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Abstract

In recent years state space models, particularly the linear Gaussian
version, have become the standard framework for analyzing macro-
economic and �nancial data. However, many theoretically motivated
models imply non-linear or non-Gaussian speci�cations � or both.
Existing methods for estimating such models are computationally in-
tensive, and often cannot be applied to models with more than a few
states. Building upon recent developments in precision-based algo-
rithms, we propose a general approach to estimating high-dimensional
non-linear non-Gaussian state space models. The baseline algorithm
approximates the conditional distribution of the states by a multivari-
ate Gaussian or t density, which is then used for posterior simulation.
We further develop this baseline algorithm to construct more sophis-
ticated samplers with attractive properties: one based on the accept-
reject Metropolis-Hastings (ARMH) algorithm, and another adaptive
collapsed sampler inspired by the cross-entropy method. To illustrate
the proposed approach, we investigate the e¤ect of the zero lower bound
of interest rate on monetary transmission mechanism.
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1 Introduction

State space models have proved to be very useful for modeling a wide range of
processes in economics, and the linear Gaussian version has been the stan-
dard speci�cation. However, economists have become increasingly aware
that many processes are better represented by speci�cations that are non-
linear or non-Gaussian, or both. The current preferred technique for es-
timating these processes is sequential Monte Carlo methods. This paper
proposes an alternative, general approach to inference in high-dimensional
non-linear non-Gaussian state space models, which we believe are useful in
many applications.

Building upon recent developments in precision-based algorithms for the
linear Gaussian case, we present three fast sampling schemes for e¢cient
simulation of the states in general state space models with multivariate ob-
servations and states. The �rst algorithm, the baseline algorithm, approxi-
mates the conditional distribution of the states by a multivariate Gaussian
or t density, which is then used as a proposal density for posterior simulation
using Markov chain Monte Carlo (MCMC) methods. This approximating
density can also used for evaluating the integrated likelihood � the joint
distribution of the observations given the model parameters but integrated
over the states � via importance sampling. We then build upon this base-
line approach to consider two other more e¢cient algorithms for posterior
simulation. The �rst of these, our second algorithm, is the accept-reject
Metropolis-Hastings (ARMH) algorithm that combines the classic accept-
reject sampling and the Metropolis-Hastings algorithm. The third algorithm
is a collapsed sampler used in conjunction with the cross-entropy method,
where we sample the states and the model parameters jointly to reduce
autocorrelations in the posterior simulator.

The speci�c framework we consider is a general state space model where the
evolution of the n� 1 vector of observations yt is governed by the measure-
ment or observation equation characterized by a generic density function
p(yt j �t; �), where �t is an m � 1 vector of latent states and � denotes the
set of model parameters. Note that the density p(yt j �t; �) may depend on
previous observations yt�1; yt�2; etc. and other covariates as is the case
in the application in this paper. These observations are suppressed in the
conditioning sets for notational convenience. The evolution of the states
�t, in turn, is speci�ed by the state or transition equation summarized by

3



the density function p(�t j �t�1; �). We note in passing that the proposed
approach can be easily generalized to the case where the state equation is
non-Markovian and the observation yt depends on previous states �t�1; �t�2;
etc.

A vast collection of models can be written in the general state space form
with measurement equation p(yt j �t; �) and state equation p(�t j �t�1; �).
Models that have proven popular among economists include time-varying
parameter vector autoregressive (TVP-VAR) models, dynamic factor mod-
els, stochastic volatility models, and a large class of macroeconomic models
generally known as dynamic stochastic general equilibrium (DSGE) mod-
els, among many others. Substantial progress has been made in the last
two decades in estimating linear Gaussian state space models. For example,
Kalman �lter-based algorithms include Carter and Kohn (1994), Früwirth-
Schnatter (1994), de Jong and Shephard (1995) and Durbin and Koopman
(2002); more recently, precision-based algorithms are proposed in Rue, Mar-
tino, and Chopin (2009), Chan and Jeliazkov (2009b) and McCausland,
Millera, and Pelletier (2011). E¢cient simulation algorithms also exist for
certain speci�c non-linear non-Gaussian state space models, the most no-
table example is the class of stochastic volatility models. Using data aug-
mentation and �nite Gaussian mixtures to approximate non-Gaussian errors,
Kim, Shepherd, and Chib (1998) propose a Gibbs sampler for posterior sim-
ulation in a univariate stochastic volatility model. This approach is later
applied to other univariate stochastic volatility models in Chib, Nardari, and
Shephard (2002) and multivariate models in Cogley and Sargent (2005) and
Primiceri (2005). Other successful applications of the auxiliary mixture sam-
pling include state space models for Poisson counts in Frühwirth-Schnatter
and Wagner (2006) and various logit models in Frühwirth-Schnatter and
Frühwirth (2007). An important limitation of this approach, however, is
that it is model-speci�c, and a sampler developed for one model is not gen-
erally applicable to other state space models.

There are two general approaches that are commonly used for estimating
non-linear non-Gaussian state space models. The �rst is the so-called se-
quential Monte Carlo methods, or more popularly known as particle �ltering
(Doucet, De Freitas, and Gordon, 2001; Doucet and Johansen, 2011), which
is a broad class of techniques that involves sequential importance sampling
and bootstrap resampling. In the state space setting, particle �lters are
often used to evaluate the expected value of the states or functions of the
states (such as the integrated likelihood) via sequential importance sampling
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and resampling. For instance, particle �lters have been applied to estimat-
ing non-linear DSGE models in Rubio-Ramirez and Fernandez-Villaverde
(2005) and Fernandez-Villaverde and Rubio-Ramirez (2007). Despite recent
advances, particle �lters are still quite computationally intensive, especially
when the dimension of the states is moderately high (e.g., when m is more
than 5 or 6) or when the time series is long. For Bayesian estimation, it
might take tens of hours to perform a full posterior analysis. In addition,
particle �lters are designed to evaluate expectations, not for e¢cient simu-
lation of the states. That is, particle �lters are not designed for generating
draws from the conditional density p (� j �; y), where � = (�01; : : : ; �

0
T )
0 and

y = (y01; : : : ; y
0
T )
0. Without samples from p (� j �; y), it is more di¢cult to

design e¢cient MCMC sampling schemes to obtain posterior draws in a full
Bayesian analysis. In fact, in posterior simulation with a particle �lter, it
is a common practice to generate candidate draws for � via a random walk
sampler, and then use a particle �lter to compute the acceptance probability
of the candidate draw. On the other hand, if one could generate e¢ciently
from p (� j �; y), one can use the machinery in the MCMC literature to de-
sign an e¢cient sampling scheme to generate draws from p (� j �; y). More
recently, there has been work on using particle �lters to obtain candidate
draws for the states (e.g., the particle Markov chain Monte Carlo methods
of Andrieu, Doucet, and Holenstein, 2010). This direction looks promising,
but most applications using these methods to date are limited to univariate
state-space models due to computational limitations.

The alternative approach for estimating general state space models is based
on fast approximations of the conditional density p (� j �; y), where the ap-
proximating density is used for posterior simulation via the independence-
chain Metropolis-Hastings algorithm (MH) algorithm. Of course, the main
challenges are that it is crucial to have a fast routine to obtain a good
approximation for p (� j �; y), and it should be easy to generate candidate
draws from the approximating density. Durbin and Koopman (1997) con-
sider approximating the log target density log p (� j �; y) around the mode
by a second order Taylor expansion. This approximation gives a Gaussian
density, where its mean is the mode of the target density and its precision
equals the negative Hessian evaluated at the mode. Candidate draws for the
states are then generated via the Kalman �lter and smoother. One prob-
lem with sampling � in a single block with the Gaussian proposal is that
the acceptance rate in the MH step can be quite low, at least in the con-
text of stochastic volatility models. It is therefore suggested that the states
be divided into blocks, and each block is sampled sequentially via the MH
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step. This methodology is implemented in, e.g., Shephard and Pitt (1997),
Strickland et al. (2006) and Jungbacker and Koopman (2008). Departing
from the obvious Gaussian approximation, McCausland (2008) recently in-
troduced the HESSIAN method that provides an excellent approximation for
p (� j �; y), and it results in a highly e¢cient sampling algorithm. However,
the HESSIAN method requires the �rst �ve derivatives of the log-likelihood
with respect to the states, which places a substantial burden on the end-
user. A more severe restriction is that currently it can only be applied to
univariate state space models.1

We pursue the second line of research using approximations of the condi-
tional density for the states, and propose various improvements. Speci�-
cally, the contributions of this paper are three-fold. In the �rst contribution
we build upon the recently proposed precision-based sampler in Chan and
Jeliazkov (2009b) and McCausland, Millera, and Pelletier (2011) originally
developed for linear Gaussian state space models, and we present a quick
method to obtain a Gaussian or a student t approximation for the condi-
tional density of the states p (� j �; y). By exploiting the sparseness structure
of the precision matrix for p (� j �; y), the precision-based algorithm is more
e¢cient than Kalman �lter-based methods in general. This feature is crucial
as one needs to obtain the approximating density tens of thousands times
in a full Bayesian analysis via MCMC. More importantly, the marginal cost
of obtaining additional draws under the precision-based algorithm is much
smaller compared to Kalman �lter-based methods. We exploit this impor-
tant feature for two purposes: e¢cient simulation of the states, and evalu-
ation of the integrated likelihood. We develop an accept-reject Metropolis
Hastings (ARMH) algorithm for e¢cient simulation of the states. As men-
tioned previously, the e¢ciency in the MH step with a Gaussian proposal
can be quite low in certain settings, presumably because the Gaussian ap-
proximation is not su¢ciently accurate. By using the ARMH algorithm,
we construct a better approximation and consequently the acceptance rate
is substantially higher compared to the baseline MH algorithm. This in-
creased acceptance rate comes at a cost, however, as multiple draws from
the proposal density might be required and this is why it is essential to have
low marginal cost for additional draws. Next, we evaluate the integrated
likelihood � an ingredient for maximum likelihood estimation and e¢cient

1One obvious way to get around this problem in multivariate-state settings is to draw
each �slice� of states one at a time by applying the HESSIAN method sequentially. How-
ever, when the (contemporary) states are expected to be highly correlated, this approach
might induce high autocorrelations in the MCMC samples.
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MCMC design � via importance sampling using multiple draws from the
proposal density.2

The second contribution of the paper is to develop a practical way to sam-
ple the model parameters � and the states � jointly. In performing a full
Bayesian analysis, one often sequentially draws from the conditional den-
sities p(� j y; �) and p(� j y; �). In typical situations where � contains para-
meters in the state equation, � and � are expected to be highly correlated.
Consequently, the conventional sampling scheme might induce high auto-
correlations for the samples, especially in high-dimensional settings. This
motivates sampling � and � jointly by �rst drawing from p(� j y) marginally
of the states � followed by a draw from p(� j y; �). The challenge, of course,
is to locate a good proposal density for �, denoted as q(� j y). We adopt the
cross-entropy method (Rubinstein and Kroese, 2004) to obtain the optimal
q(� j y) in a well-de�ned sense. Speci�cally, given a parametric family of
densities G, we locate the member in G that is the closest to the marginal
density p(� j y) in the Kullback-Leibler divergence or the cross-entropy dis-
tance. By sampling (�; �) jointly, we show via an empirical example that the
e¢ciency of the sampling scheme is substantially improved. We note that
the problem of locating a good proposal density for � also arises in the par-
ticle �lter literature as discussed above. Hence, the proposed cross-entropy
approach is useful even if the researcher chooses to use a particle �lter to
evaluate the integrated likelihood instead of the algorithms discussed in this
paper.

In the third contribution of the paper we demonstrate the overall approach
with a topical application. We investigate the implications for transmission
of monetary shocks of accounting for the zero lower bound (ZLB) on interest
rates. Recent work using time-varying parameter vector autoregressive mod-
els (TVP-VARs) by Cogley and Sargent (2001 and 2005), Primiceri (2005),
Sims and Zha (2006) and Koop, Leon-Gonzalez and Strachan (2009) demon-
strated the importance of model speci�cation for the evidence on changes in
the transmission mechanism for monetary shocks. These studies considered
periods of relatively high interest rates, with the exception of the period
after the dot com bubble when interest rates fell as low as 1%. This latter
event, and the history of Japan in the 1990s, led to an increase in interest
in the e¤ect of the ZLB on the conduct of monetary policy (see, for exam-

2A further advantage of the proposed method is that it can be applied to non-Markovian
state equations, which arise in, e.g., various DSGE models, and they are more di¢cult to
handle under other approaches.
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ple, Iwata and Wu, 2006, Reifschneider and Williams, 2000, and Svensson,
2003). We study the e¤ect of the ZLB on the transmission of a contrac-
tionary monetary shock in a low growth, low interest rate environment. We
use a TVP-VAR with a censored interest rate variable and multivariate sto-
chastic volatility. Modeling volatility has proven an important requirement
for accurate inference in such models (see Cogley and Sargent, 2001, 2005,
Primiceri, 2005 and Sims and Zha, 2006). Our interest is in how estimates
of the impulse responses to positive monetary shocks change when we allow
for the ZLB.

The rest of this article is organized as follows. Section 2 �rst brie�y discusses
the precision sampler in the linear Gaussian case. In Section 3 we consider a
general form of the state space model for which we propose an approximation
to the conditional density for the states, an approach to estimating the
integrated likelihood in this case, and the three e¢cient simulation schemes
for the states. In Section 4 we apply the sampler to estimate a standard
model used a number of times in the literature to investigate the evolution
of the transmission of monetary shocks, but we incorporate the zero lower
bound on interest rates which results in a non-linear measurement equation.
Section 5 concludes and discusses various future research directions.

2 The Linear Gaussian Case

In this section we present a precision-based sampler developed indepen-
dently in Chan and Jeliazkov (2009b) and McCausland, Millera, and Pel-
letier (2011) for simulating the states in linear Gaussian state space models.
By exploiting the sparseness structure of the precision matrix for the condi-
tional density of the states, this new simulation algorithm is more e¢cient
than Kalman �lter-based methods in general. In addition, the marginal cost
of obtaining additional draws using the precision-based algorithm is much
smaller compared to Kalman �lter-based methods, and we will take advan-
tage of this fact to develop algorithms for more general model speci�cations
in later sections.

Consider the following state space model:

yt = Xt�t + "t; (1)

�t = �t�t�1 + �t; (2)
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for t = 1; : : : ; T , where yt is an n� 1 vector of observations, �t is an m� 1
latent state vector, and the disturbance terms are jointly Gaussian:

�
"t
�t

�
� N

�
0;

�
��1t 0

0 
�1t

��
: (3)

That is, �t and 
t are respectively the precision matrices of "t and �t. The
initial state �0 can be assumed to be a known constant or treated as a
model parameter. De�ne y = (y01; : : : ; y

0
T )
0 and � = (�01; : : : ; �

0
T )
0, and let �

represent the parameters in the state space model (i.e. �0; f�tg, f�tg and
f
tg). The covariates fXtg are taken as given and will be suppressed in the
conditioning sets below.

From (1) and (3) it is easily seen that the joint sampling density p (yj�; �)
is Gaussian. Stacking (1) over the T time periods, we have

y = X� + "; " � N(0;��1);

where

X =

2
64
X1

. . .

XT

3
75 ; " =

2
64
"1
...
"T

3
75 ; ��1 =

2
64
��11

. . .

��1T

3
75 :

A change of variable from " to y implies that

log p(y j �; �) / �1
2
log j��1j � 1

2
(y �X�)0�(y �X�): (4)

It is important to realize that � is a banded matrix of the form

� =

2
64
�1

. . .

�T

3
75 :

For the prior distribution of �, we note that the directed conditional struc-
ture for p

�
�tj�; �t�1

�
in (2) and the distributional assumption in (3) imply

that the joint density for � is also Gaussian. To see this, de�ne

K =

0
BBBBB@

Im
��2 Im

��3 Im
. . .

. . .

��T Im

1
CCCCCA

and 
 =

0
BBBBB@


1

2


3
. . .


T

1
CCCCCA
;
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so that (2) can be written as K� =  + �, where

 =

2
6664

�1�0
0
...
0

3
7775 and � =

2
6664

�1
�2
...
�T

3
7775 � N(0;


�1):

Noting that jKj = 1, by a change of variable from � to �, we have

log p(� j �) / �1
2
log j
�1j � 1

2
(� � �0)0K 0
K(� � �0); (5)

where �0 = K�1 is the prior mean. Note that the Tm � Tm precision
matrix K 0
K is a banded matrix given by

0
BBBBB@

�02
2�2 +
1 ��02
2
�
2�2 �03
3�3 +
2 ��03
3

. . .
. . .

. . .

�
T�1�T�1 �0T
T�T +
T�1 ��0T
T
�
T�T 
T

1
CCCCCA
:

(6)
Since the likelihood function p(y j �; �) in (4) and the prior p(� j �) in (5) are
both linear Gaussian in �, the standard update for Gaussian linear regres-
sion (see, e.g. Koop, 2003, p140�141) implies that the conditional posterior
p(� j y; �) / p(y j �; �)p(� j �) is also Gaussian. The log conditional density
for the states can be written as

log p(� j y; �) / log p(y j �; �) + log p(� j �)

/ �1
2

�
�0(X 0�X +K 0
K)� � 2�0(X 0�y +K 0
K�0)

�
:

In other words,
(� j y; �) � N(b�;H�1); (7)

where the precision H and the mean b� are given by

H = K 0
K +X 0�X; (8)

b� = H�1(K 0
K�0 +X 0�y): (9)

Since X 0�X is banded, it follows that H is also banded and contains a
small number of non-zero elements on a narrow band around the main di-
agonal. An important consequence is that its Cholesky decomposition can
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be obtained in O(N) operations instead of O(N3) operations for full matri-
ces, where N is the dimension of the matrix. By exploiting this fact, one
can sample (� j y; �) without the need to carry out an inversion to obtain
H�1 and b� in (9). More speci�cally, the mean b� can be found in two steps.
First, we compute the (banded) Cholesky decomposition CH of H such that
C 0HCH = H. Second, we solve

C 0HCHb� = K 0
K�0 +X 0�y; (10)

for CHb� by forward-substitution and then using the result to solve for b� by
back-substitution. Similarly, to obtain a random draw from N(b�;H�1) e¢-
ciently, sample u � N(0; ITm), and solve CHx = u for x by back-substitution.
It follows that x � N(0;H�1). Adding the mean b� to x, one obtains a draw
from N(b�;H�1). We summarize the above procedures in the following algo-
rithm.

Algorithm 1. E¢cient State Simulation for Linear Gaussian State Space
Models

1. Compute H in (8) and obtain its Cholesky decomposition CH such that
H = C 0HCH .

2. Solve (10) by forward- and back-substitution to obtain b�.

3. Sample u � N(0; ITm), and solve CHx = u for x by back-substitution.
Take � = b� + x, so that � � N(b�;H�1).

By counting the number of operations, McCausland, Millera, and Pelletier
(2011) show that this precision-based algorithm for simulating the states
is more e¢cient than conventional Kalman-�lter based simulation methods
when one draw is needed. When multiple samples are required, the mar-
ginal cost of obtaining an extra draw via the precision-based algorithm is
substantially less compared with the latter methods. In fact, given b� and
CH , getting an additional draw from N(b�;H�1) requires only (a) Tm inde-
pendent standard Gaussian draws; (b) to perform a fast back-substitution
to solve CHx = u for x; and (c) to add b� to x. We will exploit this impor-
tant feature � low marginal costs for additional draws � to develop more
sophisticated algorithms in Section 3.3.
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3 General State Space Model

In this section we consider a general state space model where the mea-
surement equation is characterized by a generic density function p(yt j �t; �),
whereas the state equation is linear Gaussian as in (2). We note that the
proposed approach can be easily generalized to the case where the state
equation is non-linear non-Gaussian or even non-Markovian.

3.1 Gaussian Approximation

We �rst discuss a quick method to obtain a Gaussian approximation for the
conditional density p(� j y; �). This approach builds upon the precision-based
algorithm outlined in Section 2. To begin, let ft and Gt denote respectively
the gradient and negative Hessian of log p(yt j �t; �) evaluated at �t = e�t, i.e.,

ft �
@

@�t
log p(yt j �t; �)

����
�
t
=e�

t

; Gt � �
@2

@�t�
0
t

log p(yt j �t; �)
����
�
t
=e�

t

:

Stacking these terms and de�ne the following vector and matrix:

f =

2
6664

f1
f2
...
fT

3
7775 ; G =

2
6664

G1 0 � � � 0
0 G2 � � � 0
...

...
. . .

...
0 0 � � � GT

3
7775 :

We then expand the log-likelihood log p(y j �; �) =
PT
t=1 log p(yt j �t; �) around

e� = (e�01; : : : ;e�0T )0 to obtain the expression

log p(y j �; �) � log p(y je�; �) + (� � e�)0f � 1
2
(� � e�)0G(� � e�)

= �1
2

�
�0G� � 2�0(f +Ge�)

�
+ c1;

(11)

where c1 is some unimportant constant independent of �. Combining (11)
and the prior in (5), we have

log p(� j y; �) / log p(y j �; �) + log p(� j �)

� �1
2

�
�0(G+K 0
K)� � 2�0(f +Ge� +K 0
K�0)

�
+ c2:

(12)

12



where c2 is some unimportant constant independent of �. In other words,
the approximating distribution is Gaussian with precision H � G +K 0
K
and mean vector H�1

�
f +Ge� +K 0
K�0

�
.

It remains to choose the point e� around which to construct the Taylor ex-
pansion. One obvious choice is the posterior mode, denoted as b�, which
has the advantage that it can be easily obtained via the Newton-Raphson
method. More speci�cally, it follows from (12) that the negative Hessian of
log p(� j y; �) evaluated at � = e� is H, while the gradient at � = e� is given
by

@

@�
log p(� j y; �)

����
�=e�

= �He� + 2(f +Ge� +K 0
K�0):

Hence, we can implement the Newton-Raphson method as follows: initialize
with � = �(1). For s = 1; 2; : : :, use e� = �(s) in the evaluation of f , G and
H, and denote them as f(�(s)), G(�(s)) and H(�(s)) respectively, where the
dependence on �(s) is made explicit. Compute �(s+1) as

�(s+1) = �(s) +H(�(s))�1
@

@�
log p(� j y; �)

����
�=�(s)

= H(�(s))�1
�
f(�(s)) +G(�(s))�(s) +K 0
K�0

�
:

(13)

If jj�(s+1) � �(s)jj > � for some pre-�xed tolerance level �, then continue;
otherwise stop and set b� = �(s+1). Again, it is important to note that
because the precision H is banded, and its Cholesky decomposition CH
can be readily obtained. Hence, (13) can be e¢ciently evaluated without
inverting any high-dimensional matrix. Following the approach discussed in
Section 2, we compute �(s+1) as follows: given the Cholesky decomposition

CH for H(�(s)), �rst solve C
0(s)
H x = f

�
�(s)

�
+ G(�(s))�(s) + K 0
K�0 for x

by forward-substitution. Then given x, solve CH�
(s+1) = x for �(s+1) by

back-substitution. Finally, given the mode b�, the negative Hessian H at b�
can be easily computed.

3.2 Integrated Likelihood Evaluation

The integrated likelihood p(y j �) is de�ned as the joint distribution of the
data conditional on the parameter vector � but integrated over the states �.
More explicitly,

p(y j �) =
Z
p(y j �; �)p(� j �)d�: (14)

13



The need to evaluate the integrated likelihood e¢ciently arises in both fre-
quentist and Bayesian estimation. In classical inference, one needs to max-
imize the integrated likelihood p(y j �) with respect to � to obtain the max-
imum likelihood estimator (MLE). In our context one has to compute the
MLE numerically, and the maximization routine typically requires hundreds
or even thousands of functional evaluations of p(y j �). Hence, it is crucial
to be able to evaluate the integrated likelihood e¢ciently. For Bayesian es-
timation, if one can evaluate p(y j �) quickly, more e¢cient samplers can be
developed to obtain draws from the posterior, such as the collapsed sampler
that draws � and � jointly in a single step which we discuss in Section 3.3.

Given the Gaussian approximation proposed in the previous section, one can
estimate p(y j �) via importance sampling (see, e.g., Geweke, 1989; Kroese
et al., 2011, ch. 9). To do this, sample M independent draws �1; : : : ; �M

from the proposal density q(� j y; �), and compute the Monte Carlo average

bp(y j �) = 1

M

MX

i=1

p(y j �; �i)p(�i j �)
q(�i j y; �) :

It is easy to see that the Monte Carlo estimator bp(y j �) is an unbiased
and consistent estimator for p(y j �). In addition, if the likelihood ratio
p(y j �; �)p(� j �)=q(� j y; �) or equivalently p(� j y; �)=q(� j y; �) is bounded for
all �, then the variance of the estimator is also �nite (Geweke, 1989). The
proposed precision-based algorithms are especially �t for evaluating the in-
tegrated likelihood via importance sampling. This is because one needs
multiple draws (often hundreds or thousands) from the proposal density
q(� j y; �) to compute the Monte Carlo average. As discussed earlier, one
important and useful feature of the precision-based algorithms is that once
we obtained the mean vector and precision matrix, additional draws can be
obtained with little marginal cost.

3.3 E¢cient Simulation for the States

Building upon the Gaussian approximation presented previously, we propose
three di¤erent sampling schemes for drawing the states e¢ciently.
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3.3.1 Metropolis-Hastings with Gaussian and t proposals

A simple sampling scheme is to implement a Metropolis-Hastings step with
proposal density N(b�;H�1). The mode b� and the negative Hessian at b� of
the conditional density p(� j y; �) can be computed as discussed in earlier.
Moreover, a draw from the proposal can be obtained as in Algorithm 1. Us-
ing a Gaussian approximation would be adequate in models where either the
measurement or the state equations is Gaussian, as the resulting conditional
posterior in either case has exponentially decaying tails. We summarize this
basic sampling scheme as follows:

Algorithm 2. Metropolis-Hastings with the Gaussian Proposal N(b�;H�1)

1. Obtain b� iteratively via (13). Given H, compute its Cholesky decom-
position CH such that H = C 0HCH .

2. Sample u � N(0; ITm), and solve CHx = u for x by back-substitution.
Take � = b� + x, so that � � N(b�;H�1).

In implementing the Metropolis-Hastings algorithm, it is often suggested
that the proposal density q(� j y; �) should have heavier tails than the poste-
rior distribution p(� j y; �), so that the likelihood ratio p(� j y; �)=q(� j y; �) is
bounded. This is important because a bounded likelihood ratio ensures the
geometric ergodicity of the Markov chain (Roberts and Rosenthal, 2004). In
the context of estimating the integrated likelihood, this guarantees the esti-
mator has �nite variance. Thus, one concern of using a Gaussian proposal
is that it has exponentially decaying tails, and consequently, the likelihood
ratio might not be bounded. This motivates using a proposal density with
heavier tails, such a t distribution. We note that one can easily modify the
above Gaussian approximation to obtain a t proposal density instead. More
explicitly, consider the t proposal � � q(� j y; �) � t(�;b�;H�1) with degree
of freedom parameter �, location vector b� and scale matrix H�1. Note that
sampling from t(�;b�;H�1) involves only Tm iid standard Gaussian draws
and a draw from the Gamma(�=2; �=2) distribution. We summarize the al-
gorithm as follows:

Algorithm 3. Metropolis-Hastings with the t proposal t(�;b�;H�1)

1. Given the posterior mode b� and negative Hessian H, obtain the Cholesky
decomposition CH such that H = C 0HCH .
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2. Sample u � N(0; ITm) and r � Gamma(�=2; �=2). Then v � u=
p
r �

t(�; 0; ITm).

3. Solve CHx = v for x by back-substitution and take � = b� + x, so that
� � t(�;b�;H�1).

3.3.2 Accept-Reject Metropolis-Hastings

As its name suggests, the accept-reject Metropolis-Hastings (ARMH) algo-
rithm (Tierney, 1994; Chib and Greenberg, 1995) is an MCMC sampling
procedure that combines classic accept-reject sampling with the Metropolis-
Hastings algorithm. In the our setting the target density is the condi-
tional density of the states p(� j y; �) / p(y j �; �)p(� j �). Suppose we have
a proposal density q(� j y; �) from which we generate candidate draws (e.g.
q(� j y; �) can be the Gaussian or t density discussed in the previous section).
In the classic accept-reject sampling a key requirement is that there exists
a constant c such that

p(y j �; �)p(� j �) 6 cq(� j y; �); (15)

for all � in the support of p(� j y; �). When � is a high-dimensional vector,
as in the present case, such a constant c, if it exists, is usually di¢cult to
obtain. To make matters worse, the target density p(� j y; �) depends on
other model parameters � that are revised at every iteration. Finding a
new value of c for each new set of parameters might signi�cantly increase
the computational costs. The ARMH relaxes the domination condition (15)
such that when it is not satis�ed for some �, we resort to the MH algorithm.
To present the algorithm, it is convenient to �rst de�ne the set

D = f� : p(y j �; �)p(� j �) 6 cq(� j y; �)g;

and let Dc denote its complement. Then the ARMH algorithm proceeds as
follows:

Algorithm 4. Accept-Reject Metropolis-Hastings with Gaussian or t pro-
posal

1. AR step: Generate a draw �� � q(� j y; �), where q(� j y; �) is the
Gaussian or t proposal obtained in Algorithms 2 or 3. Accept �� with

16



probability

�AR(�
� j y; �) = min

�
1;
p(y j ��; �)p(�� j �)
cq(�� j y; �)

�
:

Continue the above process until a draw �� is accepted.

2. MH-step: Given the current draw � and the proposal ��

(a) if � 2 D, set �MH(�; �
� j y; �) = 1;

(b) if � 2 Dc and �� 2 D, set

�MH(�; �
� j y; �) = cq(� j y; �)

p(y j �; �)p(� j �) ;

(c) if � 2 Dc and �� 2 Dc, set

�MH(�; �
� j y; �) = min

�
1;
p(y j ��; �)p(�� j �)q(� j y; �)
p(y j �; �)p(� j �)q(�� j y; �)

�
:

Return �� with probability �MH(�; �
� j y; �); otherwise return �.

As shown in Chib and Greenberg (1995), the draws produced at the com-
pletion of the AR step have the density

qAR(� j y; �) = d�1�AR(� j y; �)q(� j y; �);

where d is the normalizing constant (which needs not be known for imple-
menting the algorithm). In other words, one might view the AR step as a
means to sample from the density qAR(� j y; �). By adjusting the original
proposal density q(� j y; �) by the function �AR(� j y; �), a better approxima-
tion of the target density is achieved. In fact, we have

qAR(� j y; �) =
�
p(y j �; �)p(� j �)=cd; � 2 D;
q(� j y; �)=d; � 2 Dc;

i.e., the new proposal density coincides with the target density on the set D
(albeit with di¤erent normalizing constants), whereas on Dc the new pro-
posal density is reduced to the original one. To give a feeling for the improve-
ment this approach brings, consider Figure 1. In this �gure, the true density
is shown as a grey shaded area and the Gaussian candidate by the dotted
line. The candidate density qAR(� j y; �) is shown as the solid line which �ts
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the true density for values less than 1.6, then di¤ers above this point but
still �ts better than the Gaussian density. The better approximation, of
course, comes at a cost, because multiple draws from the proposal density
q(� j y; �) might be required in the AR step. This is where the precision-
based method (as in Algorithms 2 or 3) comes in. As we have emphasized
before, the marginal cost of generating additional draws using the precision-
based method is low, and is substantially lower than generating candidate
draws via Kalman �lter-based algorithms. In fact, as demonstrated in the
application, the gain in e¢ciency under the ARMH sampling scheme more
than justi�es its additional cost compared to a plain MH step.

-2 -1 0 1 2 3 4
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Figure 1: Illustration of the two approximations for a skew normal distri-
bution (shaded): Gaussian (dotted line) and the same Gaussian with AR
adjustment (solid line).

Chib and Jeliazkov (2005) present a practical way to select the constant c
and the trade-o¤ in such a choice which we outline here. Notice that if a
bigger c is chosen, then the set D is larger and we are more likely to accept
the candidate ��. The cost, on the other hand, of selecting a larger c is
that more draws from q(� j y; �) are required in the AR step. A practical
way to strike a balance between these two con�icting considerations is to
set c = rp(y jb�; �)p(b� j �)=q(b� j y; �), where b� is the mode of the conditional
density p(� j y; �) and r is, say, between 1 and 5. Such a choice would ensure
that c is su¢ciently small to reduce the required number of draws from
q(� j y; �), while big enough so that the set D contains the mode b� and its
neighboring points.
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3.3.3 Collapsed Sampling with the Cross-entropy Method

We have so far discussed two sampling schemes for e¢cient simulation from
the conditional density p(� j y; �): the MH and the ARMH algorithms with
either a Gaussian or a t proposal. In performing a full Bayesian analysis, one
often sequentially draws from p(� j y; �) followed by sampling from p(� j y; �).
In typical situations where � contains parameters in the state equation, �
and � are expected to be highly correlated. Consequently, the conventional
sampling scheme might induce high autocorrelation and slow mixing in the
Markov chain, especially in high-dimensional settings. For this reason, we
seek to sample (�; �) jointly by �rst drawing from p(� j y) marginally of the
states � followed by a draw from p(� j y; �), where the latter step can be
accomplished by either the MH or ARMH algorithm previously discussed.
To sample from p(� j y), we again implement a MH step: we �rst generate a
candidate draw �� from the proposal density g(�), then we decide whether
to accept �� or not according to the acceptance probability. Hence, we need
two ingredients: (1) a quick routine to evaluate the integrated likelihood
p(y j �), which arises in computing the acceptance probability; and (2) a
good proposal density g(�) for generating candidate draws for the MH step.

The �rst ingredient, an e¢cient method to evaluate the integrated likeli-
hood, is provided by the importance sampling estimator bp (yj�) discussed
in Section 3.2. And this in turn gives us an estimator for the acceptance
probability

� (� j y) = min
�
1;
p(y j ��)p (��) g(�)
p(y j �)p(�)g(��)

�
:

One might raise the concern that the simulation error may a¤ect the conver-
gence properties of the Markov chain, as the candidate draws are accepted
or rejected according to estimated acceptance probabilities rather than the
actual values. However, since the importance sampling estimator bp(y j �) is
unbiased, the results in Andrieu, Berthelsen, Doucet, and Roberts (2007)
and Flury and Shephard (2008) show that the stationary distribution of the
constructed Markov chain is the posterior distribution as desired.

The second ingredient is a proposal density for generating candidate draws
for �. Of course, one may generate candidates via a random walk, but this
strategy is not recommended as a random walk chain is typically ine¢cient,
and it would defeat the purpose � to improve the mixing properties of the
Markov chain � of the whole exercise. Therefore, it is essential to locate a
good proposal density g(�) to implement an independence-chain MH step.
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We adopt the so-called cross-entropy adaptive independence sampler intro-
duced in Keith, Kroese, and Sofronov (2008). Speci�cally, the proposal den-
sity is chosen such that the Kullback-Leibler divergence, or the cross-entropy
(CE)distance between the proposal density and the target (the posterior
density) is minimal, where the CE distance between the densities g1 and g2
is de�ned as:

D(g1; g2) =
Z
g1(x) log

g1(x)

g2(x)
dx:

Let G be a parametric family of densities g(�; v) indexed by the parameter
vector v. Minimizing the CE distance is equivalent to �nding

vce = argmax
v

Z
p(� j y) log g(�; v) d�:

As in the CE method (Rubinstein and Kroese, 2004; Kroese, Taimre, and
Botev, 2011, ch. 13), we can estimate the optimal solution vce by

bvce = argmax
v

1

N

NX

i=1

log g(�i; v); (16)

where �1; : : : ; �N are draws from the marginal posterior density p(� j y). The
solution to the maximization problem in (16) is typically easy to obtain;
in fact, analytic solutions are often available. On the other hand, �nding
bvce requires a pre-run to obtain a small sample from p(� j y). This can be
achieved by sequentially drawing from p(� j y; �) and p(� j y; �), as discussed
in the previous section. It is important to note that although the sample
obtained in this pre-run may exhibit slow mixing, we only use it to obtain the
proposal density, and thus it has little adverse e¤ect on the main collapsed
sampler. Once we �nd bvce, we then use the proposal density g(�; bvce) to
implement the independence-chain MH step. We discuss in more details the
implementation in Appendix B.

4 Application

To illustrate the proposed approach we estimate a VAR with a lower bound
restriction on one of the variables; this restriction implies a measurement
equation that is non-linear in the states. Speci�cally, we investigate the im-
plications for the transmission of monetary shocks of accounting for the zero
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lower bound (ZLB) on interest rates. With time varying parameters, incor-
porating the lower bound on interest rates introduces a non-linearity in the
states into the measurement equation. Recent work using time-varying pa-
rameter vector autoregressive models (TVP-VARs) on changes in the trans-
mission mechanism for monetary policy shocks (see for example, Cogley and
Sargent, 2001, 2005, Primiceri, 2005, Sims and Zha, 2006, and Koop, Leon-
Gonzalez and Strachan, 2009) has ignored the lower bound on interest rates.
Not accounting for the ZLB is reasonable when interest rates are relatively
high and far from zero. However, episodes of low interest rates have occurred
often in recent history including, as examples, in the US just after the dot
com bubble of 2001, during the 1990s in Japan, or since 2009 in much of
the developed world. The prevalence of low interest rates suggests it is im-
portant to know whether transmission of monetary shocks is a¤ected and,
if so, to understand how the transmission mechanism is a¤ected. Our focus
is upon the e¤ect of a contractionary monetary shock when interest rates
are on the ZLB. Such a situation might arise for the US if several rating
agencies were to downgrade the rating of US government debt and creditors
then began to demand a premium to compensate for the risk of default, or if
the cost of funds to banks increased independently of moves in the Federal
Funds rate inducing an e¤ective, unintended tightening of monetary policy.3

4.1 The Model

The framework we consider is the following time-varying parameter vector
autoregressive (TVP-VAR) model with l lags:

yt = �t +A1tyt�1 + � � �+Altyt�l + �t; �t � N(0;��1t );

where �t is an n� 1 vector of time-varying intercepts, At1; : : : ; Atl are n�n
matrices of VAR lag coe¢cients at time t, and ��1t is a time-varying precision
matrix. For the purpose of estimation, we write the VAR system in the form
of seemingly unrelated regressions:

yt = xt�t + �t; �t � N(0;��1t ); (17)

3This e¤ect was observed in February 2012 in Australia when, after the central bank
kept its rate unchanged, all banks increased their lending rates in response to increased
costs of wholesale funding costs.
It is for this reason we do not term the shock a monetary policy shock, but an unintended

shock to monetary conditions.
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where xt = In 
 [1; y0t�1; : : : ; y0t�l] and �t = vec([�t : A1t : � � � : Alt]0) is
a k � 1 vector of VAR coe¢cients with k = n2l + n. To model the time-
varying precision matrix �t, we follow the approach proposed in Primiceri
(2005) by �rst factoring the precision matrix as �t = L

0
tD

�1
t Lt, where Dt =

diag(eh1t ; : : : ; ehnt) is a diagonal matrix, and Lt is a lower triangular matrix
with ones on the main diagonal, i.e.,

Dt =

0
BBB@

eh1t 0 � � � 0
0 eh2t � � � 0
...

...
. . .

...
0 0 � � � ehnt

1
CCCA ; Lt =

0
BBBBBB@

1 0 0 � � � 0
a21;t 1 0 � � � 0

a31;t a32;t 1 � � � ...
...

...
...

. . .
...

an1;t an2;t � � � an(n�1);t 1

1
CCCCCCA
:

This decomposition has been employed in various applications, especially in
the context of e¢cient estimation of covariance matrices (Pourahmadi, 1999,
2000, Smith and Kohn, 2002, Chan and Jeliazkov, 2009a, among others).
In the setting of VAR models with time-varying volatility, this approach is
�rst considered in Cogley and Sargent (2005). For notational convenience,
we let h

�t = (h1t; : : : ; hnt)
0 and hi� = (hi1; : : : ; hiT )

0. That is, h
�t is the n� 1

vector obtained by stacking hit by the �rst subscript, whereas hi� is the T�1
vector obtained by stacking hit by the second subscript. The log-volatilities
h
�t evolve according to the state equation

h
�t = h�t�1 + �t; �t � N(0;
�1h ); (18)

for t = 2; : : : ; T; where 
h = diag(!h1; : : : ; !hn) is a diagonal matrix. The
process is initialized with h

�1 � N(0; V �1h ) for some known diagonal precision
matrix Vh. Let at denote the free elements in Lt ordered by rows, i.e.,
at � a�t = (a21;t; a31;t; a32;t; : : : ; an(n�1);t)0, so that at is an m � 1 vector of
parameters where m = n(n � 1)=2. The evolution of at is modeled as a
random walk

at = at�1 + �t; �t � N(0;
�1a ); (19)

for t = 2; : : : ; T; where 
a = diag(!a1; : : : ; !am) is a diagonal precision ma-
trix. The process is initialized with a1 � N(0; V �1a ) for some known diagonal
precision matrix Va. In what follows we use these two parameterizations,
namely, �t and (h�t; at), interchangeably. To complete the speci�cation of
the model, it remains to specify the evolution of the VAR coe¢cients �t.
We follow the standard approach of modeling the VAR coe¢cients �t as a
random walk process:

�t = �t�1 + �t; �t � N(0;
�1� ); (20)
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for t = 2; : : : ; T; where 
� = diag(!�1; : : : ; !�k) is a diagonal precision
matrix. The process is initialized with �1 � N(0; V �1� ) for some known
precision matrix V�.

After presenting the basic setup of a TVP-VAR model with stochastic
volatility, we now wish to impose the restriction that the nominal inter-
est rate is always non-negative. For this purpose, arrange the data yt so
that y1t, the �rst element of yt, is the nominal interest rate, and let x1t be
the �rst row of xt. We assume that y1t > 0. Consequently, given �t and
�t, yt follows a multivariate Gaussian distribution with the �rst element
restricted to be positive. To derive the likelihood function, �rst note that
since only y1t is constrained while other elements of yt are not, the marginal
distribution of y1t is a univariate Gaussian variable truncated below at 0.
In fact, it can be easily shown that

(y1t j�t;�t) � N(x1t�t; eh1t)1l(y1t > 0):

It follows that given �t and �t, we have

P(y1t > 0 j�t;�t) = 1� �
�
�x1t�t=e

1
2
h1t
�
= �

�
x1t�te

� 1
2
h1t
�
;

where �(�) denotes the standard Gaussian cumulative distribution function.
Letting y = (y01; : : : ; y

0
T )
0, � = (�01; : : : ; �

0
T )
0 and � = (�1; : : : ;�T ), the

log-likelihood function is thus

log p(y j�;�) =
TX

t=1

log p(yt j�t;�t); (21)

where

p(yt j�t;�t) / �
1

2
log j��1t j�

1

2
(yt�xt�t)0�t(yt�xt�t)�log �

�
x1t�te

� 1
2
h1t
�
:

4.2 Prior and Estimation

Given the measurement equation (21) and the state equations (18)�(20),
we present a Markov sampler that builds upon the approximation methods
discussed in last section to obtain a sample from the posterior distribu-
tion. To this end, we �rst specify the priors for the remaining parame-
ters: !� = (!�1; : : : ; !�k)

0, !h = (!h1; : : : ; !hk)
0, and !a = (!a1; : : : ; !am)

0.
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Speci�cally, the elements of !�, !h and !a follow independently Gamma dis-
tributions: !�i � Gamma(r�i; s�i) for i = 1; : : : ; k, !hi � Gamma(rhi; shi);
for i = 1; : : : ; n; and !ai � Gamma(rai; sai); for i = 1; : : : ;m. For later refer-
ence, we stack h = (h0

�1; : : : ; h
0
�T )

0 and a = (a01; : : : ; a
0
T )
0, and let � denote the

set of parameters except the latent states �, h and a, i.e., � = (!�; !h; !a).

In what follows, we brie�y discuss the implementation of the three samplers;
we refer the readers to Appendices A and B for more details. The �rst
sampling scheme is the baseline Metropolis-Hastings sampler that involves
sequentially drawing from:

a. p(� j y; h; a; �) via an MH step;

b. p(h j y; �; a; �) via an MH step;

c. p(a j y; �; h; �) via a Gibbs step;

d. p(� j y; �; h; a) via a Gibbs step.

To e¢ciently sample the states � in the non-linear state space model (20)
and (21), we consider implementing an independence-chain MH step by ap-
proximating the conditional distribution p(� j y; h; a; �) via a Gaussian dis-
tribution as discussed in Section 3.1. The next step is to sample from the
conditional distribution p(h j y; �; a; �). Recall that hit is the i-th diagonal
element in Dt, h�t = (h1t; : : : ; hnt)

0 and hi� = (hi1; : : : ; hiT )
0. Note that

we are able to write log p(h j y; a; �; �) = Pn
i=1 log p(hi� j y; a; �; �): What

this means is that to obtain a draw from p(h j y; a; �; �), we can instead
sample from p(hi� j y; a; �; �) sequentially without adversely a¤ecting the ef-
�ciency of the sampler. Now, a draw from p(hi� j y; a; �; �) can be obtained
via an independence-chain Metropolis-Hastings step with a Gaussian pro-
posal density; more details are given in Appendix A. Thirdly, it can be
easily shown that p(a j y; �; h; �) is a Gaussian distribution (see, e.g. Prim-
iceri, 2005), and a draw from which can be obtained using Algorithm 1.
Finally, p(� j y; �; h; a) is a product of Gamma densities, and a draw from
which is standard (see Koop, 2003, p. 61-62).

In the second sampling scheme, we also sequentially drawing from the four
full conditional densities as before. The only di¤erence is that instead of
using the MH algorithm to sample p(� j y; h; a; �) and p(h j y; �; a; �), we
use the ARMH algorithm described in Section 3.3.2. Finally, in the third
sampling scheme, we sample
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a. p(!� j y; h; a) marginally via an MH step, followed by p(� j y; h; a; �)
via an ARMH step;

b. p(!h j y; �; a) marginally via an MH step, followed by p(h j y; �; a; �)
via an ARMH step;

c. p(!a j y; �; h) marginally via an MH step, followed by p(a j y; �; h; �)
via a Gibb step.

The details for the collapsed sampler are given in Appendix B.

4.3 Empirical Results

We now present empirical results based on a set of U.S. macroeconomic
variables commonly used in the study of the evolution of monetary policy
transmission. We have an interest rate to capture e¤ects of monetary con-
ditions, a real growth rate variable to capture the state of the economy,
and in�ation. The dataset is obtained from the U.S. Federal Reserve Bank
at St. Louis website that consists quarterly observations from 1947Q1 to
the 2011Q2 on the following n = 3 U.S. macroeconomic series: U.S. 3-
month Treasury bill rate, CPI in�ation rate, and real GDP growth. Both
the CPI in�ation rate and real GDP growth are computed via the formula
400(log(zt)� log(zt�1)), where zt is the original quarterly CPI or GDP �g-
ures. The inclusion of the interest rate variable which is bounded below at
zero, provides a useful example to demonstrate our methods. The plot the
evolution of the interest rate, given in Figure 2, shows that since the start
of the quantitative easing in late 2008, the 3-month Tbill rate has become
essentially zero.

We allow one lag in the VAR as this seems su¢cient to capture much of
the dynamics. We begin with a comparison of performance of the three
sampling schemes. To this end, we estimate the restricted model using
the three di¤erent sampling schemes outlined in the previous section: the
Metropolis-Hastings sampler (S1), the Accept-Reject Metropolis-Hastings
sampler (S2), and the collapsed sampler with cross-entropy method (S3).
We also include results from the unrestricted model (U), for which both the
transition and measurement equations are linear Gaussian. As such, this
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Figure 2: The U.S. 3-month Tbill rate (left), CPI in�ation rate (middle),
and GDP growth rate (right) from 1947 Q1 to 2011 Q2.

unrestricted model can be estimated using the standard outlined in Section
2.

One popular measure of MCMC e¢ciency is the ine¢ciency factor, de�ned
as:

1 + 2

JX

j=1

�j ;

where �j is the sample autocorrelation at lag length j, and J is chosen
large enough so that the autocorrelation tapers o¤. This statistic approx-
imates the ratio of the numerical variance of the posterior mean from the
MCMC output relative to that from hypothetical iid draws. As the poste-
rior draws from the Markov chain become less serially correlated, the ratio
will approach the ideal minimum value of 1. In the presence of ine¢ciency
due to serial correlation in the draws, the ratio will be larger than 1. Fig-
ure 3 presents the boxplots of the ine¢ciency factors for the four sampling
schemes.

Remember that the unrestricted model is linear Gaussian and can be esti-
mated via standard Gibbs sampler. In contrast, the restricted model that
incorporates the ZLB is non-linear, and the conditional densities of the states
are non-standard. Since the proposed samplers need to approximate these
conditional densities, we would generally expect that they would not per-
form as well compared to the standard Gibbs sampler used to estimate the
unrestricted model. As evidenced by the plots in Figure 3, the proposed
samplers do not perform substantially worse at estimating the non-linear
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Figure 3: Boxplots of the ine¢ciency factors for the unrestricted linear
Gaussian model (U), and the three sampling schemes: MH (S1), ARMH
(S2) and the collapsed sampler (S3). The central mark of each box is the
median, the edges of the box are the 25th and 75th percentiles, and the
whiskers extend to the maximum and minimum.

model than the standard precision sampler for �tting the linear Gaussian
model. The collapsed sampler with cross-entropy, S3, has ine¢ciency factors
as small as or smaller than the other samplers for most parameters, includ-
ing the standard sampler for the unrestricted model. The improvement in
e¢ciency for S3 is most substantial in the precision of the state parame-
ters, which is signi�cant as these are hyperparameters and are typically not
as well estimated as parameters that appear in the measurement equation.
These hyperparameters are also important as they play an important role in
the estimation of the states. We see that S1 (the MH sampler) is generally
not as e¢cient compared to the other samplers, although its performance is
not greatly worse than the others. The e¢ciency of S2 (the ARMH sampler)
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Table 1: Acceptance rate (in %) and the computing time (in minutes) of the
three sampling schemes: MH (S1), ARMH (S2) and the collapsed sampler
with CE (S3).

� h1� h2� h3� 
� 
h 
a Time

S1 68 28 35 59 � � � 23
S2 95 71 79 97 � � � 27
S3 98 69 79 97 62 58 76 182

is as good as S3 for the states, but it is worse than S3 for the estimation of
the state precisions.

In Table 1 we present the acceptance rates of draws from candidates, as
well as the computation time for obtaining 50,000 draws. On the whole
the three samplers are relatively fast and have reasonable acceptance rates.
These results are more signi�cant given our high-dimensional model: � has
more than 3,000 elements and h has more than 750. To compare among the
three sampling schemes, we see that although S1 is relatively fast, it can
have low acceptance rates particularly for the log volatilities. By contrast,
S2 has higher acceptance rates at the expense of only a little more compu-
tation time. Although S3 is more e¢cient relative to S2 in terms of lower
ine¢ciency factors, its computation time is almost seven times compared to
that of S2. For our model and dataset, it would seem that S2 is the best
among the three.

We now present empirical results for the restricted model estimated using
the ARMH sampler (S2). For comparison, we also report the corresponding
results for the unrestricted model. This comparison is provided to demon-
strate the implications for inference of neglecting the restriction of the ZLB.
We begin with a discussion of the implications of the restriction for parame-
ter estimation and then show the e¤ect on impulse responses of not correctly
accounting for the ZLB. These di¤erences are signi�cant and justify the new
estimation methods presented in this paper.

The e¤ect of neglecting the ZLB restriction shows up in all blocks of pa-
rameters: the variances; the correlations; and mean equation coe¢cients.
Figure 4 shows the estimated log-volatilities and correlations for the re-
stricted model and the unrestricted model. The �gure for the log-volatilities
of the monetary shock, h1;t, shows that ignoring the restriction would lead
to a signi�cant underestimation of this parameter in the period since 2005.
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Figure 4: Evolution of the log-volatilities and correlations. The solid red
line is the estimated posterior mean under the unrestricted model. The
solid blue line is the estimated posterior mean and the dotted green lines are
the 5%-tile and 95%-tile, respectively, under the model with the inequality
restrictions imposed.

The monetary shock volatility is much higher than the unrestricted model
suggests. Similarly the volatility of real activity, h3;t, is over estimated when
the ZLB is ignored. The volatility and correlations of the nominal variable
shock does not show much in�uence from the ZLB. However, the correlation
of the error from the interest rate equation with the error from the growth
equation is strongly a¤ected, this correlation would be estimated as being
near zero rather than very negative. This e¤ect has important implications
for the impulse responses.

The plots in Figure 5 show the e¤ect of the ZLB on the impulse response
functions of the three variables to a monetary shock. We produce the im-
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pulse responses as the di¤erences in forecasts. However, due to the non-linear
form of the model, these impulses are not the standard ones derived from the
VMA representation in linear models. We forecast the variables using the
parameter values at 2011 Q2, assuming the parameters cease evolving, but
taking into account the ZLB into these forecasts. We then forecast again,
but increase the error in the interest rate equation, the monetary shock, by
0.25%. Our impulse responses are the di¤erences between these two fore-
casts. We see that there is a faster response of interest rates to the monetary
shock, but the form of the response is similar.
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Figure 5: Impulse response of a 0.25% increase in interest rate under the
unrestricted model (red solid line) and the model with the inequality restric-
tions imposed (blue solid line).

The responses of in�ation and growth to this shock are very di¤erent with
the ZLB imposed compared to that without the restriction. As these results
come from a time varying parameter model, it is important to interpret
these responses in the context of the economic environment at the time. In
2011 Q2 in�ation and in�ation volatility were increasing, while growth and
volatility of the error in the growth equation were both low. The response of
in�ation with the ZLB is initially positive but then falls by a larger amount
than the initial response. This pattern contrasts with the steady decline
toward zero from the initial shock we would conclude was the response from
the unrestricted model. The di¤erence in the response of growth to this
shock under the two speci�cations is even more stark. While the shock
is negative but small for the unrestricted model, when we account for the
ZLB we see the initial response is negative and very large. The di¤erences
of these responses would lead to very di¤erent assessments of the risks of
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unanticipated monetary shocks.

5 Concluding Remarks and Further Research

In this paper we have proposed a new approach to e¢ciently estimate high-
dimensional non-linear non-Gaussian state space models. Due to the general
applicability of the proposed approach, it will prove useful in a wide range
of applications. We extend the recently developed precision-based samplers
(Chan and Jeliazkov, 2009b and McCausland, Millera, and Pelletier, 2011)
and sparse matrix procedures to build fast, e¢cient samplers for these non-
linear models. We develop a practical way to sample the model parameters
� and the states � jointly to circumvent the problem of high autocorrelations
in high-dimensional settings. This approach uses the cross-entropy method
(Rubinstein and Kroese, 2004) to obtain the optimal candidate densities
q(� j y). We show via an empirical example that the e¢ciency of the sampling
scheme is substantially improved by drawing (�; y) jointly. Three samplers
are presented each with virtues in di¤erent circumstances. Finally, we apply
these techniques in a TVP-VAR in which one of the variables is restricted to
be strictly positive. Using this framework, we investigate the implications
for transmission of monetary shocks of accounting for the zero lower bound
(ZLB) on interest rates.

Another advantage of the proposed method is that it can be applied to non-
Markovian state equations, which arise in, e.g., various non-linear DSGE
models, and they are more di¢cult to handle under other approaches. There-
fore in future work we will apply this approach to the estimation of non-
linear DSGE models. Another direction will be in models with measurement
equations that involving more than current, past or even future states.

Appendix A: E¢cient Simulation of � and h

In this appendix we provide the details of the independence-chain Metropolis-
Hastings step for sampling from p(� j y; h; a; �) and p(h j y; a; �; �). We use
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the decomposition �t = L
0
tD

�1
t Lt, where

Dt =

0
BBB@

eh1t 0 � � � 0
0 eh2t � � � 0
...

...
. . .

...
0 0 � � � ehnt

1
CCCA ; Lt =

0
BBBBBB@

1 0 0 � � � 0
a21;t 1 0 � � � 0

a31;t a32;t 1 � � � ...
...

...
...

. . .
...

an1;t an2;t � � � an(n�1);t 1

1
CCCCCCA
:

Recall that hit is the i-th diagonal element in Dt, h�t = (h1t; : : : ; hnt)
0 and

hi� = (hi1; : : : ; hiT )
0. That is, h

�t is the n� 1 vector obtained by stacking hit
by the �rst subscript, whereas hi� is the T�1 vector obtained by stacking hit
by the second subscript. Also, at denotes the free elements in Lt ordered by
rows, i.e., at = (a21;t; a31;t; a32;t; : : : ; an(n�1);t)

0. In what follows we use the
two parameterizations �t and (h�t; at) interchangeably. Then the log-density
for yt given (�t;�t) is

log p(yt j�t;�t) / �
1

2
(yt � xt�t)0�t(yt � xt�t)� log �(�t);

where �t = x1t�te
� 1
2
h1t : Using the notation in Section 3.1, we have

ft �
@

@�t
log p(yt j�t;�t)

����
�
t
=e�

t

; Gt � �
@2

@�t�
0
t

log p(yt j�t;�t)
����
�
t
=e�

t

;

where

@

@�t
log p(yt j�t;�t) = x0t�t(yt � xt�t)�

�(�t)

�(�t)
e�

1
2
h1tx01t;

@2

@�t�
0
t

log p(yt j�t;�t) = �x0t�txt +
�(�t)

�(�t)
e�h1t

�
�t +

�(�t)

�(�t)

�
x01tx1t;

where �(�) and �(�) denote the standard Gaussian probability density func-
tion and cumulative distribution function respectively. Given ft and Gt, we
can then use the Gaussian or t approximations in Section 3.1 as a proposal
density.

We now discuss sampling from the conditional density p(h j y; a; �; �). We
�rst show that

log p(h j y; a; �; �) =
nX

i=1

log p(hi� j y; a; �; �):
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Put di¤erently, to obtain a draw from p(h j y; a; �; �), we can instead sample
from p(hi� j y; a; �; �) sequentially without adversely a¤ecting the e¢ciency
of the sampler. To this end, decompose �t = L0tD

�1
t Lt as before. Since

log j�tj = log jDtj =
Pn
i=1 hit and �

2
t;11 = eh1t , it follows that the log-

likelihood is given by

log p(y j�; h; a; �) /
TX

t=1

"
�1
2

nX

i=1

hit �
1

2
(Lt�t)

0D�1t Lt�t � log �
�
e�h1t=2x1t�t

�#
;

=
TX

t=1

"
�1
2

nX

i=1

hit �
1

2

nX

i=1

e�hits2it � log �
�
e�h1t=2x1t�t

�#
;

(22)

where �t = yt � xt�t and s2it is the i-th diagonal element of (Lt�t)(Lt�t)0.
On the other hand, the state equation (18) implies that each hi� follows
independently a Gaussian distribution. In fact, we have

hit = hi;t�1 + �it; �it � N(0; !hi): (23)

Hence, it follows from (22) and (23) that hi�; i = 1; : : : ; n are conditionally
independent given the data and other parameters.

We note that although one can apply the auxiliary variable approach in
Kim, Shepherd, and Chib (1998) to sample from p(hi� j y; a; �; �) for i =
2; : : : ; n, it cannot be used to draw from p(h1� j y; a; �; �) due to the extra
term log �

�
e�h1t=2x1t�t

�
in the log-likelihood (22) that depends on �t. In-

stead, we sample each hi� sequentially via an independence-chain Metropolis-
Hastings step. As before, we �rst derive an expression for a second or-
der Taylor expansion of the log-likelihood (22) around the posterior mode
bhi� = (bhi1; : : : ;bhiT )0. De�ne t = e�h1t=2x1t�t

qit =
@

@hit
log p(y j�; h; a; �)

����
hit=bhit

; rit = �
@2

@h2it
log p(y j�; h; a; �)

����
hit=bhit

;

qi = (qi1; : : : ; qiT )
0 and Ri = diag(ri1; : : : ; riT ), where

@

@hit
log p(y j�; h; a; �) = 1

2

�
e�hits2it � 1 + t

�(t)

�(t)
1l(i = 1)

�
;

and

@2

@h2it
log p(y j�; h; �) = �1

2
e�hits2it +

1

4
t
�(t)

�(t)

�
2t + t

�(t)

�(t)
� 1

�
1l(i = 1):
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If we expand the log-likelihood (22) around the mode bhi�, we have

log p(y j�; h; a; �) � �1
2

h
bh0i�Ribhi� � 2bh0i�(qi +Ribhi�)

i
+ c3;

where c3 is some unimportant constant independent of bhi�. We consider the
proposal density N(bhi�; (qi +Ribhi�)�1), and everything follows as before.

Appendix B: Collapsed Sampler with the Cross-

Entropy Method

In this appendix we provide the details on the collapsed sampler used in
the third sampling scheme. In a nutshell, we �rst use a small posterior
sample from a pre-run and the cross-entropy method to locate an optimal
proposal density within a given parametric family. Then given a candidate
draw from the proposal, we implement a Metropolis-Hastings step to decide
whether or not to accept the candidate, where the acceptance probability
is computed using the importance sampling estimator for the integrated
likelihood proposed in Section 3.2. We focus on discussing the approximation
to p(!� j y; h; a), where !� = (!�1; : : : ; !�k)

0. The approximations to the
other two marginal densities follow similarly. Recall that the elements of !�
have an independent gamma prior: !�i � Gamma(r�i; s�i) for i = 1; : : : ; k.
Therefore, a natural parametric family within which to locate the proposal
density is the gamma family:

G =
(

kY

i=1

fG(!�i; c�i; d�i)

)
;

where fG(�; c; d) is the density of Gamma(c; d). Given the R posterior draws
f!(j)�1 ; : : : ; !

(j)
�kg, j = 1; : : : ; R, we solve the CE optimization problem in (16)

to obtain bvce = (bc�1; bd�1; : : : ;bc�k; bd�k): Speci�cally, the optimal CE reference
parameter vector bvce can be obtained as follows. First note that bd�i can be
solved analytically given c�i:

bd�i =
Rc�i

PR
j=1 !

(j)
�i

:

Now by substituting d�i = bd�i into the density fG(�; c�i; d�i); bc�i can be ob-
tained by any one-dimensional root-�nding algorithm (e.g., Newton-Raphson
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method). Hence, we can obtain (bc�1; bd�1; : : : ;bc�k; bd�k) easily. Finally, the
proposal density is

f�(!�) =
kY

i=1

fG(!�i;bc�i; bd�i);

which is the member within G that is the closest in cross-entropy divergence
to the marginal density p(!� j y; h; a).

References

Andrieu, C. , K. K. Berthelsen, A. Doucet, and G. O. Roberts. The expected
auxiliary variable method for Monte Carlo simulation. Technical report,
2007.

Andrieu, C., A. Doucet and R. Holenstein. Particle Markov chain Monte
Carlo methods. Journal of the Royal Statistical Society Series B, 72:269�
342, 2010.

Carter, C. K., and R. Kohn. On Gibbs sampling for state space models.
Biometrika, 81:541�553, 1994.

Chan, J. C. C., and I. Jeliazkov. MCMC estimation of restricted covariance
matrix. Journal of Computational and Graphical Statistics, 18:457�480,
2009a.

Chan, J. C. C., and I. Jeliazkov. E¢cient simulation and integrated likeli-
hood estimation in state space models. International Journal of Mathemat-
ical Modeling and Numerical Optimisation, 1:101�120, 2009b.

Chib, S., and E. Greenberg. Understanding the Metropolis-Hastings algo-
rithm. The American Statistician, 49(4):327�335, 1995.

Chib, S., and I. Jeliazkov. Accept-reject Metropolis-Hastings sampling and
marginal likelihood estimation. Statistica Neerlandica, 59:30�44, 2005.

Chib, S., F. Nardari, and N. Shephard. Markov chain Monte Carlo methods
for stochastic volatility models. Journal of Econometrics, 108(2):281�316,
2002.

35



Cogley, T. and T. J. Sargent. Evolving post-World War II in�ation dynam-
ics, NBER Macroeconomic Annual, 16, 331-373, 2001.

Cogley, T., and T. J. Sargent. Drifts and volatilities: monetary policies and
outcomes in the post WWII US. Review of Economic Dynamics, 8(2):262 �
302, 2005.

de Jong, P., and N. Shephard. The simulation smoother for time series
models. Biometrika, 82:339�350, 1995.

Doucet, A., and A. M. Johansen. A tutorial on particle �ltering and smooth-
ing: Fifteen years later. In D. Crisan and B. Rozovskii, editors, The Oxford
Handbook of Nonlinear Filtering. Oxford University Press, Oxford, 2011.

Doucet, A., N. De Freitas, and N.J. Gordon, editors. Sequential Monte
Carlo Methods in Practice. Springer, New York, 2001.

Durbin, J., and S. J. Koopman. Monte Carlo maximum likelihood estima-
tion for non-Gaussian state space models. Biometrika, 84:669�684, 1997.

Durbin, J., and S. J. Koopman. A simple and e¢cient simulation smoother
for state space time series analysis. Biometrika, 89:603�615, 2002.

Fernandez-Villaverde, J., and J. F. Rubio-Ramirez. Estimating macro-
economic models: A likelihood approach. Review of Economic Studies,
74(4):1059�1087, 2007.

Flury, T., and N. Shephard. Bayesian inference based only on simulated
likelihood: particle �lter analysis of dynamic economic models. Economics
SeriesWorking Papers 413, University of Oxford, Department of Economics,
2008.

Früwirth-Schnatter, S. Data augmentation and dynamic linear models. Jour-
nal of Time Series Analysis, 15:183�202, 1994.

Frühwirth-Schnatter, S., and R. Frühwirth. Auxiliary mixture sampling
with applications to logistic models. Computational Statistics & Data Analy-
sis, 51(7):3509�3528, 2007.

Frühwirth-Schnatter, S., and H. Wagner. Auxiliary mixture sampling for
parameter-driven models of time series of counts with applications to state
space modelling. Biometrika, 93:827�841, 2006.

36



Geweke, J. Bayesian inference in econometric models using Monte Carlo
integration. Econometrica, 57 (6):1317�1339, 1989.

Iwata, S. and S. Wu. Estimating monetary policy e¤ects when interest rates
are close to zero. Journal of Monetary Economics, Elsevier, vol. 53(7), pages
1395-1408, October, 2006.

Jungbacker, B., and S. J. Koopman. Monte Carlo estimation for nonlinear
non-Gaussian state space models. Biometrika, 94:827�839, 2008.

Keith, J. M., D. P. Kroese, and G. Y. Sofronov. Adaptive independence
samplers. Statistics and Computing, 18:409�420, 2008.

Kim, S., N. Shepherd, and S. Chib. Stochastic volatility: Likelihood in-
ference and comparison with ARCH models. Review of Economic Studies,
65(3):361�393, 1998.

Koop, G. Bayesian Econometrics. Wiley & Sons, New York, 2003.

Koop G., R. Léon-González and R. W. Strachan. On the Evolution of
Monetary Policy. Journal of Economic Dynamics and Control 33, 997-1017,
2009.

Kroese, D. P., T. Taimre, and Z. I. Botev. Handbook of Monte Carlo Meth-
ods. John Wiley & Sons, New York, 2011.

McCausland, W. J.. The HESSIAN method (Highly E¢cient State Smooth-
ing, In A Nutshell). University of Montreal Department of Economics Work-
ing Paper Series, 2008-03, 2008.

McCausland, W. J., S. Millera, and D. Pelletier. Simulation smoothing for
state-space models: A computational e¢ciency analysis. Computational
Statistics and Data Analysis, 55:199�212, 2011.

Pourahmadi, M. Joint mean-covariance models with applications to longitu-
dinal data: Unconstrained parameterisation. Biometrika, 86:677�690, 1999.

Pourahmadi, M. Maximum likelihood estimation of generalised linear models
for multivariate normal covariance matrix. Biometrika, 87:425�435, 2000.

Primiceri, G. E. Time varying structural vector autoregressions and mone-
tary policy. Review of Economic Studies, 72(3):821�852, 2005.

37



Reifschneider, D. and J. C. Williams. Three lessons for monetary policy in
a low in�ation era. Journal of Money, Credit and Banking 32:936-966, 2000.

Roberts, G. O., and J. S. Rosenthal. General state space Markov chains and
MCMC algorithms. Probability Surveys, 1:20�71, 2004.

Rubinstein, R. Y., and D. P. Kroese. The Cross-Entropy Method: A Uni-
�ed Approach to Combinatorial Optimization Monte-Carlo Simulation, and
Machine Learning. Springer-Verlag, New York, 2004.

Rubio-Ramirez, J. F., and J. Fernandez-Villaverde. Estimating dynamic
equilibrium economies: linear versus nonlinear likelihood. Journal of Ap-
plied Econometrics, 20(7):891�910, 2005.

Rue, H., S. Martino, and N. Chopin. Approximate Bayesian inference for
latent Gaussian models by using integrated nested Laplace. Journal of the
Royal Statistical Society Series B, 71:319�392, 2009.

Shephard, N., and M. K. Pitt. Likelihood analysis of non-Gaussian mea-
surement time series. Biometrika, 84:653�667, 1997.

Sims, C. and T. Zha, Were there regime switches in macroeconomic policy?
American Economic Review, 96, 54-81, 2006.

Smith, M., and R. Kohn. Parsimonious covariance matrix estimation for
longitudinal data. Journal of the American Statistical Association, 97:1141�
1153, 2002.

Strickland, C. M., C. S. Forbes, and G. M.Martin. Bayesian analysis of the
stochastic conditional duration model. Computational Statistics and Data
Analysis, 50:2247�2267, 2006.

Tierney, L. Markov chains for exploring posterior distributions. The Annals
of Statistics, 22(4):1701� 1728, 1994.

38


