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Abstract 

This paper provides an insight to the time-varying dynamics of the shape of the distribution 

of financial return series by proposing an exponential weighted moving average model that 

jointly estimates volatility, skewness and kurtosis over time using a modified form of the 

Gram-Charlier density in which skewness and kurtosis appear directly in the functional form 

of this density. In this setting VaR can be described as a function of the time-varying higher 

moments by applying the Cornish-Fisher expansion series of the first four moments. An 

evaluation of the predictive performance of the proposed model in the estimation of 1-day 

and 10-day VaR forecasts is performed in comparison with the historical simulation, filtered 

historical simulation and GARCH model. The adequacy of the VaR forecasts is evaluated 

under the unconditional, independence and conditional likelihood ratio tests as well as Basel 

II regulatory tests. The results presented have significant implications for risk management, 

trading and hedging activities as well as in the pricing of equity derivatives. 
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1. Introduction 

 

The last few decades have seen a growing number of scholars and market participants 

being concerned with the precision of typical Value-at-Risk measures. Value-at-Risk is the 

maximum expected loss to occur for a given horizon and for a given probability. A key 

challenge in estimating accurate VaR confidence internals arises from the accurate estimation 

of the conditional distribution of financial return series. So far in the literature, many models 

have been put forward that capture some of the typical stylized facts of financial time series 

such as volatility clustering and pooling; that is the tendency of large changes to be followed 

by large changes - of either sign - and small changes to be followed by small changes (see 

Mandlebrot, 1963).  

One of the early models employed in capturing volatility is the equally weighted moving 

average model. This framework assumes that the N-period historic estimate of variance is 

based on an equally weighted moving average of the N-past one-period squared returns. 

However, under this formulation all past squared returns that enter the moving average are 

equally weighted and this may lead to unrealistic estimates of volatility. In this respect the 

exponentially weighted moving average (EWMA) framework proposed by J.P Morgan’s 

RiskMetrics
TM

 assigns geometrically declining weights on past observations with the highest 

weight been attributed to the latest (i.e. more resent) observation. By assigning the highest 

weight to the latest observations and the least to the oldest the model is able to capture the 

dynamic features of volatility. Other approaches in this direction are the celebrated ARCH 

and GARCH model proposed by Engle (1982) and Bollerslev (1986) respectively. The 

former introduces the Autoregressive Conditional Heteroscedasticity (ARCH), which models 

the variance of a time series by conditioning it on the square of lagged disturbances and the 

latter generalizes the ARCH model by considering the lagged variance as an explanatory 

variable.
2
  

Volatility, however, is only one of the distributional moments that can provide a stylized 

representation of returns. Empirical evidence has shown that the empirical distribution of 

financial series is likely to be skewed and fat-tailed
3
 (see Mandlebrot 1963, Bollerslev, 1987, 

Campbell and Siddique, 1999 and 2000, Alizadeh and Gabrielsen, 2011, among others). 

                                                
2
 The exponentially weighted moving average (EWMA) estimator has proven to be very effective at forecasting 

the volatility of returns over short horizons, and often has been found to provide superior VaR forecasts 

compared with GARCH models (see Baillie and DeGennaro, 1990; Bollerslev, Chou and Kroner, 1992; 

Boudoukh, Richardson and Whitelaw, 1997; Alexander and Leigh, 1997).   
3
 Skewness is a measure of the asymmetry and kurtosis is a measure of the peakedness of a probability 

distribution. 
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Failing to account for the distributional characteristics of the return series will have serious 

implications in risk management and specifically in the estimation of Value-at-Risk (see 

Pedrosa and Roll, 1998, Bond, 2001, Burns, 2002, Angelidis et al. 2004 and 2007, 

Wilhelmsson 2009, Alizadeh and Gabrielsen 2011, among others), in pricing of derivates (see 

Heston and Nandi 2000, and Tahani 2006, among others), in trading and heding activities 

(see Kostika and Markellos, 2007, Apergis and Gabrielsen, 2011), in portfolio allocation (see 

Sun and Yan, 2003, Harvey et al. 2004 and Jondeau and Rockinger, 2006, among others). 

Although the standard EWMA estimator will be consistent when returns are not-normally 

distributed, it will be asymptotically inefficient since it places too much weight to extreme 

returns (see Guermat and Harris, 2002). 

Guermat and Harris (2002) propose a general power EWMA model which is based on the 

Generalized Error Distribution (GED). They apply the model on daily return series of US, 

UK and Japan portfolios and find that their model is able to capture the fat-tailed nature of 

most returns series and estimate superior VaR forecasts compared with the standard EWMA 

formulation. Lin, Changchien and Chen (2006) and Liu, Wu and Lee (2007) apply a dynamic 

power EWMA that is able to capture the time-varying tail-fatness and volatilities of financial 

returns. They both apply it on well diversified equity portfolios and find that the model offers 

substantial improvements on capturing the dynamic distributional return characteristics, and 

can significantly enhance the estimation accuracy of portfolio VaR. Shyan-Rong, et al. (2010) 

compare the performance of a variety of models such as EWMA, Power EWMA, Dynamic 

Power EWMA, GARCH among others on six daily stock index returns (i.e. S&P500, Dow 

Jones Industrial Average, Nasdaq Composite, Taiwan Stock Index, Nikkei 255 and FTSE 

100). They find that the dynamic power EWMA out-performs all other specifications in 

forecasting volatility. Although, the proposed formulations are able to capture the dynamic 

nature of returns by allowing a shape parameter to vary over time, little has been done to 

extend the exponential weighted moving average to account for time-varying higher 

moments. 

The aim of this study is to investigate the nature and dynamics of the shape of the 

distribution of the returns overtime. We propose a formulation that jointly estimates time-

varying volatility, skewness and kurtosis in an exponentially weighted moving average 

framework using the Gram-Charlier series expansion and allows each process to have its own 

decay factor. The method is based on the use of the Gram-Charlier density in which skewness 

and kurtosis appear directly in the functional form of the distribution, and for this reason, it is 

very simple to estimate the different decay factors using the maximum likelihood estimation 
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approach. Furthermore, the forecast of VaR measures is performed with the application of the 

Cornish-Fisher expansion, which is used to estimate the quantile as a function of the time-

varying volatility, skewness and kurtosis at a fixed confidence level.  

We propose an evaluation of the predictive performance of the model for VaR forecasts. 

We compare against the historical simulation, filtered historical simulation and GARCH 

model. The adequacy of the VaR forecasts is evaluated under the tests for unconditional, 

independence, conditional likelihood ratio and under the Basel II regulatory tests. The results 

have significant implications for risk management, trading and hedging activities, as well as 

in the pricing of equity derivatives. 

This paper is organized as follows section 2 describes a detailed description of the 

methodology, section 3 presents the data utilized and discusses the estimation results, while 

section 4 concludes.  

 

2. Methodology 

 

Given a series of stock market index prices 
t
p  and the corresponding rate of return 

t
r  is 

then defined as the continuously compounded return (in percent) 

( ) ( )[ ]
1

lnln100 −−⋅=
ttt
ppr      (1) 

where the index t denotes the daily closing observations and Tt ,,2,1 …= . Furthermore, the 

sample period is comprised by an estimation (in-sample) period with N observations 

Nt ,,2,1 …= and an evaluation (out-of-sample) period with n observations TNt ,,1…+= .  

 The exponential weighted moving average proposed by J.P. Morgan’s RiskMetrics
TM

 

for the series of returns 
t
r  is given as 

 ( )
tttt

iidr σεεµ ,0~,+=               (2) 

 
2

1

2

1

2 )1( −− −+=
ttt
ελλσσ            (3) 

where λ ( )10 << λ  denotes the decay factor,
 t
r  the returns, 

t
ε  the innovation terms and 

2

t
σ denotes the variance at time t.  

In order to model the dynamics of skewness and kurtosis the modified exponential 

weighted average is formalised in the following way 
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( )( ), , ~t t t t t t tr iid fµ ε ε ησ η η= + =          (4) 

2

11

2

11

2 )1( −− −+=
ttt
ελσλσ              (5) 

3

12

3

12

3 )1( −− −+=
ttt

ss ηλλ               (6) 

4

13

4

13

4 )1( −− −+=
ttt

kk ηλλ                 (7) 

where 10, <<
ii
λλ  which denotes the decay factor for each specification,

 t
r  the returns, 

t
ε  the error terms, 

t
η  the standardized error terms,  2

t
σ denotes the variance at time t, 

3

t
s denotes the skewness at time t, and 4

t
k  the kurtosis at time t. This formulation assumes that 

the standardized residuals of the return series follow a Gram-Charlier distribution. The Gram-

Charlier Type A distribution is an approximate probability density function of the normal 

density function in terms of the Hermite polynomials and it is estimated as follows 

( ) ( ) ( )ttt gf ηηφη =          (8) 

where  ( )⋅φ  denotes the standard normal density with zero mean and unit variance, ( )⋅g is a 

polynomial function that matches the first moments of the standardized residual’s probability 

density function and is represented as 

( ) ( )∑
=

=
n

i

tiit Hecg
0

ηη          (9) 

( ) ( )
( )
t

i

t

i

i

ti
He

ηφη

φ
η

1
1

∂

∂
−=         (10) 

where ( )⋅
i

He  denote the Hermite polynomials and when truncating at the fourth moment 

Equations 9 and 10 become 

( ) ( ) ( )t
t

t

t

t He
k

He
s

g ηηη
43

24

3

6
1

−
++=      (11) 

( )
ttt

He ηηη 3
3

3
−=           (12) 

( ) 36
24

4
+−=

ttt
He ηηη          (13) 

Finally the Gram-Charlier density assumes the following form 

( ) ( ) ( ) ( )⎥
⎦

⎤
⎢
⎣

⎡
+−

−
+−+= 36

!4

3
3

!3
1

243

tt

t

tt

t

tt

ks
f ηηηηηφη                                 (14) 

The problem with function 14 is that it is not really a density function since, for some 

parameter values of skewness and kurtosis, it can become negative and thus the integral of 

( )⋅f  may not be equal to one. In order to obtain a well-defined positive density function, 

Galland and Tauchen (1989) describe the density in terms of the square expansion terms ( )⋅g  
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and divide it by the function ( )⋅h , which denotes the integral of ( )⋅f .
4
 The density therefore is 

defined as 

( )
( ) ( )

( )t
tt

t
h

g
f

η

ηηφ
η

2

=                         (15) 

where  

( )
( )

!4

3

!3
1

22
−

++=
ks

h
t

t
η                        (16) 

We should stress that the Gram-Charlier series expansion nests the Gaussian distribution 

when 0=
t
s and 3=

t
k .  

The estimation of the model parameters is obtained by maximising the likelihood 

function. This is based on the assumption that the residuals follow a Gram-Charlier density. 

The log-likelihood function for one observation can then be written as 

( ) ( ) ( )[ ] ( )( )ttttt hgl ηηησπ loglog
2

1
log
2

1
2log

2

1 222 −+−−−=                        (17) 

 In the empirical application, we compare the performance of our model in forecasting 

VaR against the nominal GARCH(1,1) model proposed by Bollerslev (1986): 

( )
tttt

iidr σεεµ ,0~,+=
                  

(18) 

2

12

2

110

2

−− ++=
ttt

aaa σεσ                     (19) 

where 
t
r  denotes the returns, 

t
ε  the error terms and 2

t
σ the conditional variance at time t. The 

estimation of the parameters of the GARCH(1,1) is undertaken by the maximization of the 

empirical likelihood function. For one observation, this function takes the form:  

( ) ( )
2

2
2

2
log
2

1
2log

2

1

t

t

tt
l

σ

ε
σπ −−−=                               (20) 

We use Matlab routines to estimate jointly all the parameter values using the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton optimization algorithm for the numerical 

maximisation of the log-likelihood functions. 

 

3. Evaluation of Value-at-Risk Estimates 

 

Forecast evaluation is one of the most important aspects of any forecasting exercise and 

especially in the evaluation of accurate Value-at-Risk estimates. Value-at-Risk is a measure 

of the market risk of a portfolio and refers to the particular amount of money that is likely to 

                                                
4
 A proof that the Galland and Tauchen (1989) density is a true density is presented in Appendix A. 
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be lost due to market fluctuations over a period of time and for given a probability. The VaR 

at time t at α% significance level is estimated as 

( )1

t n t n t n
VaR Fµ α σ−

+ + += −
)

        (21) 

where ( )1
F α−  denotes the empirical quantile of assumed distribution function, n is the 

forecasted horizon and 
/t n t

σ
+

)
 is the t+n volatility forecast. Traditional quantitative risk 

models assume that financial return series are normally distributed. However, empirical 

evidence has shown that the empirical distribution of returns is often skewed, fat-tailed and 

peaked around the mean. When these aspects are ignored, the calculation of VaR is seriously 

compromised (see Pedrosa and Roll, 1998; and Alizadeh and Gabrielsen, 2012). Therefore, in 

order to incorporate the dynamics of higher-moments we apply the Cornish-Fisher expansion 

to approximate the inverse cumulative density function. The Cornish-Fisher expansion can be 

viewed as an expansion of the Gaussian Normal density function augmented with terms that 

capture the dynamic nature of skewness and kurtosis and can be formalised as follows 

( ) ( ) ( )
2 3

1 1 1 1 1

1 1 1 1
1 1 3
3! 4!

t t

a a a a

s k
F α ϕ ϕ ϕ ϕ− − − − −

− − − −

⎧ ⎫⎡ ⎤ ⎡ ⎤= + − + −⎨ ⎬⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎩ ⎭                    
 (22) 

where ( )
1

ϕ
−
⋅  denotes the inverse cumulative density function of the standard normal 

distribution and 
t
s  and 

t
k the skewness and kurtosis estimates from the modified exponential 

weighted-average model.   

We also evaluate the performance of the Historical Simulation (HS) and Filtered 

Historical Simulation (FHS). The Historical Simulation uses past returns to estimate the 

cumulative distribution function, hence taking into consideration asymmetries and fat tails. 

The Historical Simulation is defined as: 

 ( ) { }( )1t

t a t i
i t i N

VaR F r
−

− = − −
=                                           (23) 

where the right hand  of the equation defines the a  percentile of N past returns. An extension 

of the historical simulation that assumes that returns are independent and identically 

distributed is represented by the Filtered Historical Simulation. This is defined as: 

 { }( )1
|

t

t a t i ti t i N
VaR F z θ σ

−

− = − −
=  (24) 

where 
t i
z
−

 are the standardized residuals and 
t

σ  is the standard deviation of the returns.  

 The adequacy of the VaR estimates is examined over a back-testing exercise, where 

actual profits and losses are compared to the corresponding Value-at-Risk forecasts of the 
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various models. Regulators currently employ three techniques to evaluate the adequacy of the 

VaR models: the binomial, the interval forecast and distribution forecast methods.  

The time until first failure test (TUFF) is based on the number of observations before 

the first exception (see Kupiec, 1995). The null hypothesis is, aaH ˆ:
0

= and the 

corresponding LR test is 

( )[ ] ( ) ( )1~1
1

ln2ˆ1ˆln2
211 χ⎥⎦

⎤
⎢⎣

⎡
−+−−=

−− nn

TUFF
n

n
aaLR

                    
        (25) 

where n  denotes the number of observations before the first exception. The 
TUFF

LR
 
is 

asymptotically distributed as a ( )12χ . Kupiec (1995) argues that the test has limited power to 

distinguish among alternative hypothesis since all observations after the first exception are 

ignored. 

Christoffersen (1998) develops an interval forecast method that examines whether 

VaR estimates exhibit correct coverage. Christoffersen (1998) emphasizes the importance of 

conditional testing, which takes into account not only the frequency of VaR violations but 

also the timing of occurrence, which measures the clustering of failures. Christoffersen 

(1998) approach can be separated into the unconditional coverage, the independence and the 

conditional coverage tests. Therefore, the rejection of a model can be categorized as the 

unconditional coverage failure or the exception clustering, or both.  

Given a time series of past ex-ante VaR forecasts, and ex-post returns, r, a hit 

sequence or indicator function can be estimated as 

 
1,

, 1,...,
0,

p

t i t i

t i p

t i t i

r VaR
I i T

r VaR

+ +

+

+ +

⎧ < −⎪
= =⎨

> −⎪⎩
                                (26) 

the indicator faction returns one if the loss is larger than the estimated VaR and zero 

otherwise.  The VaR model is said to be efficient if the indicator function is independently 

distributed over time as a Bernoulli variable.  

The unconditional coverage examines whether the estimated α% VaR violations fall 

within the theoretical number of α% VaR violations: 

 
( )

( )
( )1~

1

1
log2 2

01

01

χ
ππ

⎥
⎦

⎤
⎢
⎣

⎡

−

−
−=

nn

nn

UC

pp
LR                      

                     (27) 

where 
1
n the number of 1’s in the indicator series, 

0
n  the number of 0’s in the indicator series 

and ( )
011
nnn +=π


. 
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The test of independence tests for the clustering of VaR exceptions under the 

hypothesis of an independently distributed failure process against the alternative hypothesis 

of first order Markov failure process. The likelihood ratio test is 

( ) ( )

( ) ( )
( )1~

11

11
log2 2

11110101

22

11100100

11011000

χ
ππππ

ππ

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−

−−
−=

++

nnnn

nnnn

IND
LR 



                    
 (28) 

where 
ij
n is the number of i values followed by j value in the indicator function, 

{ }jIiI ttij === −1/Prπ , ( )
01000101
nnn +=π


, ( )

11101111
nnn +=π


 and 

( ) ( )
1110010011012
nnnnnn ++++=π


. In the special case when 0

11
=π


 then the 

independence test can be computed as 

( ) ( )1~1
2

0101

0100 χππ
nn

IND
LR


−=                     

                            (29) 

Finally, the correct conditional coverage jointly tests for independence and correct 

coverage, with the test statistics as: 

 ( )2
~ 2

CC UC IND
LR LR LR χ= +    (30) 

The regulatory guidelines prescribed by the 1996 amendment to the 1988 Basel 

Accord require commercial banks in the G-10 countries to carry out standardised back-tests 

that define the capital adequacy standards. The capital requirements are, therefore, depended 

on both the portfolio risk and the back-testing outcome of the bank’s internal VaR model. 

According to Campbell (2005), the capital requirements are set as the larger of either the 

bank’s current assessment of the 1% VaR over the following 10 trading days, or as a multiple 

of the bank’s average reported 1% VaR over the previous 60 trading days, plus an additional 

amount that reflects the underlying credit risk of the bank’s portfolio. This amount is 

computed as: 

( ) ( ) cVaRSVaRMRC

i

itttt
+⎥

⎦

⎤
⎢
⎣

⎡
= ∑

=

−

59

0

01.0
60

1
,01.0max

                    
      (31) 

where 
t
S denotes a factor that multiplies the average of previously reported VaR estimates. 

This factor is determined by classifying the number of 1% VaR violations in the previous 250 

trading days x into three categories 

( )
⎪
⎩

⎪
⎨

⎧

≤≤−+

≤

=

redx

yellowxx

greenx

S t

,10,4

,95,42.03

,4,3



                    
      (32) 

This expression highlights that as the number of violations increase so does the multiplication 

factors that determines the market risk capital. For example a model is classified as green 
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when there is more than 99.99% probability that it’s estimated 1% VaR violations fall within 

the theoretical (1%) number of VaR violations. 

 The models deemed adequate are those that generate a coverage rate less than the 

nominal, and that are able to pass both the conditional and unconditional coverage tests.  

 

4. Data Description and Empirical Results 

 

The data comprising the study is daily prices of the S&P 500, NASDAQ, FTSE 100, 

DAX 30 and CAC 40 equity indices for the period from 02/01/1992, 02/01/1992, 17/01/1991, 

07/02/1992 and 11/02/1991 to 30/06/2011 respectively. The data is readily available from 

Datastream and non-trading days have been removed in order to avoid downsize bias. The 

descriptive statistics for the returns of the equity indices are reported in Table 1.The 

coefficients of skewness are negative for the returns of the equity indices, signifying a bias 

towards downside exposure. This contrasts sharply with positive skewness, which indicates 

the possibility of large positive returns (see Campbell and Siddique, 2000). The coefficients 

of excess kurtosis are above three indicating the distribution of the returns is leptokurtic; 

which means that the distribution has acute peakedness and fatter tails. The largest coefficient 

of excess kurtosis is reported for the S&P 500 followed by the FTSE 100 index, and 

highlights that these indices account for larger deviations in their returns. Finally, the Jargue-

Bera test reveals significant departures from normality for all series at a 1% significance level 

for all indices. 

 

4.1. In-Sample Analysis 

 

The in-sample period is for S&P 500 from 2
nd

 January 1992 to 7
th

 July 2009, for 

NASDAQ s from 2
nd

 January 1992 to 7
th

 July 2009, FTSE 100 from 17
th

 January 1991 to 7
th

 

July 2009, for DAX 30 is from 7
th

 February 1992 to 23th June 2009, and CAC 40 is from 11
th

 

February 1991 to 23
th

 June 2009. The first model to be examined is RiskMetrics
TM

 based on a 

decay factor of 0.94. The unconditional volatility for the various equity indices for the in-

sample period is presented in Figure 2. It is observed that the period between 1993 to mid 

1997 and 2004 to 2007 is characterized by a low volatility period, whereas from 1998 to 2003 

and 2008 to 2011 which are the dot com and credit crisis periods, a higher volatility period is 

observed.  

The estimated decay factors for the volatility, skewness and kurtosis processes for the 

EWMA-SK model are presented in Table 2 and are significant for all models. A consistent 
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pattern across the decay factors is observed. That is the decay factor for the volatility process 

has increased compared with the decay factor employed by RiskMetrics
TM

 and overall is 

larger than the decay factors for skewness and kurtosis. The decay factors for the volatility 

process ranges between 0.935 for the DAX 30 to 0.980 for the NASDAQ, while the decay 

factors for the skewness process ranges between 0.948 for the DAX 30 and 0.969 for the S&P 

500 and for the kurtosis process between 0.925 for the S&P 500 and 0.954 for the NASDAQ. 

The in-sample volatility, skewness and kurtosis are presented in Figure 3. It is observed that 

time-varying skewness and kurtosis fluctuate more and exhibit large spikes – negative spikes 

for time-varying skewness - during periods of high volatility. This means that the negative 

spikes in the time-varying skewness and positive spikes for the time-varying kurtosis 

highlight sharp deteriorating changes in the market conditions. Therefore, the extreme 

movements captured by the dynamics of skewness and kurtosis may have serious 

implications for risk management and, especially, in the estimation of VaR. Similar results 

are presented in Leon, et al., (2005), Alizadeh and Gabrielsen (2012) and Apergis and 

Gabrielsen (2012).  

 The estimated parameters for the GARCH-N model, which we consider as a 

benchmark model, are reported in Table 3. The coefficients of the lagged squared error,
1
β , 

and lagged conditional variance, 
2

β , are significant in all models. The values of the 
1
β  

coefficient range between 0.092 for the DAX 30 to 0.070 for the S&P 500. For the 
2

β  

coefficient, they vary between 0.899 for the DAX 30 and 0.922 of the CAC 40 index. Finally, 

Figure 4 presents the conditional variance for the in-sample period for the various models. 

 

4.2. Out-of-Sample Evaluation 

 

The performance of the VaR models is evaluated using a process known as back-

testing. The back-testing exercise is undertaken for 1% VaR forecasts
5
 over the period 7

th
 

July 2009 to 29
th

 June 2011 for the S&P 500, NASDAQ and FTSE 100, 22
th 

June 2009 to 29
th

 

June 2011 for the DAX 30 index and 23
th

 June 2009 to 29
th

 June 2011 for the CAC 40 index, 

with a total of 500 observations. The metrics employed are the Percentage of Failures (%), 

Christoffersen (1998) unconditional coverage, independence, and conditional coverage log-

likelihood tests, along with Basel II test and are presented in Table 4. The Percentage of 

Failures (%) illustrates that the RiskMetrics, EWMA-SK and GARCH-N tend to exhibit the 

                                                
5
 The 1% confidence level is selected as it is the level suggested by Basel II.  
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lowest on average percentage for both 1-day and 2-week VaR forecasts. For example under 

the FTSE 100 index and 1-day horizon the GARCH-N exhibits the lowest failures (0.20%), 

followed by RiskMetrics and EWMA-SK (0.41%) while HS and FHS exhibit PF above 1%; 

whereas for the 2-week horizon EWMA-SK exhibits the lowest PF (0.80%) followed by 

GARCH-N, HS, RiskMetrics and FHS.  

 The likelihood ratio test for the unconditional coverage over the back-testing period is 

rejected at a 5% significance level for the RiskMetrics, EWMA-SK and GARCH-N for the 

S&P 500 index, the FHS, RiskMetrics, EWMA-SK and GARCH-N for the NASDAQ index, 

the HS, FHS and GARCH-N for the FTSE 100 index for 1-day horizon. Similarly for 10-day 

horizon the unconditional coverage is rejected at a 5% significance level for the HS, FHS and 

EWMA-SK for the S&P 500 index, the HS, FHS, RiskMetrics and EWMA-SK for the 

NASDAQ index, the HS and FHS for the DAX 30 and CAC 40 index. The results of the 

likelihood ratio test of independence indicate that the majority of models do not exhibit 

clustering of violations with the exception of the HS, FHS, RiskMetrics and EWMA-SK 

models for the FTSE 100 index and 1-day VaR the HS, FHS for the S&P 500, NASDAQ, 

DAX 30 and CAC 40 indices for the 10-day VaR along with RiskMetrics and EWMA-SK for 

the DAX 30 and CAC 40 indices for the 10-day horizon. These results indicate that not all 

models are to be relied for longer horizon estimates due to of clustering of violations. The 

likelihood ratio test of the conditional coverage is rejected at a 5% significant level for 1-day 

VaR for the RiskMetrics and EWMA-SK for the S&P 500 index, the RiskMetrics and 

GARCH-N for the NASDAQ index, the HS, FHS RiskMetrics and EWMA-SK for the FTSE 

100 index. Moreover, the test is rejected at a 5% significant level over the 10-day horizon for 

the HS and FHS for the S&P 500, NASDAQ, DAX 30 and CAC 40 indices, along with the 

RiskMetrics for the DAX 30 index and EWMA-SK for the DAX 30 and CAC 40 indices. The 

VaR estimates of the GARCH-N perform well for the longer horizon, whereas the EWMA-

SK for the short horizon. Similar results are presented in Guermat and Harris (2002) and 

Changchien and Chen (2006). 

 The models are also compared with respect to compliance with Basel II test which 

groups models into three categories: green, yellow and red depending on the number 1% VaR 

violations. For 1-day VaR the EWMA-SK and GARCH-N for the FTSE 100 and DAX 30 

along with RiskMetrics for the FTSE 100 index fall within the green zone. In the yellow zone 

lay the HS, FHS, EWMA-SK and GARCH-N of the S&P 500, NASDAQ and CAC 40 

indices including the HS, FHS and RiskMetrics for the DAX 30 index. In the red zone are the 

RiskMetrics of the S&P 500 and NASDAQ indices, as well as the HS and FHS of the FTSE 
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100 index. For the 2-week VaR EWMA-SK and GARCH-N fall in the green zone for all 

indices, followed by RiskMetrics with only FTSE 100 being in the yellow zone and finally by 

the HS and FHS which fall between the yellow and red rejection regions for all indices. This 

test revealed both the EWMA-SK and GARCH-N models performed well for both 1-day and 

2-week horizons.   

Figures 5 to 9 present the 1-day and 2-week VaR estimates HS, FHS, RiskMetrics, 

EWMA-SK and GARCH-N models over the back-testing period. The VaR forecasts for the 

EWMA-SK model appear to behave more erratic compared with RiskMetrics. This occurs 

because the VaR of the EWMA-SK contains estimates of the forecasted skewness and 

kurtosis, which over the examined period they increase significantly and exhibit spike thus 

affecting the estimation of the Cornish-Fisher approximation.  

Concluding, the back-testing application delivers mixed results in terms of model 

validation. This outcome is not uncommon in this kind of studies (e.g., see Marcucci, 2009 

and Alizadeh and Gabrielsen, 2012). A possible explanation is that the back-testing period 

was one of the most turbulent periods; which in turn translates into more erratic higher 

moment forecasts and hence impacting the VaR estimates of the EWMA-SK model.  

However, it is important to note that the EWMA-SK performs on average as well as the 

GARCH model for both horizon periods, and out-performs the RiskMetrics; compared with 

the studies Guermat and Harris (2002) and Changchien and Chen (2006) who find that 

GARCH models out-perform RiskMetrics
TM

 for short and long horizons in forecasting 

Value-at-Risk. 

 

5. Conclusions 

 

The aim of this study was to propose a formulation that jointly estimates time-varying 

volatility, skewness and kurtosis in an exponentially weighted moving-average framework 

using the Gram-Charlier series expansion, and allows each process to have its own decay 

factor. A maximum likelihood estimation approach is used to estimate the decay factor for 

volatility, skewness and kurtosis. It was observed that the decay factor for the volatility 

process has increased compared with the decay factor used by RiskMetrics
TM

 for daily return 

series, and overall is larger compared with the decay factors for skewness and kurtosis. 

Furthermore, we observe that, during deteriorating economic conditions, time-varying 

skewness exhibits negative spikes (i.e. bias towards down-size bias), while time-varying 

kurtosis displays positive spikes. This suggests that higher moments are able to identify and 
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capture the dynamic characteristics of the various return series (see also Apergis and 

Gabrielsen, 2012, and Alizaden and Gabrielsen, 2012). 

The performance of the proposed model along with RiskMetrics
TM

, GARCH-N, HS and 

FHS is compared for 1-day and 2-week VaR forecasts at 1% confidence level. The adequacy 

of the VaR estimates was evaluated using the Christoffersen (1998) back-testing procedure 

and Basel II regulatory test. The results from the model validation process were mixed  and 

may be due to the selection of the back-testing period, which coincided with the recent credit 

crisis period. The results are in line with the Marcucci (2009) and Alizadeh and Gabrielsen 

(2012) who do not find a uniformly accurate model. However, it is highlighted that EWMA-

SK performs on average as well as the GARCH model for both horizon periods, and out-

performs the RiskMetrics; which reflects a result different from other studies which find that 

GARCH models out-perform RiskMetrics
TM

 for short and long horizons in forecasting 

Value-at-Risk. 
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Table 1 Descriptive Statistics of the Returns 

Statistics S&P500 NASDAQ FTSE 100 DAX 30 CAC 40 

Mean 0.017 0.025 0.011 0.026 0.013 

Standard Deviation 1.199 1.640 1.178 1.490 1.434 

Minimum -9.470 -10.168 -9.265 -7.433 -9.472 

Maximum 10.957 13.255 9.384 10.797 10.595 

Skewness -0.201 -0.027 -0.101 -0.051 -0.026 

Kurtosis 12.482 8.555 9.649 7.602 7.748 

Jarque-Bera
1
 16560 5675 8136 3896 4146 

Notes: 

The table presents the descriptive statistics of the return series. The sample period for S&P 500, NASDAQ, FTSE 100, DAX 30 and CAC 40 

indices are from 02/01/1992, 02/01/1992, 17/01/1991, 07/02/1992 and 11/02/1991 to 30/06/2011 respectively. The Jarque-Bera (1980) test, tests 

for departure from normality and is chi-square asymptotic with two degrees-of-freedom, the 5% and 1% statistics are 5.99 and 9.21 respectively. 

It’s statistic is defined in terms of the number of observations, n, sample skewness s, and sample kurtosis, k and it is described as: 
⎟
⎠

⎞
⎜
⎝

⎛ −
+=
4

3

6

k
s

n
JB

 

 

Table 2 EWMA-SK Parameter Estimation 

 S&P500 NASDAQ FTSE 100 DAX 30 CAC 40 

λ1 0.973 0.980 0.969 0.935 0.968 

 (5012.272) (10491.883) (13804.854) (2104.146) (2154.760) 

λ2 0.969 0.966 0.961 0.948 0.948 

 (2004.967) (2577.322) (2574.322) (1595.139) (2009.322) 

λ3 0.929 0.954 0.943 0.942 0.942 

 (1516.674) (3105.102) (2372.410) (2467.714) (1909.631) 

Notes: 

The table presents the estimation results for the parameters of the as well in parentheses are the t-statistics for the EWMA-SK model. The 

estimation is performed by the method of quasi maximum likelihood using the BFGS algorithm in Matlab 7.12 software package The sample 

period for S&P 500 is from 2
nd

 January 1992 to 7
th

 July 2009, for NASDAQ s from 2
nd

 January 1992 to 7
th

 July 2009, FTSE 100 is from 17
th

 

January 1991 to 7
th

 July 2009, for DAX 30 is from 7
th

 February 1992 to 23th June 2009, and CAC 40 is from 11
th

 February 1991 to 23
th

 June 

2009. 
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Table 3 GARCH-N Parameter Estimation 

 S&P500 NASDAQ FTSE 100 DAX 30 CAC 40 

0
a  0.047 0.070 0.040 0.069 0.050 

 (3.883) (4.346) (3.231) (4.304) (2.977) 

0
β  0.007 0.013 0.010 0.021 0.015 

 (6.777) (6.204) (5.131) (7.385) (4.602) 

1
β  0.070 0.080 0.086 0.092 0.071 

 (14.015) (15.111) (12.812) (13.001) (12.103) 

2
β  0.925 0.915 0.907 0.899 0.922 

 (174.231) (159.390) (128.642) (122.589) (140.482) 

Notes: 

The table presents the estimation results for the parameters of the as well in parentheses are the t-statistics for the GARCH model with Gaussian 

Normal innovation terms. The estimation is performed by the method of quasi maximum likelihood using the BFGS algorithm in Matlab 7.12 

software package The sample period for S&P 500 is from 2
nd

 January 1992 to 7
th

 July 2009, for NASDAQ s from 2
nd

 January 1992 to 7
th

 July 

2009, FTSE 100 is from 17
th

 January 1991 to 7
th

 July 2009, for DAX 30 is from 7
th

 February 1992 to 23th June 2009, and CAC 40 is from 11
th

 

February 1991 to 23
th

 June 2009. 
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Table 4 Value-at-Risk Back-Testing 

 Percentage of Failures (%) 

 1-day 10-day 

 HS FHS RiskMetrics EWMA-SK GARCH-N HS FHS RiskMetrics EWMA-SK GARCH-N 

S&P500 1.80% 1.80% 2.80% 2.20% 2.20% 2.65% 3.26% 0.00% 0.20% 0.00% 

NASDAQ 1.80% 2.20% 3.00% 2.20% 2.60% 2.44% 2.44% 0.20% 0.20% 0.00% 

FTSE100 3.26% 3.46% 0.41% 0.41% 0.20% 1.40% 1.60% 1.60% 0.80% 1.40% 

DAX 30 1.80% 1.80% 1.80% 1.40% 1.20% 2.85% 3.05% 0.81% 0.41% 0.20% 

CAC 40 1.80% 2.00% 1.80% 1.60% 1.80% 3.67% 3.67% 0.81% 0.61% 0.41% 

 Likelihood Ratio of Unconditional Coverage 

 1-day 10-day 

 HS FHS RiskMetrics EWMA-SK GARCH-N HS FHS RiskMetrics EWMA-SK GARCH-N 

S&P500 2.613 2.613 10.994 5.419 5.419 9.271 15.877 0.000 4.669 0.000 

NASDAQ 2.613 5.419 13.162 5.419 8.973 7.371 7.371 4.669 4.669 0.000 

FTSE100 15.877 18.349 2.245 2.245 4.669 0.719 1.538 1.538 0.217 0.719 

DAX 30 2.613 2.613 2.613 0.719 0.190 11.329 13.534 0.182 2.245 4.669 

CAC 40 2.613 3.914 2.613 1.538 2.613 20.943 20.943 0.182 0.872 2.245 

 Likelihood Ratio of Independence 

 1-day 10-day 

 HS FHS RiskMetrics EWMA-SK GARCH-N HS FHS RiskMetrics EWMA-SK GARCH-N 

S&P500 0.000 0.000 0.710 1.429 0.000 14.675 16.560 0.000 0.001 0.000 

NASDAQ 0.000 0.000 0.000 0.000 0.000 16.147 9.903 0.001 0.001 0.000 

FTSE100 37.617 35.034 8.846 8.846 0.001 0.000 0.000 0.000 0.000 0.000 

DAX 30 0.000 0.000 0.000 0.000 0.000 13.349 18.029 14.923 8.846 0.001 

CAC 40 0.000 0.000 2.126 2.566 2.126 32.671 25.777 5.426 6.765 0.000 
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 Likelihood Ratio of Conditional Coverage 

 1-day 10-day 

 HS FHS RiskMetrics EWMA-SK GARCH-N HS FHS RiskMetrics EWMA-SK GARCH-N 

SP500 2.613 2.613 11.704 6.848 5.419 23.946 32.437 0.000 4.670 0.000 

NASDAQ 2.613 5.419 13.162 5.419 8.973 23.518 17.274 4.670 4.670 0.000 

FTSE 100 53.494 53.383 11.091 11.091 4.670 0.719 1.538 1.538 0.217 0.719 

DAX 30 2.613 2.613 2.613 0.719 0.190 24.678 31.563 15.105 11.091 4.670 

CAC 40 2.613 3.914 4.739 4.104 4.739 53.614 46.721 5.608 7.637 2.245 

 BASEL II 

 1-day 10-day 

 HS FHS RiskMetrics EWMA-SK GARCH-N HS FHS RiskMetrics EWMA-SK GARCH-N 

S&P500 Yellow Yellow Red Yellow Yellow Yellow Red Green Green Green 

NASDAQ Yellow Yellow Red Yellow Yellow Yellow Yellow Green Green Green 

FTSE 100 Red Red Green Green Green Green Yellow Yellow Green Green 

DAX 30 Yellow Yellow Yellow Green Green Red Red Green Green Green 

CAC 40 Yellow Yellow Yellow Yellow Yellow Red Red Green Green Green 

Notes: 

The table reposts the percentage of failure; Christoffersen’s (1998) likelihood ratio tests and BASEL II model categorization. The likelihood ratio 

test of the unconditional coverage and independenceare are distributed as chi-square asymptotic with one degrees-of-freedom. The 1% and 5% 

critical values for χ
2
(1) are 6.634 and 3.841. The likelihood ratio test of the conditional coverage is chi-square asymptotic with two degrees-of-

freedom. The 1% and 5% critical values for χ
2
(1) are 9.21 and 5.99. The back-testing period is for the period from 7

th
 July 2009 to 29

th
 June 2011 

for the S&P 500, NASDAQ and FTSE 100, 22
th 

June 2009 to 29
th

 June 2011 for the DAX 30 index and 23
th

 June 2009 to 29
th

 June 2011 for the 

CAC 40 index, with a total of 500 observations 
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Figure 1: Levels of the S&P 500, NASDAQ, FTSE 100, DAX 30 and CAC 40 equity indices 
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Figure 2: In-sample volatility of the RiskMetrics
TM

 with a decay factor of 0.94 of the S&P 500, NASDAQ, FTSE100, DAX30 and CAC40 
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Figure 3: In-sample volatility, skewness and kurtosis of the Modified Exponential Weighted Moving Average 
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Figure 4: In-sample volatility of the GARCH(1,1) model for the S&P 500, NASDAQ, FTSE 100, DAX 30 and CAC 40 equity indices 

1993 1995 1998 2001 2004 2006
0

1

2

3

4

5

6

Time

V
o
la

ti
lit

y

 

 

S&P 500

NASDAQ

FTSE 100

DAX 30

CAC 40



26 

 

Figure 5: Out-of-sample volatility forecasts and 99% VaR losses of the S&P 500 equity index 
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Figure 6: Out-of-sample volatility forecasts and 99% VaR losses of the NASDAQ equity index 
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Figure 7: Out-of-sample volatility forecasts and 99% VaR losses of the FTSE 100 equity index 
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Figure 8: Out-of-sample 1-day and 10-days volatility forecasts and 99% VaR losses of the DAX 30 equity index 
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Figure 9: Out-of-sample volatility forecasts and 99% VaR losses of the CAC 40 equity index 
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APPENDIX A  

 

Proof of the Galland and Tauchen (1989) proposed pdf that integrates to one 

 

This appendix illustrates that the function ( )tf η  in (8) integrates to one: 

( ) ( )∑
=

=
n

i

tiit Hecg
0

ηη                                          (A.1) 

where ( ){ }i
i N

H x
∈

represents the Hermite polynomials such that for 2i ≥  they hold the 

following recurrence relation: 

( ) ( ) ( )( )1 2
1

i i i
H x xH x i H x i

− −
= − −                          (A.2) 

and they satisfy the following conditions: 
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                               (A.3) 

where ( )ϕ ⋅  denotes the standard normal density function. The integration of the conditional 

density function given the condition in (A.3) becomes: 
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APPENDIX B  

Rescaling of the return distribution 

Given a return series of continuously compounded returns 
t
r then the rescaled returns 

x
R  with 

the desired frequency, x , are computed as 

∑
=

=
x

t

tx
rR

1

        (B.1) 

where the index t denotes the time index (i.e. xt ,,2,1 …= ). Then the rescaled higher 

moments are estimated as 

rR
xµµ =         (B.2) 

rR
xσσ =          (B.3) 
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For skewness it can be shown: 
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For kurtosis it can be shown: 
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