
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thus,

Î ⊗ · · · ⊗ Î
︸ ︷︷ ︸

n−l

⊗ Ĉl ⊗ · · · ⊗ Ĉl
︸ ︷︷ ︸

l−1

=













ei
(l−1)

l
π

∗
· · ·

e−i
(l−1)

l
π













2n−1×2n−1

.

Suppose the n-th agent chooses arbitrary parameters (θ, φ) in his strategy
(θ, φ, an, tn, zn), let

ω̂n(θ, φ) =






eiφ cos(θ/2) i sin(θ/2)

i sin(θ/2) e−iφ cos(θ/2)




 ,

then,

Î ⊗ · · · ⊗ Î
︸ ︷︷ ︸

n−l

⊗ Ĉl ⊗ · · · ⊗ Ĉl
︸ ︷︷ ︸

l−1

⊗ω̂n(θ, φ)

=
























ei[
(l−1)π

l
+φ] cos(θ/2) ∗

iei
(l−1)π

l sin(θ/2) ∗
∗ ∗
∗ ∗

· · ·
∗ ie−i

(l−1)π
l sin(θ/2)

∗ e−i[
(l−1)π

l
+φ] cos(θ/2)
























2n×2n

.

Recall that

−→
ψ 1 =

1√
2

















1

0

· · ·
0

i

















2n×1

,
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thus,

−→
ψ 2 = [Î ⊗ · · · ⊗ Î

︸ ︷︷ ︸

n−l

⊗ Ĉl ⊗ · · · ⊗ Ĉl
︸ ︷︷ ︸

l−1

⊗ω̂n(θ, φ)]
−→
ψ 1 =

1√
2
























ei[
(l−1)π

l
+φ] cos(θ/2)

iei
(l−1)π

l sin(θ/2)

0

· · ·
0

−e−i
(l−1)π

l sin(θ/2)

ie−i[
(l−1)π

l
+φ] cos(θ/2)
























2n×1

,

−→
ψ 3 = Ĵ+−→ψ 2 =
























cos(θ/2) cos( l−1
l

π + φ)

i sin(θ/2) cos l−1
l

π

0

· · ·
0

i sin(θ/2) sin l−1
l

π

cos(θ/2) sin( l−1
l

π + φ)
























2n×1

.

The probability distribution ∆ is computed from
−→
ψ 3:

PC···CC = cos2(θ/2) cos2(φ − π

l
)

PC···CD = sin2(θ/2) cos2 π

l

PD···DC = sin2(θ/2) sin2 π

l

PD···DD = cos2(θ/2) sin2(φ − π

l
)

Obviously,
PC···CC + PC···CD + PD···DC + PD···DD = 1.

Consider the payoff to the n-th agent,

$n = $C···CCPC···CC + $C···CDPC···CD + $D···DCPD···DC + $D···DDPD···DD.

Since λ4 is satisfied, i.e., $C···CC > $D···DD, then the n-th agent chooses φ = π/l
to minimize sin2(φ− π

l
). As a result, PC···CC = cos2(θ/2). Since λ5 is satisfied,

i.e., $C···CC > $C···CD cos2(π/l) + $D···DC sin2(π/l), then the n-th agent prefers
θ = 0, which leads to PC···CC = 1 and let $n be its maximum $C···CC . Therefore,
the optimal value of (θn, φn) for the n-th agent is (0, π/l).
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Part 2. Let the first l agents be N̂ . Consider the following strategy profile: each
agent j = 1, · · · , l submits (θj, φj) = (0, π/l); each agent j = (l + 1), · · · , (n−
l + 1) submits (θj, φj) = (0, 0), (aj, tj, zj) = (â, t̂, 0), then we will prove the
optimal values of (θn, φn) and (an, tn, zn) for the n-th agent are (0, 0) and
(â, t̂, 0).

As shown before,

Ĉl = ω̂(0, π/l) =






ei π

l 0

0 e−i π

l






2×2

, Ĉl ⊗ Ĉl =













ei 2π

l

1

1

e−i 2π

l













22×22

,

Ĉl ⊗ · · · ⊗ Ĉl
︸ ︷︷ ︸

l

=













−1

∗
· · ·

−1













2l×2l

.

Note that

Î ⊗ · · · ⊗ Î
︸ ︷︷ ︸

n−l−1

=













1

1

· · ·
1













2n−l−1×2n−l−1

,

thus,

Ĉl ⊗ · · · ⊗ Ĉl
︸ ︷︷ ︸

l

⊗ Î ⊗ · · · ⊗ Î
︸ ︷︷ ︸

n−l−1

=













−1

∗
· · ·

−1













2n−1×2n−1

.

Suppose the n-th agent chooses arbitrary parameters (θ, φ) in his strategy
(θ, φ, an, tn, zn), let

ω̂n(θ, φ) =






eiφ cos(θ/2) i sin(θ/2)

i sin(θ/2) e−iφ cos(θ/2)




 ,
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then,

Ĉl ⊗ · · · ⊗ Ĉl
︸ ︷︷ ︸

l

⊗ Î ⊗ · · · ⊗ Î
︸ ︷︷ ︸

n−l−1

⊗ω̂n(θ, φ)

=
























−eiφ cos(θ/2) ∗
−i sin(θ/2) ∗

∗ ∗
∗ ∗

· · ·
∗ −i sin(θ/2)

∗ −e−iφ cos(θ/2)
























2n×2n

.

−→
ψ 2 = [Ĉl ⊗ · · · ⊗ Ĉl

︸ ︷︷ ︸

l

⊗ Î ⊗ · · · ⊗ Î
︸ ︷︷ ︸

n−l−1

⊗ω̂n(θ, φ)]
−→
ψ 1 =

1√
2
























−eiφ cos(θ/2)

−i sin(θ/2)

0

· · ·
0

sin(θ/2)

−ie−iφ cos(θ/2)
























2n×1

,

−→
ψ 3 = Ĵ+−→ψ 2 =




















− cos(θ/2) cos φ

−i sin(θ/2)

0

· · ·
0

cos(θ/2) sin φ




















2n×1

.

The probability distribution ∆ is computed from
−→
ψ 3:

PC···CC = cos2(θ/2)[1 − sin2 φ], PC···CD = sin2(θ/2)

PD···DC = 0, PD···DD = cos2(θ/2) sin2 φ

Obviously,
PC···CC + PC···CD + PD···DC + PD···DD = 1.
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Consider the payoff to the n-th agent,

$n = $C···CC cos2(θ/2)[1 − sin2 φ] + $C···CD sin2(θ/2) + $D···DD cos2(θ/2) sin2 φ

Since λ4 is satisfied, i.e., $C···CC > $D···DD, then the n-th agent chooses φ = 0.
As a result,

$n = $C···CC cos2(θ/2) + $C···CD sin2(θ/2)

Since the n-th agent belongs to N\N̂ , by condition λ3, (an, tn, zn) can be
chosen as (â, t̂, 0). According to Step 5 of MessageComputing, $C···CC = $C···CD.
Thus, $n = $C···CC . In this case, ω̂n(θ, φ) can be chosen as ω̂(0, 0) = Î.

By symmetry, in state t̄, consider the following strategy: each agent j ∈ N\N̂
submits (θj, φj) = (0, 0), (aj, tj, zj) = (â, t̂, 0); each agent j ∈ N̂ submits
(θj, φj) = (0, π/l). Then this strategy profile is a Nash equilibrium of Γ in
state t̄, and the final outcome implemented in Nash equilibrium is â /∈ F (t̄).

Note: The proof of Lemma 1 cites the derivation of Eq. (25) [4].
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