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ABSTRACT 

The inverted-U shaped relationship between environment and economic growth has 
been well established in the environmental Kuznets curve (EKC) literature for 
several local air pollutants, such as suspended particulate matter. Very few studies, 
however, tested the EKC relationship for biomass consumption. About 2.5 billion 
people in developing nations depend on biomass fuels for household cooking and 
lighting. Most of these people are located in the rural areas and have lower income 
levels than national averages. Biomass fuels, although more easily accessible, are 
less efficient than other fuel types, and they cause adverse health impacts due to 
indoor air pollution. Within the households that use biomass fuels, women and 
children bear most of the health costs. This study employs panel data from 132 
countries, from 1971 to 2004, in order to fulfil two aims: First, to test whether or not 
there is an EKC type relationship between biomass consumption and economic 
growth.  Second, to investigate the impact of biomass consumption on household 
health, measured by life expectancy and infant mortality. We find a true EKC for 
biomass consumption with the turning – point occurring at a very low level of 
income per capita (US $119).  After the turning point, it is hypothesised that 
countries switch to more efficient and less polluting fuel, and hence climb up on the 
‘energy ladder’. 
 
Further panel data analysis reveals that biomass consumption (negatively) and 
income level (positively) affects the health status of a country. The results of the 
cross-sectional data analysis reveal whether or not an EKC type relationship can be 
found depends on the year of data and econometrics technique utilised. We find that 
panel data fixed effect estimation method is superior to the cross-sectional data 
ordinary least square method in establishing the EKC type relationship for biomass 
consumption.  The results of the panel data analysis reported in this study reveal that 
developing countries cannot wait for economic growth to take place to reach the 
turning point as a policy solution.  The problem of biomass consumption should be 
tackled at early stages of economic growth since the health benefits brought about by 
economic growth can be negated by adverse health effect of biomass use.  We 
therefore recommend that developing countries should focus on economic policies 
on an energy limb to alternative sources of energy, such as solar thermal energy. 
Such policies would not only eliminate the negative impacts of biomass consumption 
on health, but also enable prevention of reliance on intermediate fuels such as fossil 
fuel, which have been found leading to global climate change. 
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1.  Introduction 

 
Almost 82% of the global population live in developing countries and this figure is 

expected to increase to 86% by 2050 (United Nations, 2006). Information on energy 

consumption levels, patterns, and the types of energy used in developing countries 

are therefore crucial for consideration when designing policies for mitigation of 

climate change, reduction of poverty and improvement of health status. The primary 

energy mix in these regions, as well as in developed countries, ranges from biomass, 

coal, fossil fuel, hydroelectric to nuclear power (IEA, 2004). The International 

Energy Agency (IEA), however, has recently reported that about 2.5 billion people 

located in developing countries depend on biomass fuels (IEA, 2006). Majority of 

these people are located in the rural areas and have lower income levels than national 

averages.  

 

Biomass is defined as organic matter of plant or animal origin used for energy. 

Biomass fuels are regarded as combustible renewables and wastes (e.g., vegetable 

material and waste, black liquor, landfill gas, alcohol, bio-additives)1, traditional 

fuels (e.g., fuel wood, bagasse, charcoal)2 or wood products3. The implications of 

biomass fuel use on climate change, deforestation, and human health (WHO, 2002) 

has prompted several studies on the energy use patterns in developing countries, and 

the links between biomass fuel use, income and health at both micro and macro 

levels (e.g., Panayotou, 1993; de Almeida and de Oliveira, 1995; Judson et. al. 1999; 

Foster et. al.2000; Barbier and Burgess, 2001; Victor and Victor, 2002; Jiang and 

O’Neill, 2003). Further, a large number of studies have tested for the existence of an 

inverted-U shape relationship between economic growth and environmental pollution 

(e.g. Selden and Song, 1994; Panayotou 1995, Arrow et. al.1995; Stern et. al., 1996; 

Cole et. al. 1997; Bhattarai and Hammig 2001). This inverted-U shape relationship 

implies that pollution rises as per capita income rises at early stages of economic 

growth, until a turning point level of income, after which pollution decreases as 

income per capita rises. This relationship has been referred to as environmental 

Kuznets curve (EKC) hypothesis in the literature (Figure 3).   

 

                                                 
1 International Energy Agency - Biomass Energy Data Definition 
2 United Nations - Biomass Energy Data Definition 
3 Food and Agricultural Organisation – Biomass Energy Data Definition 
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This paper investigates the relationship between environmental pollution, in the form 

of biomass consumption, and economic growth using panel data estimation technique 

for a cross section of 132 countries (please see Appendix I for a list of countries), 

covering 34 years, from  1971 to 2004. The aims of this study are twofold. Firstly, to 

test whether or not there is an EKC type relationship between biomass consumption 

and economic growth (expressed in terms of income per capita) and to establish the 

tuning point. Secondly, to investigate the relationship between biomass consumption, 

income and health. 

 

Likewise, the contribution of this paper to the literature is twofold. On one hand, 

even though several studies have investigated the relationship between income and 

pollution levels from energy consumption, most of these have been at a micro level. 

Further, to our knowledge no EKC study has so far focused specifically on biomass 

consumption. On the other hand, even though there have been a handful of studies 

investigating the relationship between income, pollution and health, none has 

specifically focused on the impact of biomass consumption on health in the respect 

of these combined links. 

 

The rest of the paper is organised as follows. The following chapter presents a review 

of biomass sources, energy consumption pattern and link with health, income and 

poverty. Chapter 3 presents the economic theory behind the EKC and a review of the 

literature on EKC, as well as on pollution and health. Chapter 4 presents the data 

sources, analytical framework and variables included in the models. Chapter 5 

explains the econometric methodology. Chapter 6 presents and critically discusses 

the results of the econometric estimations. The final chapter concludes with policy 

implications and recommendations for future research. 
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2. Background  

 

2.1 Energy: Sources and Consumption Pattern in Developing Countries 

Both renewable (e.g. energy from traditional fuel, bio-gas, wind energy, solar 

thermal) and nonrenewable energy types are used in households of developing 

countries but at varying degrees depending on access, efficiency and income level 

(IEA, 2004). A significant amount of time is spent on fuel gathering for cooking by 

women and children in these countries. Biomass is mainly used for cooking, lighting, 

and heating, and constitutes about 7% of the global primary energy demand (IEA, 

2006). Empirical evidences have shown that biomass fuel forms the highest 

percentage in household energy portfolio in some developing countries. For example, 

Heltberg (2003) reported that only 16% of households in Brazil use firewood in 

cooking, while in Ghana 96% use firewood (rural areas) and charcoal (urban areas) 

for cooking. In India, where about 72% lives in rural areas, household energy 

consumption portfolio in 1995 is made up of 77% biomass use, 18% liquid fuel, and 

5% electricity. Also in China, about 200 million tons of oil equivalent (toe) of 

biomass was consumed in 1990. In the Republic of Korea, however, a transition is 

evident in as only 5% of the household energy demand is biomass (Dzioubinski and 

Chipman, 1999).  

 

This transition in energy consumption pattern in some developing countries, i.e., 

switching from dirty traditional fuels to cleaner modern energy (e.g. electricity), has 

been termed ‘energy ladder’, ‘fuel switching’ or ‘fuel substitution’ depending on the 

author (Heltberg, 2003). The ‘energy ladder’ model describes a stepwise use of 

energy type which changes as the household income level increases. The ladder 

shows a three-step route of movement in fuel switching from initial dependence on 

less efficient traditional biomass fuels and primitive technologies  (Elias and Victor, 

2005) to transition fuel, such as kerosene, which is more efficient than biomass,  and 

finally to highly efficient modern energy, such as electricity, bottled gas or LPG 

(Leach, 1992).  

 

Leach (1992) found that energy transition is common in the urban areas of the 

developing countries and it is strongly dependent on urban population and household 

income. In reality, unlike in figure 1, there is no clear distinction between the ladders 
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of energy transition in developing countries. This is because many households have 

been found to have a portfolio of multiple types of energy, e.g., wood for cooking 

and heating, and kerosene and electricity for lighting (Masera et. al. 2000; Davis, 

1998; Saatkamp, 2000). Generally, ‘…transition is most commonly defined as a 

decrease in the proportion of household energy derived from biomass...’’ (Jiang and 

O’Neill 2004). However, about half of the global population is still dependent on the 

biomass fuels (ladder 1), which have low efficiency and negative impacts on 

household health and hence income (WHO, 2000).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                                                     

 

                              Figure 1: ‘Energy Ladder’ Model 
 
 

 

Box 1 of Constraints to Ladder 2: Thin 

Income = Low; Equipment Cost = Low/Zero 

Crop residue, firewood & dung  

Box 2 of Constraints to Ladder 3: Thick 
Income = Medium; Equipment Cost = Small; Access to fuel: Often 

Restricted in low income areas; Fuel Cost: High 
 

Kerosene  

LPG, Electricity, Solar 

Charcoal, 
Coal,  
Firewood 
 

Ladder 1 

Ladder 3 

Ladder 2 

Kerosene, 
Charcoal, 
Electricity 

‘Energy Stacking’ 

‘Energy Stacking’ 
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2.2 Health, Indoor Air Pollution and Poverty 

 

One of the greatest concerns about biomass consumption is the indoor air pollution, 

which is found to cause serious health problems in developing countries. Smoke 

from incomplete combustion during biomass burning as shown in Appendix II 

contains a large number of pollutants such as CO and Suspended Particulate Matter 

(SPM), which have associated public health risks. The effect is greatly observed in 

rural dwellers of developing countries but an increasing trend is also observed for the 

urban poor (WHO, 2000). Exposure to indoor air pollution from biomass has a strong 

association with several diseases. The link between indoor air pollution and infant 

mortality dates back to 1960s when studies carried out in Nigeria (Sofoluwe, 1968), 

and Papua New Guinea (Anderson, 1978) threw some light into the causal 

relationships. More recent studies have established the evidence of this causal link 

(e.g. Bruce et. al., 2000).  

 

Ezzati et. al. (2000; 2002) recorded particulate matters (PM10) concentrations of up 

to 50,000 µg/m3 from immediate vicinity of fire from cookstove which is greater than 

the US EPA4 daily average concentration of PM10 by about 333 folds. McCracken 

and Smith, 1998 observed variation in emission concentration of PM10 from Indian, 

South African and Guatemalan cookstoves which shows that exposure level could 

vary across homes, regions and countries.  These pollutants cause acute respiratory 

diseases in women, which lead to increasing risk of lung cancer, as well as infant 

mortality. Several studies have reported the relationship between smoke from 

biomass use and general acute respiratory illness (e.g. Smith and Mehta 2000; 

Schirnding et. al., 2002), and as well as between biomass use and death in the first 

week of life in children (WHO, 2000).  Fine particles (< 10 microns) penetrate down 

into the lungs causing acute lower respiratory infection (ALRI) and chronic 

obstructive pulmonary disease (COPD). ALRI and COPD from solid fuel use 

accounted for about 1 million childhood deaths globally in 2000 (Smith et. al., 2002) 

and 41,000 deaths in Africa in 2000 respectively.  

 

                                                 
4 US EPA: United States Environmental Protection Agency 
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56% of all indoor air pollution-attributable deaths occur in children and women 

because in many developing countries women are responsible for household cooking 

and children are often carried on their back (WHO Indoor Air Thematic Briefing 2). 

Over 10 million deaths of children under the age of five occur yearly, and 99% of 

this occurs in developing countries (Rehfuess, 2006). The indoor air pollution as a 

risk factor constitutes an estimated amount of 2.7% to global burden of disease 

(GOBD) (WHO, 2005). Low income levels poverty, power relation within household 

(Viswanathan and Kumar, 2005), fuel availability and uncertainty, and technological 

know-how (Clay, 2002) have been identified as the most important factor limiting 

fuel switching potential in developing countries (also see figure 2). 

 

Income has been perceived as the main determinants of economic growth due to its 

inverted-U relationship with the environment and positive relationship with health. It 

is however important to note that the negative effect of pollution on health at lower 

income levels can erase any economic growth benefits from income by reducing the 

productivity of the population  (in the form of household income), and thus could 

make the population return to less efficient energy sources, such as firewood. We 

therefore argue that economic growth policies with little or no consideration for 

environmental quality at initial phases of economic growth constitute a poverty trap. 

Economic development policies at lower income levels are necessary to capture the 

gains brought to health from increasing income instead of waiting for the turning 

point to be reached. In order to support this point, we investigate the effect of 

biomass consumption on population health.  
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Figure 2: Income, Health, and Biomass Links
5
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   
 
   

Source: (WHO, 2000) 

 

 

 

 

                                                 
5 Details can be found in WHO/HDE/HID/02.10., 2000. Please also see the reference. 
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3. Literature Review: Theory and Application of the EKC  

 

3.1 Theory  

The inverted-U relationship between environment and economic growth initially 

described by Beckerman (1972) and Simon (1977) could be defined for biomass 

consumption as a relationship in which people’s willingness to pay (WTP) for 

efficient fuel decreases (de Bruyn, 2000) initially as income rises until enough wealth 

has been generated (Neumayer, 2004) for a turning to occur (figure 3).  

 

Figure 3: A Conventional EKC 

 

 

 

 

 

 

 

 

 

 

 

Victor and Victor (2002) reported that per capita biomass consumption has increased 

in the United States until 1830 and later the share of traditional biomass in primary 

energy consumption decreased with increasing economic growth. This illustrates the 

EKC hypothesis, which according to Barbier (1997) has controversial evidences and 

will be subjected to continuous verification through the use of different analytical 

methodologies. Recently, Jiang and O’Neill (2003) found that more than 70% of the 

total fuel use among China’s rural population is based on biomass for heating and 

cooking.  
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In Brazil, only the wealthiest households use more efficient liquid fuels as their 

major fuel, while fuelwood accounts for almost all energy at the lowest income 

levels (de Almeida and de Oliveira, 1995). The EKC relationship although initially 

investigated for a policy trade off by Grossman and Krueger (1991) has been 

explained based on basic demand and supply theory by Antle and Heidebrink (1995). 

Their theoretical model shows that during the early phases of economic growth, 

resource depletion grows with economy until income grows to a point and the 

demand for environmental quality improvement increases leading to a development 

path (Yandle et. al., 2004).  Panayotou (1997), however argued that the level of 

environmental quality resulting depend on the rate at which each level of economic 

growth is reached and therefore it is incomplete to assume that same level of 

environmental quality results at each level of income as taken in the above model.  

Generally, Panayotou identified three effects of economic activity determining the 

resulting environmental outcome as follows (also see figure 4).  

 

i. Scale Effect: This can be explained to mean income per unit of area i.e. the 

level or scale of economic activity. Other factors remaining constant, the higher 

the scale of economic activity the higher will be the pressure on environmental 

resources and therefore we expect the scale effect of income to be a 

monotonically increasing function on environmental variable. 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 
 

Source: Panayotou, 2003 

http://www.unece.org/ead/pub/032/032_c2.pdf. 

Figure 4: The Effect of Income on Environmental Quality 
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ii. Composition or Structure of Economic Activity: The content of an 

economy is an important factor for the environmental outcome. The sectors 

making up an economy determines the amount of pollution in a system. A 

country made up of agricultural, manufacturing and mining sectors will be 

more pollution-intensive than those made up of service sectors. An example 

of the former is the United Kingdom and that of latter could be China. 

However, as income increases the economic structure also changes and we 

could expect China likely to move from primary sector to service sector as 

its economy improves. This means that other factors held constant the 

composition effect will result in an initial shift from agriculture to 

manufacturing sector at early stages of economic growth and a shift from 

manufacturing to service sector at peak income. Thus a non-monotonic or 

inverted-U relationship between income and environment is expected. 

 

iii. Income Effect on Abatement Effort or ‘Pure’ Income Effects: 

Panayotou (1997) also explains the pollution abatement effort to be 

influenced by demand and supply which is driven by income. In his words 

‘On the demand side, at low income levels, people are more concerned with 

food…and less concerned with environmental quality…At higher income 

levels people begin to demand for higher levels of environmental quality’’. 

Therefore, the pure income effects result in a monotonically decreasing 

relationship between income and environment. 

 

We recognize these effects of income on environment but this thesis only takes an 

initial step of estimating the EKC model in order to understand the income-biomass 

consumption relationship (which has not been studied in the literature) and do not 

consider this as the end-point according to Panayotou (1997).  

 

However, the EKC hypothesis was given a tremendous attention in the 1990s. Many 

empirical studies using cross-country and household level data have been done in 

order to test this hypothesis. Tables 1 and 2 summarize EKC studies on several local 

pollutants relevant to this study and the turning-point incomes obtained.  
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3.2 Review of EKC Macro Analyses 

 

Most EKC studies conducted in 1990s are macro analysis using cross-country panel 

data. Several of these were conducted on air pollution and deforestation.  

 

Air Pollution 

Even though there are currently no macro level EKC studies on biomass 

consumption, there are several of such studies on the emission of local air pollutants 

such as SPM, CO, SO2, methane and NOx. Grossman and Krueger (1991) showed an 

inverted U-shaped relationship for SO2 in their investigation of the likely 

environmental impacts of North American Free Trade Agreement. Cole et. al., 

(1997) investigated the income-environment relationship for several air pollutants 

with local short-term impact, employing generalized least squares (GLS) fixed effect 

estimation technique. The results from their study show that EKC turning points for 

all pollutants estimated by the quadratic function ranges from $5,700 for SO2 to 

$15,100 for NO2 (1985 US Dollars) per capita while that for SPM falls in the middle. 

These turning-points for local pollutants are consistent with estimates from other 

studies. Grossman and Krueger, (1995) found a true EKC (an inverted-U shape) with 

a peak at $6,151 for SPM using a similar estimation technique (GLS random effect), 

whereas Cole et. al. (1997) found this turning point to be $8,100. Shafik and 

Bandyopadhyay (1992) also found a true EKC for SPM by using Ordinary Least 

Squares (OLS) fixed effect estimation method. They reported that the point of 

improvement starts at income level of $3,280.  

 

These results reveal that similar methods may yield estimates that are significantly 

different. The differences can be attributed to several factors including whether 

emissions per capita or per capita concentrations is used as pollution indicator; 

countries included in the panel dataset, years of data used, and non-income 

explanatory variables included in the regression models (Stern et. al. 1996). For 

instance, Selden and Song (1994) used urban air quality data (contrary to aggregate 

emission data used by Grossman and Krueger (1991)) and found different turning-

points for SO2 when different econometrics techniques were employed. Their 

random effect estimation yielded $10,681 (1985 US dollars), while fixed effect 

estimate is close to this figure ($8,916), whereas the cross-sectional estimate is very 
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far ($668). This result is explained by Stern et. al. (1996) to be due to the presence of 

heteroskedasticity and thus OLS estimation being biased. 

 

Deforestation 

Statistically significant EKCs were found for 64 developing countries in Latin 

America and Africa for deforestation (Cropper and Griffiths, 1994). Panayotou 

(1995) employed 1980s data from 41 countries and found a lower turning point of 

$800 (1985 US dollars) per capita for deforestation compared to estimates for SO2 as 

discussed above. Bhattarai and Hammig (2001) also found a true EKC relationship 

for deforestation using data from 66 countries. Evidence of a turning point of $8,700 

found for expansion of agricultural land use as indicator of environmental pressure 

on forests in tropical countries by Barbier and Burgess (2001) substantiates the 

findings of Bhattarai and Hammig (2001). On the same note, Ehrhardt-Martinez et. 

al. (2002) also established a substantial evidence of inverted U-shaped relationship 

for deforestation in 74 poor countries in Africa, Asia and Latin America. These 

evidences are contrary to the conclusion of Arrow et. al. (1995) that a true EKC is 

not possible for natural resource depletion. 
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3.3 Review of EKC Micro Analysis/Household Level Studies 

 

A household level study is believed to capture important factors, such as spatial 

intensities, demographics, and household expenditure to name a few, which affect 

household energy consumption. These advantages of micro level studies have led to 

increasing use of household level micro-data and country-level data (e.g. Lenzen et. 

al., 2006; Aldy, 2005; Millimet et. al., 2003).  Due to availability of data, several 

micro analyses have been conducted on developed countries. 

 

Plassmann and Khanna (2003) employed 1990 data for the United States and a 

multivariate Poisson-lognormal model to estimate the income level at which 

households are willing to reduce their exposure to pollutants associated with 

respiratory health effects. They found an inverted U-shaped relationship between 

household income and PM10 with a turning point of $20,000. However, very few 

micro level studies related to biomass consumption have been conducted in 

developing countries. Viswanathan and Kumar (2005) studied the household level 

fuel use pattern over two decades using data from16 states of India, in order to 

understand the factors behind the energy transition process. Although they did not 

utilise an econometric model, the simple method of graphical representation of trend 

in energy use by income groups shows that at country level a switch to cleaner 

energy, such as Kerosene, is slow among the rural households as their expenditure 

share of cleaner fuel only marginally increased over ten years while that of urban 

households doubled. This is an indication that richer households are predominant in 

urban areas as economy may grow faster than in the rural area and thus high income 

households have a higher energy switching potential than a poor household which is 

consistent with the EKC hypothesis. 

 

Foster et. al. (2000) tested the existence of energy transition process with a model of 

household energy utility as a function of net energy consumption6 and efficiency 

factor.  

                                                 
6 Net energy consumption is defined in the paper as a product of gross energy consumption and 
efficiency factor of the fuel 
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In their study, cross section data from a household level income and expenditure 

survey7 in Guatemala was utilised and the efficiency factor of electricity was used as 

a reference point for other fuels (kerosene, firewood, battery, etc). In order to 

measure the net energy consumed according to household income, they classified ten 

per capita income deciles. They found that household gross energy consumption rises 

steadily with income and peaks at about fifth income decile where an average 

household spends US $229 per capita. This turning point income estimate was 

confirmed in their paper by also utilizing regression models and their result shows a 

similar turning point-income (US $205) for household energy consumption. 

 

This review of the EKC literature shows that several indicators of environmental 

degradation have been used in the empirical investigations. Cole et. al. (1997) 

examined the EKC relationship for several pollutants including energy consumption, 

similarly to Torras and Boyce (1998) and Stern et. al. (1996). The most important 

feature common to all of these studies is that majority used panel data, similarly to 

this paper.  

 

  
 

                                                 
7 They also included other dummy variables such as household geographical locations, and  non-
income characteristics like demographics, education and employment, and access to various energy 
sources including electricity in their regression models. 
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GEMS: Global Environmental Monitoring System; PMWT: Penn Mark IV World Tables; LIFE: Life Expectancy; INFM: Infant mortality rate; OLS: 

Ordinary Least Square; GLS: Generalized Least Square; PPP: Purchasing Power Parity; SPM: Suspended Particulate Matter, UN: United Nations Database 

Table 1: Survey of Macro Level Analysis of EKC for Various Local Air Pollutants 

 

 

 

Authors 

 

Year 

 

Pollutant (s) 

(Environmental 

Indicator) 

 

Other 

Dependent 

Variable(s) 

 

Economic 

Growth 

Indicator 

 

Other 

Explanatory 

Variables 

 

Estimation 

Technique 

 

Data Type 

 

Data 

Source 

 

Countries 

 

Period 

 

EKC turning 

point 

 
 
Grossman and 
Krueger  

 
1991 

 
SO2 

 
_ 

 
GDP (PPP) 

Population 
density, 
dummies for 
locations, etc 

 
GLS Random 
Effect 

 
Aggregate 
emission data 

 
 

 
Cities and not 
country-level 
data were used 
and 32 countries 
were considered 

 
1977, 1982 
and 1988 

 
$ 4772 (1990 US 
Dollars) lower point 

Shafik and 
Banyopadhyay 

1992 SO2/SPM/ 
Deforestation 

Lack of Safe 
water,  Lack 
of urban 
sanitation, etc 

GDP (PPP) Location 
dummies 

OLS fixed 
effect 

Aggregate 
emission data 

World 
Bank 
database 

Several 
countries 
different for 
each variable 
but ranging 
from 44 – 90 
countries 

Several 
time 
periods 
ranging 
from 1960 
- 1986 

$3, 670/ 
$3, 280/ flat shape 
(no EKC) 

Panayoutou 1993 SO2/ SPM/NOx _ GDP 
(market 

exchange 
rate) 

_ OLS Fuel use  data 
(emissions) 

 55 countries 
(both developed 
and developing) 

1987 - 
1988 

$3,137/$4,500/ 
$5,500 

Selden and 
Song 

1994 SO2/ SPM/NOx _ GDP (PPP) Population 
density 

GLS (random 
and fixed 
effects), OLS 

emission data GEMS, 
PMWT 
 

8 developing 
countries and 22 
OECD 
Countries 

1979 - 
1987 

$10, 300/$10, 300/ 
$11,200 

Grossman and 
Krueger 

1995 SO2/ SPM _ GDP (PPP) Lagged income GLS (random 
effect) 

concentrations    $4,100 – 13,000 /  
$6, 200 

Cole et. al. 1997 SO2/SPM _ GDP (PPP) Country 
dummies 

GLS (fixed 
effects) 
quadratic 
form 

 OECD 11 OECD 
countries 

 $ 5,700/ $8,100 

Torras and 
Boyce 

1998 SO2/SPM _ GDP (PPP) Income 
inequality 

OLS concentrations    Flat shape curve 

Gangadharan 
and Valenzuela  

2001 Commercial energy 
use 

LIFE, INFM  GDP (PPP) Population 
density, urban 
population 

OLS, 2 stage 
least square 

 World 
Bank 
Database 

51 developing 
and developed 
countries (22 
OECD)  

1998 $6,043 

This Thesis 2007 Biomass fuel 
Consumption 

LIFE, INFM GDP (PPP) urban 
population, 
education 

Panel Data 
(OLS fixed 
effect), OLS 

 World 
Bank, 
UN 

136 developing 
and developed 
countries 

1971 - 
2004 

 



 

 

18 
 

 
 

Table 2: Survey of empirical studies that used household level micro-data 

 
 

Author(s) 
 

Year 
 

Type of 

Data 

 

Country 

 

Method 
 

Environmental 

Indicator 

 

Independent 

Variables 

 

Turning 

Point 

Income 

 
Foster et. al. 

 
2000 

 
ENIGFAM8 
household 
energy 
consumption 
and 
expenditure 
data between 
April 1998 – 
March 1999 

 
Guatemala 

 
OLS 
(logarithmic) 

 
Gross energy 
consumption in 
Kilowatts 
 

 

 
Household 
income, 
location 
dummies, 
non-income 
household 
characteristic, 
access to 
energy 
sources 

 
A peak 
consumption 
obtained at 
around fifth 
decile (US 
$205). 

 
Plassmann 
and Khanna 

 
2003 

 
Used 
disaggregated 
count data (at 
census tract 
level) of 
smallest 
geographic 
unit possible 
(1990) 

 
United 
States 

 
Multivariate 
Poisson-
lognormal 
model  
 

 
SPM, CO and 
ground level 
ozone (Number 
of days in a 
year during 
which the 
ambient 
concentration 
of a pollutant 
exceeds the 
NAAQS)9  
 

 
Household 
income 

 
PM10 ($20, 
000), no 
such clear 
and 
significant 
relationship 
for CO and 
Ozone. 

Viswanathan 
and Kumar 

2005 Household 
survey data  
on cooking 
fuel 
consumption 
between 
1983 – 2000 
at national 
level (rural 
and urban 
areas) and 
across states 
 

India No model 
specified 

Fuel 
consumption 

Household 
energy 
expenditure 

 
_ 

        

 
 

  

                                                 
8 Encuesta Nacional de Ingresos y Gastos Familiares 
9 National Ambient Air Quality Standards (NAAQS) established by US Environmental Protection 
Agency. 
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3.4  Empirical Study on Income, Health and Biomass Consumption Link 

 

Since 2000, EKC studies have changed focus as an increasing number of authors 

extended the model beyond environmental effects to include investigation of two 

stage effects between income, the environment and human health. Positive 

relationship between health and income has been well recognized and studied in 

international development (Bloom and Canning, 2000). It is believed that higher 

levels of income lead to improvements in health status. Mostly, studies on this 

relationship have employed income variable measured as income levels over a 

number of years, income change over time or duration of poverty experience as 

categorized by Benzeval et. al. (2000). It has been found in some of the cross-

sectional studies that income loss overtime results in poorer health than income gain 

overtime (Hirdes et. al., 1986; Duncan, 1996). A survey by Benzeval et. al. (2000) 

provides evidences that poverty is a significant threat to human health. Smith and 

Zick (1994) found that people living on low income for long time period have worse 

health outcome than those who infrequently experience poverty. 

 

However, the relationship might also work in another way: as the economy grows, 

environmental pollution increases leading to lost workdays due to illness. The 

adverse health effect of biomass use should lead to increased mortality especially in 

infants, children and their mothers. In a cross country study, Yeh (2004) shows that 

as use of biomass fuel increases there is an increasing trend of average infant 

mortality rate and child mortality. As a result, the health benefits obtained from 

increased income could be negated by the social health cost incurred from pollution. 

This hypothesis was found to be true in a cross-country analysis of developing 

countries by Gangadharan and Valenzuela (2001). In this study, the impact of 

commercial energy use and other environmental pollutants on life expectancy and 

infant mortality rate was investigated using OLS and two stage least square 

estimation techniques. Their results show a statistically significant negative effect of 

energy use on health. Although education was found to be insignificant in predicting 

life expectancy, other variables including income, immunization rates, physicians per 

population and urbanization were reported to be significant predictors of infant 

mortality and child mortality rates.  This finding requires research and policy 

attention for various important reasons, e.g. the global burden of disease due to 
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biomass consumption is significant (WHO, 2005). Also, a household livelihood 

depends greatly on health of the family members. ‘Being ill as a result of indoor 

smoke or having to care for sick children reduces earnings and leads to additional 

expenses for health care and medication’ (Rehfuess, 2006) and this could lead to a 

kind of poverty vicious circle for biomass consumption. 

 

We therefore extend our EKC study to investigate the impact of biomass use on 

health following Gangadharan and Valenzuela (2001), however we employ panel 

data fixed effects which is more efficient than cross section analysis. Briefly it will 

be worthwhile to mention that intuitively from Gangadharan and Valenzuela 

(2001)’s argument, it is observed that the negation of health gains at initial phases of 

economic growth could increase the height of the EKC, which will necessitate a 

higher income level as the turning point (Panayotou, 1997) if policy is not put in 

place at early phases of economic growth to capture the health gains (this hypothesis 

was not tested in this study). 
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4.  Data and Analytical Framework 

 

Data used in this study are obtained from several sources, including the United 

Nations Common Database (UNCDB), World Bank databases (WBKDSD), World 

Health Organisation Statistical Information System (WHOSIS), International Energy 

Agency (IEA) and Pen World Tables 6.2.  

 

Biomass consumption data are obtained from IEA energy statistics. Data on the area 

of arable and permanent crops are collected from Food and Agricultural Organization 

(FAOSTAT). Six health variables, a population variable and a literacy rate variable 

are obtained from the WBKDSD. Per capita income measured in purchasing power 

parity (GDP) and population data are gathered from the Pen World Tables 6.2. 

Percentage of child death due to HIV/AIDS (HIV) and 2004 life expectancy of which 

data could not be obtained from the WBKDSD were taken from the WHOSIS. 

 

Table 3 presents the variables, unit of measurement and their sources, while table 4 

presents the number of countries included in each dataset used. Some variables do 

not have data spanning over several years and some countries lack key variables like 

GDP, thus we created 5 datasets. Panel datasets A and B contain data for 132 and 

102 countries respectively covering years from 1971 to 2004 and the former presents 

the results of the EKC hypothesis test, while the latter reports the results of the health 

hypothesis test. Three cross-sectional datasets for years 1990, 2000 and 2004 were 

also created so as to allow comparison of results and verification of the claim by 

Stern et. al. (1996) that results depend on the year and sources of data included in a 

study, and estimation technique used. Countries included in all datasets are same as 

those in panel dataset A in which OECD and developing countries were well 

represented. A list of all countries included in panel dataset A is presented in 

Appendix I.  
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4.1 Dependent Variables 

We conducted panel data analysis using biomass consumption (BIO), infant 

mortality rate (INFM) and life expectancy (LIFE) as endogenous variables. In this 

study, instead of using efficiency factor and gross energy consumption data as used 

by other authors (e.g. Foster et. al., 2000), we utilised share of combustible 

renewables and wastes in the total primary energy flow which is a more specific-

data. Life Expectancy variable does exhibit some shortcomings. Gangadharan and 

Valenzuela (2001) indicated that ‘the causes of death in adults are much less likely to 

decrease with increases in per capita income since many adult deaths could be due 

to use of tobacco and alcohol and other related factors which rise with income’. 

Although this shortcoming is recognised we could not obtain a time series data for 

healthy life expectancy which has been regarded as a better indicator. On the 

question of which health indicator is a true revelation of impact due to indoor air 

pollution, many studies have found statistically significant and negative income 

elasticity for infant mortality rate. Yeh (2004) shows that the negative effects of 

biomass fuel use on mortality are apparent in aggregate national indicators such as 

infant mortality. Therefore we consider infant mortality rate as having a good causal 

relationship with biomass consumption and it was chosen as a good alternative while 

we recognise the fact that impact of biomass use on health would have been well 

captured better by micro-level household data (Yeh, 2004). 

 

4.2  Factors Determining Biomass Consumption  

In the EKC literature, environmental quality has been shown to be explained by both 

income and non-income variables. Our study aims to test the EKC relationship for 

biomass consumption. As the IEA (2006) energy statistics shows that the majority of 

biomass consumption is still in the developing countries where there is low GDP per 

capita while cleaner fuel dominates only in households of developed world we 

expect a high level of biomass use at lower levels of income. In line with this, a shift 

to cleaner energy sources is expected to take place at very low level of income (i.e. 

the turning point). This negative association is expected since we believe that as 

income rises a poor, rural household will climb the energy ladder and thus reduce the 

amount of biomass fuel use. We therefore employ real GDP per capita, purchasing 

power parity (GDPC) as the proxy for economic growth. Non-income factors, such 
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as  income inequality, literacy rate, political rights and civil unrest, urbanization and 

population level of a country, have been found to have impacts on the level of 

environmental quality (e.g. see Gangadharan and Valenzuela, 2001; Torras and 

Boyce, 1998; Selden and Song, 1994; Cole et. al., 1997; Shafik and Banyopadhyay, 

1992).  In this analysis, we assume that urbanization (UPOP) should lead to a 

decrease in the biomass fuel use, and thus a negative association is expected. Also, 

education is seen as a factor that creates awareness about the bad effect of indoor air 

pollution and low efficiency associated with biomass fuel. Hence we expect that the 

education level of a country (EDUP) should be negatively correlated with biomass 

consumption. The results of correlation test between income per capita and education 

level shown in tables 6, 7 and 8 indicates that there is no risk of endogenity problem 

between the two variables in all models employed.   

 

Population density is an important explanatory variable since a high density indicates 

more pressure on environmental resources. However, a tradeoff between urban 

population and population density became necessary in this study as there was a 

strong correlation between the two variables and thus the strict exogenity and ‘no 

multicollinearity’ assumptions of the fixed effect estimation and Ordinary Least 

Square (OLS) methods used in this study could be violated. This is contrary to the 

work of Gangadharan and Valenzuela (2001) which is surprising because they 

included both simultaneously in their estimation model.  
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Table 3: Variables and Sources 
 
Variable Code 

 
Description of the Variable, Sources and Units 

GDPC Real gross domestic product per capita in Constant Dollars, 
purchasing power parity (1996 Benchmark) - PENN WORLD 
TABLES 6.2 

GDPC2 GDPC square 
UPOP Urban Population (% total) - WORLD BANK KEY 

DEVELOPMENT STATISTICS DATABASES 
 

FPDN Forestry Production (roundwood, million cubic metres) - United 
Nations Common Database  (UNCDB)  FAOSTAT 
 

ALANDA Area of arable and permanent crops (1000 hectares) per total land 
area - United Nations Common Database  (UNCDB)  FAOSTAT 
 

EDUP Gross enrollment rate in primary school (%), total - WORLD 
BANK KEY DEVELOPMENT STATISTICS DATABASES 
 

BIO Biomass consumption (Combustible Renewables and Waste) , 
Share of  Total Primary Energy Supply, Million ton of oil 
equivalent (Mtoe) – IEA Energy Statistics 
 

INFM Infant mortality rate (per 1,000 live births) - WORLD BANK 
HEALTH, NUTRITION AND POPULATION DATABASE 
(HNPD) 
 

LIFE Life Expectancy at birth, total (years) - WORLD BANK HEALTH, 
NUTRITION AND POPULATION DATABASE (HNPD) 
 

IMMU1 Child immunization rate (% of children ages 12-23 months) - 
WORLD BANK HEALTH, NUTRITION AND POPULATION 
DATABASE (HNPD) 
 

DOCT Physicians (per 1,000 people) - WORLD BANK HEALTH, 
NUTRITION AND POPULATION DATABASE (HNPD) 
 

HIV Deaths among children under five years of age due to HIV/AIDS 
(%) - WHO Statistical Information System (WHOSIS) 

ASANF Access to an improved water source, total (% of population) - 
WORLD BANK HEALTH, NUTRITION AND POPULATION 
DATABASE (HNPD) 

AWATF Access to improved sanitation facilities, total (% of population) - 
WORLD BANK HEALTH, NUTRITION AND POPULATION 
DATABASE (HNPD) 
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The level of biomass consumption in a country is also thought to be positively 

correlated with the extent of agricultural production since combustible renewables 

and wastes which make up biomass fuels, originate from agricultural production. For 

example, amount of biomass such as dung and firewood available in any country is 

assumed to depend on the amount of agricultural production. However, it should be 

noted that this assumption may not be universal as technology is an important factor 

that determines the area of land in agricultural production in a country. A comparison 

of FAOSTAT statistics on agricultural production in the United Kingdom and Brazil 

clearly shows this and the amount of forestry production could have been a suitable 

alternative but subjected to same issue. Contrarily, forest area in each country is 

considered a reasonable determinant of biomass production since this is not so much 

affected by other factors such as technology as discussed above. Unfortunately, we 

could not obtain data on this variable and we therefore normalized the area of arable 

and permanent crops by dividing it with the total area of land in each country and the 

variable is named ALANDA. This was then included as a predictor of biomass 

supply in all models.  Table 5 lists the expected signs of the independent variables 

included in our models. 

 

Table 4: Datasets and Number of Countries 

 

 

 

 

 

 

Dataset 

 

 

No of Countries 

Panel Data A  

(1971 to 2004) 

 

132 

Panel Data B 

(1971 to 2004) 

 

102 

Cross-sectional Data, 1990 

 
132 

Cross-sectional Data, 2000 

 
132 

Cross-sectional Data, 2004 

 
132 
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Table 5: Expected Signs of Explanatory Variables 
 Dependent Variables 

Explanatory Variable BIO INFM LIFE 

GDP - - + 

GDP Square - n/a n/a 

UPOP - +/- +/- 

FPDN + n/a n/a 

ALAND + n/a n/a 

EDUP - - + 

BIO n/a + - 

IMMU1 n/a - + 

DOCT n/a - + 

HIV n/a + - 

ASANF n/a - + 

AWATF n/a - + 

 

 

4.2 Factors Determining Life Expectancy and Infant Mortality 

Bloom and Canning (2000) clearly shows that the positive correlation between 

economic growth and health has been well studied. It is expected that as income rises 

the health of a population should be getting better since food and drugs will 

gradually become affordable and thus mortality/morbidity rate should decrease. 

Environmental pollution, however, which results in the earlier phases of income 

growth, should have a negative effect on the health as we discussed in chapter 3. The 

increasing urban air pollution associated with economic growth is an indication of 

feedback effect on income through the impact of pollution on health. We could 

therefore expect infant mortality rate to increase with urban population on one hand 

(probably because there are ghettos in urban areas in developing countries where the 

conditions are even worse than in rural areas) and on the other hand decrease since 

urbanization will increase access to improved water and sanitation infrastructure.  

 

Opposite of these relationship should occur in the case of life expectancy. Biomass 

use should be negatively associated with life expectancy and positively correlated 

with infant mortality. The health of a country is also thought to depend on other non-

environmental factors, such as education level, access to health facilities, 

immunization rate, prevalence of infectious diseases, e.g., HIV/AIDS, and the 

number of doctors per population. For instance spread of a bacteria disease can be 

quicker and massive if the percentage of the total population having access to 

improved sanitation facilities (ASANF) is low. We therefore included percentage of 
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total population with access to improved water source (AWATF), ASANF, number 

of physician per 1000 (DOCT), child immunization rate (IMMU1) and percentage of 

child death due to HIV/AIDS (HIV) in our models.  

 

Table 6: Correlation between the estimators of biomass consumption (Panel 

data estimation A) 
 GDPC GDPC2 UPOP ALANDA EDUP 

GDPC 1     

GDPC2 0.9435 1      

UPOP 0.2349 0.1597 1    

ALANDA -0.1328 -0.0777 -0.154 1  

EDUP 0.0938 0.0833 0.3088 0.0986  

 

 

 

Table 7: Correlation between the estimators of population health (Panel data 

estimation B) 
 GDP UPOP BIO EDUP IMMU1 DOCT 

GDP 1           

UPOP 0.4013 1         

BIO -0.2125 -0.3028 1       

EDUP 0.0156 0.0805 -0.0376 1     

IMMU1 0.4526 0.3213 -0.1814 -0.0524 1   

DOCT 0.4417 0.4664 -0.1553 0.0074 0.331 1 

 

 

Table 8: Correlation between the estimators of population health (2004 Cross-

sectional data estimation) 
 EDUP GDP BIO IMMU1 DOCT HIV ASANF AWATF 

EDUP 1               

GDP 0.1064 1             

BIO 0.1747 -0.1714 1           

IMMU1 0.2287 0.2761 -0.2585 1         

DOCT 0.0855 0.254 -0.0549 0.3051 1       

HIV -0.0454 -0.1909 0.0097 -0.222 -0.222 1     

ASANF 0.168 0.351 -0.2529 0.115 0.245 -0.2286 1   

AWATF 0.256 0.377 -0.0993 0.2824 0.2824 -0.0862 0.3813 1 

UPOP -0.0063 0.3866 -0.1668 0.0917 0.0917 -0.3429 0.3177 0.192 

 

 

 

 

 

 

5.  Methodology 
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Generally, an EKC hypothesis is tested using a common method of fitting the data to 

the regression or a reduced form model: 

EP it = Пit + β1Yit + β2Y
2
it + β3Zit + eit                  (I) 

EP represents environmental pressure (biomass consumption in this study); Y is the 

per capita income; subscript i stands for a country index; t stands for time index; П is 

the intercept; βi are the coefficients on explanatory variables; where Zit stands for 

variables other than income that can influence EP; and eit represents the normally 

distributed error.  

 

Several studies have estimated model 1 above using different econometrics 

techniques (de Bruyn, 2000) ranging from pooled OLS to first-differenced equation 

(e.g. Cole et. al., 1997; Torras and Boyce, 1998). In a panel data set there are 

unobserved or fixed effects and idiosyncratic error term. In model II below the 

variable ai is the fixed effect which captures all unobserved factors that do not 

change over time (t) but affect EPit (Wooldridge, 2006).    

EPit = Пit + β1Yit + β2Y
2
it + β3Zit + ai + eit               (II) 

This ai refers to country heterogeneity in our panel data where eit, represents the 

unobserved factors that change over time (idiosyncratic error) but affect EPit. Many 

authors have removed this country-specific heterogeneity (ai) using fixed and/or 

random effects estimation method. Cole et. al., (1997) used both methods in testing 

EKC hypothesis for air pollutants and energy use from transport. Critically following 

their step we conducted a Hausman specification test to ascertain which method 

estimates our panel data better. In both panel data estimation A and B discussed in 

chapter 4 the null hypothesis of no correlation between individual effects and 

independent variables was rejected. Therefore the EKC and health hypotheses were 

tested using fixed effects estimation technique. 

 

5.1  PANEL DATA ESTIMATION MODEL 

Panel data estimation technique is utilised in this study because it presents several 

advantages: 

i. Some effects which can not be detected in cross-sectional or pure-time series 

data can be easily identified in panel data. For instance, if correlation between 

two explanatory variables is suspected cross-sectionally, panel data can be 
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useful in verifying if same association exists within countries (Wooldridge, 

2006).  

ii. Panel data fixed effects estimation is more efficient than OLS (Stern et. al., 

1996), and utilises more information (i.e. more data), and more degree of 

freedom. 

iii. Panel data makes it easier to remove the covariance between the country 

heterogeneity and the explanatory variables. 

 On one hand, our interest is to see how biomass consumption is explained by certain 

factors, which could be said to be of two parts. First, time-varying observable factors 

such as level of economic growth (GDPC) determine the amount of pollution in a 

country. Also biomass use depends on other factors as explained earlier in section 

4.2. Therefore biomass consumption is a function of level of economic growth (Yi) 

and other factors that affect biomass use (Zi) as shown in the following relationship.  

EP i = f (Yi, Zi)                                      (III) 

However, the second part consists of factors determining biomass use in a country 

that are unobservable but constant overtime (ai). For instance the region where a 

country is located is constant every year but this determines the type of vegetation 

and agricultural practice in that country. Also the land area does not change and the 

amount of forest area in a country could also depend on this. The amount of 

agricultural wastes which are used as household cooking fuels in a country also 

depend on the area of land available for agricultural production. With these fixed 

effects, equation III becomes 

EPi = f (Yi, Zi, ai)                              (IV) 

We call this a ‘fixed effect biomass consumption function’ (FBF). Taking this 

function we assume that the unobserved effects, ai correlate with one or more of the 

explanatory variables (Yi and Zi) and therefore a fixed effect transformation is used 

to eliminate the ai.  

The FB function in equation (IV) can thus be expressed as follows for country i 

BIOi = f (GDPCi, UPOPi, ALANDAi, EDUPi, ai)            

 

Biomass consumption (BIOit) varies over time period t = 1, 2, ……, T; β1 - β5 are 

parameters to be estimated, ai and eit are constant and time-varying unobserved 

BIOit = β1GDPCit + β2GDPC
2

it + β3UPOPit + β4ALANDAit + β5EDUP it + a i + eit          (VI) 

(V) 
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effects respectively while others are the independent variables as explained in section 

4.  With a fixed effect transformation, the average of equation VI over time for each 

country i becomes 

 

 

where            BIOit    T  

T

t
BIOit

1
                      

Subtracting equation VII from VI:   

 

 

 

Thus the fixed effect transformation is captured as a general time-demeaned equation 

for each country i  

 

 

The BIOit - BIOit is the time-demeaned data of biomass consumption which is 

similar for all explanatory variables and the idiosyncratic error (eit). The model IX is 

estimated to obtain the fixed effects estimators. The quadratic function embedded in 

the time-demeaned equation is to obtain EKC turning point. The turning point 

income for biomass consumption is the maximum of the quadratic function.  In order 

to capture this diminishing marginal effect of economic growth (Y) on biomass 

consumption (X), the function takes the form 

 

Y = β0 + β1X + β2X
2
               

An EKC hypothesis will be true when β1 > 0 and β2 < 0 such that the relationship 

between X and Y has a parabolic shape or inverted-U as shown in figure 1. The 

maximum of the function is obtained at a point expressed by the calculus form  

  


x  =         β1   -2β2                                          (XI) 

BIOit = β1GDPCit + β2GDPC
2

it + β3UPOPit + β4ALANDAit + β5EDUP it + a i + eit       (VII) 

 
BIOit - BIOit = β1 (GDPCit - GDPCit) + β2 (GDPC

2
it - GDPC

2
it) + β3 (UPOPit - UPOPit) +  

β4 (ALANDAit - ALANDAit) + β5 (EDUP it - EDUP it) + eit - eit, t = 1, 2,…, T      
            
                     (VIII) 

 

BIO*it = β1GDPC*it + β2GDPC
2
*it + β3UPOP*it + β4ALANDA*it + β5EDUP* it + e*it,  

     t = 1, 2,…, T                           (IX) 

-1 (VIII) 

(X) 
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This 


x  represents the turning-point income at which maximum biomass 

consumption is observed in i (Wooldridge, 2006). 
 

Similarly, fixed effects model without the quadratic function was estimated for infant 

mortality and life expectancy in which income, biomass consumption, urban 

population and other variables were included as explanatory factors in the model. We 

investigated a relationship discussed in section 4.3 and illustrated in equation XII. 

H i = f (Yi, BIOi, Zi)     (XII) 

The equation shows that health (Hi) is dependent on the level of biomass 

consumption (BIOi), the level of economic growth (Yi) and other social factors (Zi) 

(see section 4.3). Our analysis could also be subjected to potential biases, which are 

common in EKC analysis such as measurement errors, data sources and collection 

problems e.g. cross-country data are subjected to aggregation bias as noted by 

Plassmann and Khanna (2006). 

 
 

5.2  CROSS-SECTIONAL DATA ESTIMATION MODEL  

Owing to data constraints it was not possible to include some explanatory variables 

which are important in the fixed effect estimation models for biomass consumption, 

infant mortality and life expectancy and these are ALANDA, ASANF, ASWATF, 

DOCT, and IMMU1. Therefore, we consider OLS estimation for cross-section data 

in order to allow comparison with results obtained from the fixed effects estimation 

as discussed in chapter 4. Cole et. al., (1997) conducted panel analysis for total 

energy use and some air pollutants while ‘methane and CFCs and halon were 

subjected to cross-section OLS analysis’. Although in their work, linear and log-

linear relationships were used in the least square estimation model we employ a 

linear form for biomass consumption (EPi) and health (Hi) as written in equations 

XIII and XIV respectively. 

EPi = Пi + β1Yi + β2Y
2
i + β5Zi + ei                  (XIII)  

Hi = Пi + β1Yi + β2EPi + β5Zi + ei                  (XIV) 
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6. Results 

 

6.1 Biomass Consumption EKC Analysis 

Using panel dataset A, we estimated equation IX for the biomass consumption and 

results obtained are presented in Table 9. Equation XIII was also estimated using 

cross-sectional datasets and results obtained are presented in Table 9 as well. 

Heteroskedasticity was corrected for by obtaining robust standard error while we 

corrected for autocorrelation by using xtserial and xtregar commands in STATA 9. 

In accordance with Stern et. al. (1996)’s comment that cross-sectional data OLS 

estimation may be subject to bias we report the heteroskedasticity test results 

(Appendix III). 

 

The panel data EKC estimates reveal that per capita income, urbanization level, and 

ALANDA significantly influence biomass consumption, whereas the impact of 

literacy is insignificant. We obtained an inverted-U relationship (a true EKC) from 

the fixed effects estimation in which biomass consumption initially increases with 

per capita income and then peak at $119 (1996 US Dollar). This turning point occurs 

at very low income level. This result is as expected since this level of income is 

appropriate for a household which shifts from dependence on animal dung to at least 

a transition fuel (e.g., char coal, kerosene, etc) in the second step of the energy ladder 

(figure 2). Also as explained in chapter 4, the IEA energy statistics from which the 

biomass use data was obtained already shows that highest dependence on biomass 

still occurs in the poorest nations where per capita income is very low. Again, this 

estimate is similar to the household level study in Guatemala by Foster et. al., (2000) 

in which the turning point obtained for gross energy consumption per household 

occurs at US $205. The EKC literature also indicates that pollutants of short term 

impact usually have a low turning–point income (Arrow et. al., 1995). The EKC 

turning point of $5000 obtained for commercial energy use by Gangadharan and 

Valenzuela (2001) is far from our estimates because commercial energy use is 

predominant in the developed world and not common among the poor households in 

developing countries where significant consumption of biomass still takes place 

(IEA, 2004). 
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As we aim to compare OLS and panel data (fixed effects) estimates, only results 

from 1990 cross-sectional dataset show a true EKC relationship that is comparable to 

fixed effects estimate. Here, the turning point estimate is higher than that obtained 

from panel data analysis but very similar to the estimate of Foster et. al. (2000). 

Biomass consumption peaks at per capita income level of $266 (1996 US Dollar). 

This is similar to the results of Cole et. al., (1997) in which OLS estimate for CFC 

and halons is higher than any of the fixed effect estimates for CO and SO2.  

 

Furthermore, statistically significant negative coefficient on the level of urban 

population which implies that as more people live in the urban areas a reduction in 

dependence on biomass use results and the higher is the potential of shifting to 

cleaner fuels. Contrarily, the negative coefficient on ALANDA is counter to our 

expectation. It shows that the higher the level of agricultural production the less is 

biomass consumption. This could have some relevance in the WTO GATT debates 

on subsidies on agriculture in which the supporters of ‘output model’ of agriculture-

environment relationship argue that environmental quality co-evolved with 

agriculture and that they are both complementary goods (Hodge, 2000) claiming that 

agriculture is multifunctional. The implication here is that some level of agricultural 

production could be necessary for a reduction in dependence on biomass use and this 

could be true as agriculture could raise the per capita income level. However, this 

point is not consistent as a positively significant estimate was obtained on the same 

variable in OLS estimation for 1990 cross-sectional data which is in line with our 

expectation and supports the ‘input model of agricultural impact on environment’ 

(Hodge, 2000) in which both agriculture and environment are seen as competitive 

goods. One inference from these divergent results is that estimates from EKC studies 

depend on the econometrics technique employed in the analysis (Stern et. al., 1996).  

 

In order to again verify the claim of Stern et. al. (1996) that EKC study outcome also 

depend on the data employed. Results from 2000 and 2004 cross-sectional datasets 

OLS estimations presented in table 9 show an opposite EKC relationship (U-shape) 

which is counterintuitive. The positively significant coefficients on the GDP square 

term imply that biomass consumption increases at higher income levels.  
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In all the estimations (fixed effects and OLS) we observed a negatively significant 

coefficient for the level of urbanization (UPOP) which shows that urbanization is a 

good predictor of biomass use as explained above. On the other hand, level of 

education is not a significant predictor of biomass consumption in all estimations 

which run counter to expectation except for 2000 cross-section in which the positive 

sign on the coefficient indicates that as education level increases in a country the 

level of awareness about the bad health impact of indoor air pollution increases and 

thus people tend to reduce biomass use and shift to cleaner fuel. However, 

coefficients on ALANDA for 2000 and 2004 cross-sections support the ‘output 

model of environmental impact’ as earlier discussed which is opposite to the result 

from 1990 cross-sectional data. In general, while a true EKC is obtained from 1990 

cross-sectional data no true EKC was found from 2000 cross-sectional data when 

both were subjected to same OLS estimation technique. This implies that the data 

employed for EKC analysis is an important factor determining the outcomes and this 

is consistent with the claim of Stern et. al. (1996). 

 

6.2 Impact on Population Health 

 

Results of the fixed effect (panel data B) and cross-sectional data OLS estimations of 

a similar equation to Eq. (IX) with appropriate health variables and Eq. (XIV) 

respectively are presented in tables 10 and 11. The tables compare the results from 

both estimation techniques as well as results from different year cross-sectional data. 

In our estimations, infant mortality (INFM) and life expectancy (LIFE) are the 

endogenous variables. Tables 10 and 11 report the impact of biomass consumption 

(BIO) on these variables respectively. We considered that some additional 

explanatory variables of which panel data could not be obtained which are missing 

out of the fixed effect model (HIV, ASANF, AWATF: see table 4) could biased our 

estimates and therefore we included  those variables in the 2004 cross-sectional OLS 

model in order to make comparison with other cross-section results. It however 

became intuitive to think that there could be significantly high correlation between 

these health variables and urban population but correlation coefficients obtained 

which are shown in table 8 prove opposite and we employ them in our models. 
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In the fixed effect estimations results (both INFM and LIFE), only the coefficients on 

biomass consumption and GDP have signs as expected while UPOP which is already 

considered to exhibit an ambiguous relationship has a positive association with infant 

mortality and a negative association with life expectancy. The fixed effect results 

imply that biomass consumption is a significant determinant of population health. It 

signifies that as biomass consumption increases, infant mortality rate rises while life 

expectancy falls. In both cases, GDP is significant and the signs indicate that as 

income level rises infant mortality decreases and life expectancy increases which is 

intuitive.  

 

In the case of UPOP, the positive sign on the coefficient when INFM is the 

dependent variable implies that while environmental improvement (biomass use 

reduction) is achieved with increasing level of urbanisation, the feedback effect of 

economic growth through urban air pollution on health is significant and thus the 

environmental gains at early stages of economic growth cancels out the health gains 

which led to increase in infant mortality rate.  

 

Also, this is confirmed with the negative relationship obtained for life expectancy 

which means that as urbanisation increases life expectancy falls. As discussed in 

section 4 that other factors, such as tobacco consumption could be responsible for 

adult life expectancy increasing urban air pollution could reduce the life expectancy. 

The results of two-stage least square (2SLS) estimation by Gangadharan and 

Valenzuela (2001) on the impact of CO2, SO2, and NOx, which are common urban 

air pollutants show negative significant relationships with life expectancy while 

positive relationship of CO2 with the level of urban population in the same paper 

indicates that urban air pollution increases with urbanisation. We observe that the 

number of physicians per proportion of the population (DOCT) has a negative impact 

on infant mortality rate although not significant (fixed effect). At the same time, it 

appears that the level of education has no significant impact on life expectancy 

similarly to the results of fixed effect EKC analysis discussed above. The signs on 

the coefficients for level of immunization (IMMU1) as shown in table 10 column 2 

indicates that it does not decrease infant mortality rate but rather opposite. 
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However, the coefficients from our OLS estimates for impact of DOCT on life 

expectancy have expected signs and the 2000 cross-section result shows that DOCT 

variable has a significant impact on life expectancy. This OLS estimate is similar to 

2SLS estimate from Gangadharan and Valenzuela (2001). Also, results from all the 

OLS estimations indicate that the level of immunization significantly reduces infant 

mortality and increases life expectancy.  

 

Again, in all OLS estimations, level of education exerts a significant impact on infant 

mortality and life expectancy with coefficient signs as predicted. In table 10, the 

results show that infant mortality decreases as level of education increases while in 

table 11 the results indicate that life expectancy rises as the level of education 

increases. Similar situation occurs for IMMU1 and DOCT in both cases which are 

consistent with our expectation as discussed in chapter 4.  

 

However, we obtained interesting results for the impact of level of urbanisation on 

health. First, the sign on all coefficients obtained from OLS estimation of cross-

sectional data are the same but opposite in both cases when life expectancy and 

infant mortality are dependent variables. In table 10 all coefficients (1990, 2000 and 

2004) for UPOP show that increases in the level of urbanisation results in reduction 

in infant mortality which is significant in 1990 and 2000 while in table 11 the results 

implies that as the level of urbanisation increases life expectancy also increases and 

this is significant in 1990 and 2000 as well. In both cases, the sign on the UPOP 

coefficients for fixed effects is opposite to those of OLS cross-section estimates. This 

also implies that claim of Stern et. al. 1996 (that EKC study outcome depend on 

estimation technique used) may not only hold for EKC but also in the health analysis.  

 

When we included other variables which we consider important estimators of 

population health in 2004 cross-section OLS estimation it was observed that biomass 

consumption does not show a significant impact on health and the sign on the 

coefficient is opposite to our expectation when infant mortality and life expectancy 

are used as dependent variables. Generally, the result comparison shows that our 

fixed effect estimate with less explanatory variables better explain the impact of 

biomass consumption on health than OLS cross-section estimate with more 

explanatory variables (see tables 10 and 11).  
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Table 9: The effect of per capita income (GDP), population, agricultural production and education on biomass consumption per 

capita 

Explanatory Variable 

 

Panel Data Estimation A 

(Fixed effects) 

1990 Cross Sectional Data 

Estimation (OLS) 

2000 Cross Sectional Data 

Estimation (OLS) 

2004 Cross Sectional Data 

Estimation (OLS) 

  

COEFF 

(R.SE) 

 

COEFF 

(SE) 

 

COEFF 

(SE) 

 

COEFF 

(SE) 

Constant 0.25468*** 
(0.2784) 

 

0.6419** 
(0.2443) 

0.27291** 
(0.12710) 

1.63101 
(1.23238) 

GDPC 0.00068*** 
(0.00023) 

 

0.0213* 
(0.02180) 

-0.00403 
(0.00156) 

-0.01666* 
(0.00346) 

GDPC2 -2.86E-06** 
(1.37E-06) 

 

-0.00004** 
(0.00001) 

0.00002* 
(0.00001) 

0.00005* 
(0.00003) 

UPOP -0.00122** 
(0.00060) 

 

-0.0098*** 
(0.0121) 

-0.00350*** 
(0.00070) 

-0.00152* 
(0.00088) 

ALANDA -0.10649*** 
(0.04240) 

0.4168*** 
(0.8595) 

-0.18629* 
(0.10375) 

-0.00547** 
(0.00258) 

EDUP -0.00003 
(0.00013) 

-0.0023 
(0.0031) 

0.00104 
(0.00137) 

-0.01328 
(0.01152) 

F-test 9.46 9.65 10.66 3.04 
R2 

 0.0637b 0.3567 0.2363 0.1280 
Autocorrelation F-statistica

 - 0.2705 0.7950 0.0476 
Heteroskedasticity F-

statistica  
- 7.6376 0.8572 4.1053 

Hausman’s x
2  5.96 - - - 

Turning Point (1996 US $) 119 

True EKC 

266 

True EKC 

101 

Opposite EKC 

167 

Opposite EKC 

a – see appendix I for output, b - R2 (within), COEFF – Coefficient, R.SE: Robust Standard Error, SE: Standard Error 
*** 1% significance level; ** 5% significance level; * 10% significance level 
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Table 10: The effect of per capita income (GDP), biomass consumption and other explanatory variables on health of the 

population (Dependent Variable: Infant Mortality) 

Explanatory Variable 

 

Panel Data Estimation B 

(Fixed effects) 

1990 Cross Sectional Data 

Estimation (OLS) 

2000 Cross Sectional Data 

Estimation (OLS) 

2004 Cross Sectional Data 

Estimation (OLS) 

 COEFF 
(R.SE) 

COEFF 
(SE) 

COEFF 
(SE) 

COEFF 
(SE) 

Constant 6.45572 
(12.93299) 

162.27370*** 
(15.67045) 

163.14160*** 
(19.71510) 

208.3832*** 
(19.2496) 

 

BIO 0.000224* 
(0.00017) 

0.00002 
(0.00003) 

9.10E-07 
(0.00005) 

-7.03E-06 
(0.00007) 

 

GDP -0.00021*** 
(0.00007) 

-0.00218*** 
(0.00035) 

-0.00113*** 
(0.00022) 

-0.00116*** 
(0.00021) 

EDUP 0.10171** 
(0.03631) 

-0.40667*** 
(0.15255) 

-0.39558** 
(0.18534) 

-0.45506** 
(0.16075) 

UPOP 0.49838*** 
(0.13380) 

-0.28355** 
(0.14133) 

-0.30754*** 
(0.10261) 

-0.01980 
(0.09665) 

 

IMMU1 0.78050*** 
(0.17750) 

-0.65712*** 
(0.14459) 

-0.62699*** 
(0.13696) 

-0.89041*** 
(0.16894) 

DOCT -0.00233 
(0.03140) 

-4.77887*** 
(1.78582) 

-4.19996*** 
(1.27724) 

-0.43347 
(1.62834) 

HIV - - - 0.38124* 
(0.21787) 

ASANF - - - -0.10706 
(0.12747) 

AWATF - - - -0.33794** 
(0.14114) 

F-test 10.91 57.94 43.00 26.78 
R-squared 0.1625 0.7321 0.7062 0.6789 

Heteroskedasticity F-
statistica 

- 1.15358 0.8333 0.0647 

Autocorrelation F-statistic - 0.10300 0.4468 1.0157 

Hausman’s x
2  14.82    

a: see appendix I for output, b: R2 (within), COEFF – Coefficient, R.SE: Robust Standard Error, SE: Standard Error;  
*** 1% significance level, ** 5% significance level, * 10% significance level 
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Table 11: The effect of per capita income (GDP), biomass consumption and other explanatory variables on health of the 

population (Dependent Variable: Life Expectancy) 

Explanatory Variable 

 

Panel Data Estimation B 

(Fixed effects) 

1990 Cross Sectional Data 

Estimation (OLS) 

2000 Cross Sectional Data 

Estimation (OLS) 

2004 Cross Sectional Data 

Estimation (OLS) 

 COEFF 
(SE) 

 

COEFF 
(SE) 

 

COEFF 
(SE) 

 

COEFF 
(SE) 

 
Constant 200.1858*** 

(18.1257) 
34.64298*** 

(3.31922) 
24.21771*** 

(6.08382) 
27.728*** 
(5.29759) 

BIO -0.00032*** 
(0.00009) 

-1.84E-06 
(0.00001) 

0.00002 
(0.00003) 

8.77E-06 
(0.00006) 

GDP 0.00019** 
(0.00008) 

0.00060*** 
(0.00011) 

0.00036*** 
(0.00007) 

0.00036*** 
(0.00006) 

EDUP -0.00416 
(0.01849) 

0.11398*** 
(0.03785) 

0.10201* 
(0.06116) 

0.1049** 
(0.04550) 

UPOP -0.86126*** 
(0.11732) 

0.07377** 
(0.03639) 

0.11965*** 
(0.03644) 

0.00993 
(0.02842) 

IMMU1 -1.50851*** 
(0.31253) 

0.15123*** 
(0.04133) 

0.2370*** 
(0.04870) 

0.23021*** 
(0.04651) 

DOCT -0.14852*** 
(0.02623) 

0.39432 
(0.51815) 

1.56256*** 
(0.45045) 

0.04790 
(0.45114) 

HIV - - - -0.49067*** 
(0.06003) 

ASANF - - - 0.05170 
(0.03505) 

 

AWATF - - - 0.05896 
(0.03909) 

F-test 91.19 47.73 33.51 42.54 
R-squared 0.6759 0.7197 0.6850 0.7752 

Heteroskedasticity F-
statistica 

- 0.08685 0.8333 3.044913 

Autocorrelation F-statistic - 0.97746 0.8572 3.0449 

Hausman’s x
2  32.20 -  - 

a – see appendix I for output, b - R2 (within), COEFF – Coefficient, R.SE: Robust Standard Error, SE: Standard Error 
*** 1% significance level, ** 5% significance level, * 10% significance level 



 

 

40 
 

7.  Conclusions, Policy Implications and Future Research 

 

This study extends the debate on the relationship between environment and economic growth by 

investigating the links between biomass consumption, health and income. Similarly to Panayotou 

(1997), we believe that environmental pollution, studied as biomass consumption in this paper, 

increases with income and decreases at higher levels of income. Many macro level EKC studies 

have shown various evidences for local air pollutants; none has investigated biomass, where only 

a handful of micro, household level studies have examined the EKC hypothesis for biomass 

consumption.  

 

We therefore begin by first looking at the existence of EKC relationship for biomass 

consumption and find a true EKC for traditional biomass fuels, with a turning point at a very low 

income level, consistent with our hypothesis. Although this result implies that economic growth 

can be depended upon as a policy solution the existence of feedback effect of indoor air pollution 

on health at early stages of economic growth negates the health gains brought about by increased 

income level as biomass consumption was found to significantly affect population health. 

Therefore, poor countries where use of traditional fuels is still predominant (IEA, 2006) can not 

simply depend on economic growth without attending to environmental problems, such as use of 

biomass.  

 

We recommend that instead of following the path taken by the developed countries especially 

United Kingdom and United States in 1950s when a shift to Coal led to serious health impacts 

(Victor and Victor, 2002) a climb to cleaner energies, such as solar for household use would be 

appropriate in this era considering the global concern about the implications of methane and CO2 

on climate change. Although solar technologies are expensive, support from international 

organizations may be important in achieving this energy limb (a shift from biomass use to solar) 

through research and funding.  
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Another important reason why this energy limb is necessary for developing countries is that even 

if the low level of economic growth found in this study is achieved, the impact of biomass use on 

health before this level is attained can make the population return to biomass use, creating a “low 

income-biomass-poor health-biomass-low income” vicious circle: A household that has 

depended on burning of animal dung and firewood for cooking is at high risk of developing 

bronchitis in the future. Since it is well recognized that poor health leads to reduction in labour 

productivity a household that had climbed to the top of energy ladder can climb down to biomass 

fuel if the resultant effect of indoor air pollution which it had been exposed to manifests in the 

future. In fact, ‘poor health is more than just a consequence of low income; it is also one of its 

fundamental causes’ (Bloom and Canning, 2001). Therefore, in order to properly capture the 

health gains brought about by economic growth policies must be driven towards addressing the 

use of biomass fuel even before the EKC turning point is reached (Gangadharan and Valenzuela, 

2001).  

 

The possible feedback effect of poor health and environmental pollution on income could not be 

tested because we recognized that a lot of factors apart from these two determine economic 

growth in a country and data for those factors could not be obtained due to time constraint, a 

further research is therefore necessary. This is important because it will help open more windows 

in understanding the black box nature of EKC for developing countries where there is increasing 

rate of spread of infectious diseases such as HIV/AIDS which could negate positive impact of 

economic growth by reducing productivity of the labour force.  

 

Again, our results show that panel data fixed effect estimation is better than cross-sectional data 

OLS estimation for EKC studies and we recommend further study employing a dynamic panel 

model, since last period’s biomass consumption is expected to have impacts on this years’ 

biomass consumption. 

 

  



 

 

42 
 

References 

Aldy, Joseph E. (2005), An Environmental Kuznets Curve Analysis of U.S. State-Level Carbon 
Dioxide Emissions.  Journal of Environment and Development, 14(1): 48 – 72. 
 
Anderson, H. R. (1978), Respiratory abnormalities in Papua New Guinea children: the effects of 
locality and domestic wood smoke pollution. Int J Epidemiol 7:63 – 72. 
 
Atle, John M., and Heidebrink, Greg (1995), Environment and Development: Theoryand 
International Evidence, Economic Development and Cultural Change 43(3): 603 – 25. 
 
Arrow, Kenneth, Bert Bolin, Robert Costanza, Partha Dasgupta, Carl Folke, C. S. Holling, 
Bengt-Owe Jansson, Simon Levin, Karl-Gôran Mäler, Charles Perrings, David Pimentel. 1995. 
Economic Growth, Carrying Capacity, and the Environment. Science 268: 520–21. 
 
Barbier, E. B. and J. C. Burgess, 2001: The Economics of Tropical Deforestation, Journal of 
Economic Surveys, vol. 15, no. 3, pp. 413 – 433. 
 
Barbier, E. B. 1997: Environmental Kuznets Curve Special Issue. Environment and Development 

Economics 2: 369 – 381. 
 
Beckerman, W.B., 172. Economic growth and the environment. Whose Growth? Whose 
environment? World Development. 20:481 – 496. 
 
Bhattarai, Madhusudan (2000), The Environmental Kuznets Curve for Deforestation in Latin 
America, Africa, and Asia: Macroeconomic and Institutional Perspectives. Dissertation, Clemson 
University, Clemson, SC, December. 
 
Bloom, David E. and Canning, David, (2000), The Health and Wealth of Nations.  Science, 18 
Feb. 2000, 287, pp. 1207 -9 
 
Bruce N, Perez-Padilla, R., Albalak, R (2000), Indoor air pollution in developing countries: a 
major environmental and public health challenge. Bull WHO 78: 1078 – 1092. 
 
Bruce, N.; Perez-Padilla, R. and Albalak, R. (2000). Indoor Air Pollution in Developing 
Countries: a Major Environmental and Public Health Challenge. Bulletin of the World Health 

Organisation. 78 (9), pp. 1078 – 92. 
 
Clay, Rebecca (2002), Renewable Energy: Empowering the Developing World. Environmental 

Health Perspectives, Vol. 110, No. 1. pp. A30 – A33. 
 
Cole, M.A., Rayner, A. and Bates, J.M. (1997), The environmental Kuznets curve: an empirical 
analysis, Special Issue on Environmental Kuznets Curves. Environmental and Development 

Economics 2 (4): 401 416. 
 
Cropper, Maureen, and Griffiths, Charles (1994), The Interaction of Population Growth and 
Environmental Quality. American Economic Review. Papers and Proceedings 84(2): 250–54. 
 



 

 

43 
 

Davis, Mark. 1998. “Rural household energy consumption: the effects of access to electricity–
evidence from South Africa. Energy Policy, 26(3): 207-217. 
 
De Almeida and de Oliveira. ‘Brazilian Lifestyle and Energy Consumption’ Energy Demand, 

Lifestyle and Technology. World Energy Council. London:  WEC. 1995. 
 

de Bruyn, Sander M. (2000), Economic Growth and the Environment. Kluwer Academic 

Publishers, London,Vol. 18.  Chapter 5. 
 
Duraiappah, Anantha K. (1998), Poverty and Environmental Degradation: A Review and 
Analysis of the Nexus. World Development Vol. 26, No. 12, pp 2169 – 2179. 
 
Duncan G. (1996), 'Income dynamics and health.’ in Michaela Benzeval, Jayne Taylor and Ken 
Judge, 2000. Evidence on the Relationship between Low Income and poor Health: Is 
Government Doing Enough?. Fiscal Studies Vol. 21 (3), pp. 375 – 399. 
 
Dzioubinski, Oleg and Chipman, Ralph (1999), Trends in Consumption and Production: 
Household Energy Consumption. UN Economic and Social Affairs ST/ESA/1999/DP. 6 DESA 
Discussion Paper No. 6. http://www.un.org/esa/papers.htm. 
 
Elias, Rebecca J. and Victor, David G. (2005). Energy Transitions in Developing Countries: a 
Review of Concepts and Literature. Working Paper N 40. Program on Energy and Sustainable 
Development, Centre for Environmental Science and Policy, Stanford University. 
http://pesd.stanford.edu. 
 
Ellis, Frank (1998), Livelihood Strategies and Rural Livelihood Diversification. The Journal of 

Development Studies. 35 (1): 1-38. 
 
Ehrhardt-Martinez, Karen, Crenshaw, Edward M., and Jenkins, J. Craig (2002), Deforestation 
and the Environmental Kuznets Curve: A Cross- National Investigation of Intervening 
Mechanisms. Social Science Quarterly 83(1): 226–43. 
 
Ezzati M, Saleh, H. and Kammen D.M (2000). The contributions of emissions and spatial 
microenvironments to exposure to indoor air pollution from biomass combustion in Kenya. 
Environmental Health Perspectives, 108: 833 – 839. 
 
Ezzati, M. and Kammen, D. M.  (2002). The Health Impacts of Exposure to Indoor Air Pollution 
from Solid Fuels in Developing Countries: Knowledge, Gaps, and Data Needs. Environmental 

Perspectives, Vol. 110, No. 11 , pp. 1057 – 1068. 
 
Foster, Vivien, Jean-Philippe, Tre, and Quentin, Wodon (2000), Energy consumption and 
income: an inverted U- at the household level? The World Bank. 
 
Gangadharan, Lata and Valenzuela, Ma. Rebecca (2001), Interrelationships between income, 
health and the environment: extending the Environmental Kuznets Curve hypothesis.  Ecological 

Economics 36: 513 – 531. 
 
Grossman, Gene M. and Alan B. (1991), Environmental Impact of a North American Free Trade 
Agreement. NBER Working Paper 3914. 

http://www.un.org/esa/papers.htm
http://pesd.stanford.edu/


 

 

44 
 

 
Heltberg, Rasmus (2003), Household Fuel and Energy Use in Developing Countries – A 
Multicountry Study. Draft for Discussion. Oil and Gas Policy Division. The World Bank. 
 
Hirdes, J.P., Brown, K.S., Forbes, W.F.,  Vigoda, D.S. and Crawford, L. (1986), 'The association 
between self-reported income and perceived health based on the Ontario longitudinal study of 
aging', in Michaela Benzeval, Jayne Taylor And Ken Judge, 2000. Evidence on the Relationship 
between Low Income and poor Health: Is Government Doing Enough?. Fiscal Studies. Vol. 21 
(3), pp. 375 – 399. 
 
Hodge, Ian (2000), Agri-environmental relationships and the choice of policy mechanism, The 

World Economy 23 (2) 257 – 273. 
 
International Energy Agency (IEA), (2000), CO2 emission from fuel combustion intensity, 1971 
– 1998. OECD, Paris. 
 
IEA (2004), International Energy Agency, World Energy Outlook 2004. Energy and 
Development (Chapter 10). 
 
IEA (2006), International Energy Agency, World Energy Outlook 2006. Energy for Cooking in 
Developing Countries (Chapter 15). 
www.worldenergyoutlook.org/weo/pubs/weo2002/energypoverty.pdf 
 
Intergovernmental Panel on Climate Change. IPCC Special Report on Emissions Scenarios. 
http://www.grida.no/climate/ipcc/emission/index.htm 
 

Jiang, Leiwen and O’Neill, Brian (2003), The Energy Transition in Rural China, International 
Institute for System Dynamic Analysis, Interim Report IR-03-070. 
 
Jiang, Leiwen and O’Neill, Brian (2004), The Energy Transition in Rural China, Int. J. Global 

Energy Issues, Vol. 21, Nos 1/2.  
 
Judson, Ruth A., Schmalensee, Richard and Stoker, Thomas M. (1999), Economic Development 
and the Structure of the Demand for Commercial Energy, The Energy Journal, Vol. 20, No. 2. 29 
– 57.  
 
Leach, Gerald (1992), “The energy transition” Energy Policy, February: 116-123. 
 

Lenzen, Manfred, Wier, Mette, Cohen, Claude, Hayami, Hitoshi, Pachauri, Shonali, and 
Schaeffer, Roberto (2003), A comparative multivariate analysis of household energy 
requirements in Australia, Brazil, Denmark, India and Japan. Energy. 31. 181 – 207. 
 
Masera, R., Barbara, D., Saatkamp, and  M. Kammen, (2000), From linear fuel switching to 
multiple cooking strategies: A critique and alternative to the energy ladder model, World 

Development, 28(12): 2083-2103. 

 
McCracken JP and Smith KR (1998), Emissions and efficiency of improved wood burning 
cookstoves in highland Guatemala. Environ Int 24: 739 -747. 
 

http://www.worldenergyoutlook.org/weo/pubs/weo2002/energypoverty.pdf
http://www.grida.no/climate/ipcc/emission/index.htm


 

 

45 
 

Millimet, Daniel L., John, A. List and Thanasis, Stengos (2003), The Environmental Kuznets 
Curve: Real Progress or Misspecified Models? The Review of Economics and Statistics, 85(4): 
1038 – 1047. 
 
Neumayer, Eric (2004), National carbon dioxide emissions: geography matters. Royal 

Geographical Society. 36.1, 33-40. 
 
Panayotou, T. (1993), Empirical tests and policy analysis of environmental degradation at 
different stages of economic development. Technology, Environment and Employment, Geneva: 
International Labour Office. 
 
Panayotou, T. (1995), Environmental Degradation at Different Stages of Economic 
Development. In Beyond Rio: The Environmental Crisis and Sustainable Livelihoods in the 

Third World, ed. I. Ahmed and J. A. Doeleman. London: Macmillan, 13-36. 
 
Panayotou, T. (1997), Demystifying the environmental Kuznets curve: turning a black- 
decomposing EKC black box into a policy tool. Environment and Development Economics 2: 
465 – 484. 
 
Panayotou, T. (2003), Economic Growth and Environment, Economic Survey of  Europe, No. 2 
(Chapter 2).  http://www.unece.org/ead/pub/032/032_c2.pdf. 
 
Plassmann, Florenz and Khanna, Neha (2003). Household Income and Pollution: Implications 
for the Debate About the Environmental Kuznets Curve Hypothesis.  The Journal of 

Environment and Development, Vol. 15, No. 1, 22 – 41. 
 
Plassmann, Florenz and Khanna, Neha (2006). Household Income and Pollution: Implications 
for the Debate About the Environmental Kuznets Curve Hypothesis.  The Journal of 

Environment and Development, Vol. 15, No. 1, 22 – 41. 
 
Porrit, Jonathon, Zhores Medvedev, Hermann Bondi, Walter Marshall, Denis Rooke, Peter 
Hardi, John Rae and Peter Chester, 1993. Energy and the Environment.  Oxford University 

Press. 
 
Rehfuess, Eva. Fuel for Life: Household Energy and Health. WHO Library Cataloguing-in-
Publication Data. ISBN 92 4 156316 1. 
 
Rehfuess, Eva, Mehta, Sumi and Pruss-Ustun, Annette (2006), Assessing Household Solid Fuel 
Use: Multiple Implications for the Millennium Development Goals. Environmental Health 

Perspectives, Vol. 114, No. 3. pp. 373-378. 
 
Reddy, Amulya K.N. and Reddy, B. Sudhakara (1994). Substitution of Energy Carriers for 
Cooking in Banglore. Energy,. 19 (5), pp. 561 – 71. 
 
Saatkamp, Barbara D., Omar R. Masera and Daniel M. Kammen. “Energy and health transitions 
in development: fuel use, stove technology and morbidity in Jaracuaro, Mexico. 
 
Sander M. de Bruyn (2000), Economic Growth and the Environment. Kluwer Academic 

Publishers, London,Vol. 18.  Chapter 5. 



 

 

46 
 

 
Schirnding, Y., Bruce, N., Smith, Kirk, Ballard-Tremmeer, G., Ezzati, M. and Lvovsky, K. 
(2002), Addressing the Impact of Household Energy and Indoor Air Pollution on the Health of 
the Poor: Implication for Policy Action and Intervention Measures. Paper Prepared for the 

Commission on Macroeconomics and Health, World Health Organisation 
 
Selden, T.M.  and Song, D. (1994), Environmental quality and development: is there a Kuznets 
curve for air emissions?. Journal of  Environmental Economics and Management 27: 471-479. 
 
Shafik, N. and Bandyopadhyay, S. (1992), Economic Growth and Environmental Quality: Time 
–series and cross-country evidence. World Bank, Working Papers WPS 904, Washington DC. 
 
Simon, J.L. (1977), The Economics of Population Growth. Princeton University Press, Princeton, 
New Jersey. 
 
Smith, K. R. and Mehta, S. (2000), Background paper for USAID/WHO Global Consultation on 
the health impact of Indoor Air Pollution and Household Energy in Developing Countries. 
Washington DC.  
 
Smith K. R., Mehta S, and Feuz, M (2002), The global burden of disease from indoor air 

pollution: results from comparative risk assessment  in Indoor Air 2002: Proceedings of the 9th 
International Conference on Indoor Air Quality and Climate, Monterey, CA, vol 4. Santa Cruz, 
CA: Indoor Air 2002, 2002; 10 -19. 
 

Smith, Ken R. and Cathleen D. Zick (1994), Linked Lives, Dependent Demise? Survival 
Analysis of Husbands and Wives in Michaela Benzeval, Jayne Taylor And Ken Judge, 2000. 
Evidence on the Relationship between Low Income and poor Health: Is Government Doing 
Enough?. Fiscal Studies  Vol. 21 (3), pp. 375 – 399. 

 
Sofoluwe, G. O. (1968), Smoke pollution in dwellings of infants with bronchopneumonia, 
 Arch Envrion Health. 16:670 – 672 (1968). 
 

Stern, D., Common, M.S. and Barbier, E. B. (1996), Economic growth and environmental 
degradation: the environmental Kuznets curve and sustainable development, World Development 

24 (7): 757 – 773. 
 
Sun, J. W. (2002), The sufficient condition needed to make CO2 emission intensity lower than 
energy intensity. Energy Policy. 30 (2) 165 – 166. 
 
Sun, J. W. (2003), Three types of decline in energy intensity – an explanation for the decline of 
energy intensity in some developing countries. Energy Policy. 31, 519 – 526. 
 
Torras, Mariano and Boyce, James K. (1998), Income, inequality, and pollution: a reassessment 
of the environmental Kuznets Curve. Ecological Economics 25 (1998) 147 – 160. 
 
United Nations (2006), Population Division of the Department of Economic and Social Affairs 
of the United Nations Secretariat, World Population Prospects: The 2006 Revision and World 

Urbanization Prospects: The 2005 Revision, http://esa.un.org/unpp. 
 

http://esa.un.org/unpp


 

 

47 
 

Victor, Nadejda  M. and Victor, David G. (2002), Macro Patterns in the Use of Traditional 
Biomass Fuels, Working Paper. Stanford, CA: Program on Energy and Sustainable 
Development. 2002. 
 
Viswanathan, Brinda and Kumar, K. S. (2005), Cooking fuel use pattern in India: 1983 – 2000. 
Energy Policy. 33: 1021 – 1036. 
 
World Health Organisation (WHO) (2000), Addressing the Links between Indoor Air Pollution, 
Household Energy and Human Health. Global Consultation on the Health Impact of Indoor Air 
Pollution and Household Energy in Developing Countries. WHO/HDE/HID/02.10. 
 
WHO (2000), Addressing the Impact of Household Energy and Indoor Air Pollution on the 
Health of the Poor: Implication for Policy Action and Intervention Measure. Paper Prepared for 
the commission on macroeconomics and health (Working Group 5: Improving Health Outcomes 

of the Poor).  WHO/HDE/HID 02.9. 
 

WHO (2002), Reducing Risks, Promoting a Healthy Life. World Health Report, Geneva. 
 
World Health Organisation (WHO). Indoor Air Pollution, Health and the Burden of Disease. 
Indoor Air Thematic Briefing 2. Department for the Protection of the Human Environment. 
http://www.who.int/indoorair 
 

WHO (2005). Indoor Air Pollution and Health. Fact sheet No 292, June 2005. 
http://www.who.int/mediacenter/factsheets/fs292/en/print.html. 
 

Yandle, Bruce, Bhattarai, Madhusudan, and Vijayaraghavan, Maya (2004), Enviornmental 
Kuznets Curves: A Review of Findings, Methods, and Policy Implications, Research Study 02-1. 
1 – 38. 
 
Yeh, Ethan (2004), Indoor air pollution in developing countries: Household use of traditional 
biomass fuels and the impact on mortality.  Dissertation. Univeristy of California, Berkeley. 

http://www.who.int/indoorair
http://www.who.int/mediacenter/factsheets/fs292/en/print.html


 

 

48 
 

APPENDIX 
LIST OF COUNTRIES INCLUDED IN PANEL DATASET A 

 

1 Albania 47 Jordan 

2 Algeria 48 Kazakhstan 

3 Angola 49 Kenya 

4 Argentina 50 Korea, DPR 

5 Armenia 51 Kuwait 

6 Azerbaijan 52 Kyrgyzstan 

7 Bahrain 53 Latvia 

8 Bangladesh 54 Lebanon 

9 Belarus 55 Libya 

10 Benin 56 Lithuania 

11 Bolivia 57 Former Yugoslav Republic of Macedonia 

12 Bosnia and Herzegovina 58 Malaysia 

13 Botswana 59 Malta 

14 Brazil 60 Republic of Moldova 

15 Brunei Darussalam 61 Morocco 

16 Bulgaria 62 Mozambique 

17 Cameroon 63 Myanmar 

18 Chile 64 Namibia 

19 People's Republic of China 65 Nepal 

20 Colombia 66 Netherlands Antilles 

21 Congo 67 Nicaragua 

22 Democratic Republic of Congo 68 Nigeria 

23 Costa Rica 69 Oman 

24 Cote d'Ivoire 70 Pakistan 

25 Croatia 71 Panama 

26 Cuba 72 Paraguay 

27 Cyprus 73 Peru 

28 Dominican Republic 74 Philippines 

29 Ecuador 75 Qatar 

30 Egypt 76 Romania 

31 El Salvador 77 Russia 

32 Eritrea 78 Saudi Arabia 

33 Estonia 79 Senegal 

34 Ethiopia 80 Serbia and Montenegro 

35 Gabon 81 Singapore 

36 Georgia 82 Slovenia 

37 Ghana 83 South Africa 

38 Guatemala 84 Sri Lanka 

39 Haiti 85 Sudan 

40 Honduras 86 Syria 

41 India 87 Tajikistan 

42 Indonesia 88 United Republic of Tanzania 

43 Islamic Republic of Iran 89 Thailand 

44 Iraq 90 Togo 

45 Israel 91 Trinidad and Tobago 

46 Jamaica 92 Tunisia 
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LIST OF COUNTRIES 

 

93 Turkmenistan 113 Hungary 

94 United Arab Emirates 114 Iceland 

95 Ukraine 115 Ireland 

96 Uruguay 116 Italy 

97 Uzbekistan 117 Japan 

98 Venezuela 118 Korea 

99 Vietnam 119 Luxembourg 

100 Yemen 120 Mexico 

101 Zambia 121 Netherlands 

102 Zimbabwe 122 New Zealand 

103 Australia 123 Norway 

104 Austria 124 Poland 

105 Belgium 125 Portugal 

106 Canada 126 Slovak Republic 

107 Czech Republic 127 Spain 

108 Denmark 128 Sweden 

109 Finland 129 Switzerland 

110 France 130 Turkey 

111 Germany 131 United Kingdom 

112 Greece 132 United States 
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