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Abstract

We propose Bayesian inference in hazard regression models where
the baseline hazard is unknown, covariate effects are possibly age-
varying (non-proportional), and there is multiplicative frailty with ar-
bitrary distribution. Our framework incorporates a wide variety of
order restrictions on covariate dependence and duration dependence
(ageing). We propose estimation and evaluation of age-varying co-
variate effects when covariate dependence is monotone rather than
proportional. In particular, we consider situations where the lifetime
conditional on a higher value of the covariate ages faster or slower than
that conditional on a lower value; this kind of situation is common in
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applications. In addition, there may be restrictions on the nature of
ageing. For example, relevant theory may suggest that the baseline
hazard function decreases with age. The proposed framework enables
evaluation of order restrictions in the nature of both covariate and
duration dependence as well as estimation of hazard regression mod-
els under such restrictions. The usefulness of the proposed Bayesian
model and inference methods are illustrated with an application to
corporate bankruptcies in the UK.

Keywords: Bayesian nonparametrics; Nonproportional hazards; Frailty; Age-
varying covariate effects; Ageing.

1 Introduction

Understanding the nature of covariate dependence and ageing are the main
objectives of regression analysis of lifetime or duration data. In many appli-
cations, relevant underlying theory or preliminary analysis may suggest that
there are important order restrictions either covariate dependence, or the
shape of the baseline hazard, or both. Parametric inference in such situations
can be conducted by making functional form or distributional assumptions
that impose the above order restrictions. However, such assumptions can be
very restrictive and lead to weak inference. Instead, one may aim to conduct
order restricted nonparametric analysis under the constraints implied by the-
ory or past experience. In fact, such inference can also be used to judge the
validity of the order restrictions themselves.

In this paper, we propose Bayesian models to conduct order restricted
nonparametric inference in applications with single spell lifetime data. Specif-
ically, our framework for inference in hazard regression models incorporates
three important features. First, we do not assume proportional hazards with
respect to all covariates included in the analysis. It is well-known that the
proportionality assumption underlying the Cox proportional hazards model
does not hold in many applications. On the other hand, credible inference
under the model depends crucially on the validity of the proportionality as-
sumption. Further, the effect of a covariate is often monotone, in the sense
that the lifetime (or duration) conditional on a higher value of the covariate
ages faster or slower than that conditional on a lower value (Bhattacharjee,
2006). In particular, we consider relative ageing in the nature of convex or
concave ordering (Kalashnikov and Rachev, 1986) of lifetime distributions
conditional on different values of the covariate in question. Ordered de-
partures of this kind are common in applications, and the models provide



useful and intuitively appealing descriptions of covariate dependence in non-
proportional situations. Further, ordered departures of the above kind can be
convenienty studied in a Cox type regression model with age-varying covari-
ate effects (Bhattacharjee, 2004), where positive ageing for higher covariate
values implies that the age-varying effect of the covariate is a nondecreasing
function of lifetime. Thus, in this paper, order restriction in covariate de-
pendence will be taken as monotone age-varying covariate effects for some
selected covariates.

Second, in addition to order restricted covariate dependence, we will allow
for constraints on the shape of the baseline hazard function. These order
restrictions will typically be in the nature of monotone (increasing/ decresing)
hazard rates. They could also be characterised by weaker notions of ageing,
such as "new better than used". As discussed above, these kind of ordering
are important in many applications, and reflect the inherent structural nature
of the ageing process not related to differences in observed or unobserved
covariates.

The third characteristic feature of our work is in the treatment of unob-
served heterogeneity. In our approach, unobserved covariates induce hazard
rates to vary across individuals in two different ways. Unobserved covariates
that act at the group level (and are therefore identified by group membership)
are incorporated in our model as fixed effects heterogeneity. In addition, we
allow a scalar unobserved covariate independent of the included regressors
which has a completely unspecified distribution. Our approach is in con-
trast of much of the literature that specifies a parametric frailty distribution.
The nonparametric approach to modeling frailty (Heckman and Singer, 1984)
operates through a sequence of discrete multinomial distributions. Each of
these distributions comprises a set of mass points along with the probabilities
of a subject being located at each mass point. By progressively increasing
the number of mass points, we are able to approximate any arbitrary frailty
distribution.

The remainder of the paper is organised as follows. Section 2 presents a
selective review of the literature. We describe our model in Section 3 and
our application is presented and discussed in Section 4. Finally, Section 5
concludes.

2 Literature

This paper is in the area of order restricted Bayesian semiparametric inference
in the context of hazard regression models. The work is rather unique in that



there is very little prior literature in the area. However, there is literature
in several related areas, both in a Bayesian paradigm as well as frequentist
inference. We survey the literature in these areas briefly with a view towards
placing our work within the context of the literature and highlighting the
distinctive nature of our approach.

2.1 Bayesian semiparametric inference in hazard re-
gression models

Semiparametric approaches to Bayesian inference in hazard regression models
usually assume the Cox proportional hazards model

A(tzi() = (). exp [B7.z(0)],  i=1....n M)

where z,(t) is the p-dimensional vector of (time varying) covariates for the
i-th subject at time t > 0, [ is the (fixed) vector of unknown regression coef-
ficients, and \o(t) is the unknown baseline hazard function. Various Bayesian
formulations of the model differ mainly in the nonparametric specification of

Ao(t).

2.1.1 Prior specification for hazard regression models

A model based on an independent increments gamma process was proposed
by Kalbfleisch (1978) who studied its properties and estimation. Extensions
of this model to neutral to the right processes was discussed in Wild and
Kalbfleisch (1981). In the context of multiple event time data, Sinha (1993)
considered an extension of Kalbfleisch’s (1978) model for A\¢(t). The proposal
assumes the events are generated by a counting process with intensity given
by a multiplicative expression similar to (Equation 1), but including an in-
dicator of the censoring process, and individual frailties to accommodate the
multiple events occurring per subject.

Several other modelling approaches based on the Cox PH model have been
studied in the literature. Laud et al. (1998) consider a Beta process prior
for Ag(t) and propose an MCMC implementation for full posterior inference.
Nieto-Barajas and Walker (2002a) propose their flexible Lévy driven Markov
process to model Ao(t), and allowing for time dependent covariates. Full
posterior inference is achieved via substitution sampling.



2.1.2 Bayesian survival data models

While Bayesian formulation of the Cox proportional hazards model has been
rather narrow in the specification of the baseline hazard function, sevral other
models have been used more generally in Bayesian survival analysis. These
models can be used in the context of hazard regression models to specify the
baseline hazard or baseline cumulative hazard functions.

Many stochastic process priors that have been proposed as nonparametric
prior distributions for survival data analysis belong to the class of neutral to
the right (NTTR) processes. A random probability measure F'(¢) is an NTTR
process on the real line, if it can be expressed as F(t) = 1 — exp(—Y (t)),
where Y (t) is a stochastic process with independent increments, almost
surely right-continuous and non-decreasing with P{Y(0) = 0} = 1 and
P{lim; ., Y(t) =1} =1 (Doksum 1974). The posterior for a NTTR prior
and i.i.d. sampling is again a NTTR process. Ferguson and Phadia (1979)
showed that for right censored data the class of NTTR process priors remains
closed, i.e., the posterior is still a NTTR process.

NTTR processes are used in many approaches that construct probability
models for the hazard function A(t) or the cumulative hazard function A(t).
Dykstra and Laud (1981) define the extended gamma process as a model for
A(t), generalizing the independent gamma increments process studied in Fer-
guson (1973). Dykstra and Laud (1981) show that the resulting function A(¢)
is monotone, making it useful for modeling ageing in the nature of monotone
hazard rates.

An alternative Beta process prior on A(t) was proposed by Hjort (1990),
where the baseline hazard comprises piecewise constant independent beta dis-
tributed increments. This model is closed under prior to posterior updating
as the posterior process is again of the same type. Full Bayesian inference for
a model with a Beta process prior for the cumulative hazard function using
Gibbs sampling can be found in Damien et al. (1996). Walker and Mallick
(1997) specify a similar structure for the prior, but use independently dis-
tributed gamma hazards.

While the above models for A(t) are based on independent hazard in-
crements {\;}, considering dependence provides a different modeling per-
spective. A convenient way to introduce dependence is a Markovian process
prior on {\;}. Gamerman (1991) proposes the following model: In ();) =
In(A\j_1) + ¢, for j > 2, where {¢,} are independent with E (¢;) = 0 and
Var (g;) = 0? < co. Later, Gray (1994) used a similar prior process but di-
rectly on the hazards {);}, without the log transformation. A further gener-
alization involving a martingale process was proposed in Arjas and Gasbarra
(1994). More recently, Nieto-Barajas and Walker (2002b) proposed a model



based on a latent process {u;} such that {);} is included as
AN —— U] — Ay —> Uy — ...

and the pairs (u,\) are generated from conditional densities f (u|)\) and
f (Mu) implied by a specified joint density f (u,A). The main idea is to
ensure linearity in the conditional expectation: E (A;j11|A\;) = a; + bjA;.
Nieto-Barajas and Walker (2002b) show that both the gamma process of
Walker and Mallick (1997) and the discrete Beta process of Hjort (1990) are
obtained as special cases of their construction, under appropriate choices of

f(u, N).

2.1.3 Unobserved heterogeneity

Accounting for unobserved heterogeneity is important in the analysis of haz-
ard regression models. With single survival data and individual-level frailty,
estimation of individual frailties is not possible but their distribution can
be inferred on. Clayton (1991) and Walker and Mallick (1997) both con-
sider Bayesian inference in the Cox proportional hazards model with gamma
frailty distribution, but with different priors on the baseline hazard func-
tion. Sinha (1993) also assumes gamma distributed frailties, but in multiple
event survival data. Extensions of this model to the case of positive stable
frailty distributions and a correlated prior process with piecewise exponential
hazards can be found in Qiou et al. (1999).

In its ability to deal with potentially large number of latent variables, the
Bayesian framework offers the possibility of a more nonparametric approach
to modeling individual level frailty. Based on repeated failures data, Bhat-
tacharjee et al. (2003) and Arjas and Bhattacharjee (2003) have proposed a
hierarchical Bayesian model based on a latent variable structure for modeling
unobserved heterogeneity; the model is very powerful and shown to be useful
in applications.

Since our application here is based on single failure per subject data, we
use a latent variable structure but with the objective of inferring on the frailty
distribution rather than the latent variables themselves. We model frailty in
two different ways. First, we divide the subjects into groups and incor-
porate fixed effects unobserved heterogeneity across these different groups.
Second, we model individual level frailty in a more nonparametric tradition
(see Heckman and Singer, 1984) by introducing a sequence of multinomial
frailty distributions with increasing number of support points; for a related
Bayesian implementation, see Campolieti (2001).



2.1.4 Order restricted inference

The literature on order restricted Bayesian inference, with restrictions either
on the shape of the baseline hazard function or on the nature of covariate
depence, is indeed very sparse. Notable contributions to the literature in this
area are Arjas and Gasbarra (1996), Sinha et al. (1999), Gelfand and Kottas
(2001) and Dunson and Herring (2003); all these papers are related to the
current work.

Arjas and Gasbarra (1996) develop models of the hazard rate processes
in two samples under the restriction of stochastic ordering. They define their
prior on the space of pairs of hazard rate functions; the unconstrained prior
in this space consists of piecewise constant gamma distributed hazards which
incorporate path dependence. The constrained prior is then constructed by
restricting to a subspace on which the maintained order restriction holds.
In their work, Arjas and Gasbarra (1996) propose a coupled and constrained
Metropolis-Hastings algorithm for posterior elicitation based on the order re-
striction and also for Bayesian evaluation of the stochastic ordering assumed
in the analysis. For the same problem, Gelfand and Kottas (2001) devel-
oped an alternative prior specification and computational algorithm. The
Bayesian model in Arjas and Gasbarra (1996), in combination with the gen-
eral treatment of Bayesian order restricted inference (for example, in Gelfand
et al., 1992), is related to the current paper.

Sinha et al. (1999) develop Bayesian analysis and model selection tools
using interval censored data where covariate dependence is possibly nonpro-
portional. They model the baseline hazard function using an independent
Gamma prior and age varying covariate effects are endowed with a Markov
type property B,41|61s---,8r ~ N (B4, 1) .-While Sinha et al. (1999) do not
explicitly consider order restrictions either on covariate dependence or on
ageing, they provide Bayesian inference procedures to infer on the validity of
the proportional hazards assumption.

In other work related to this paper, Dunson and Herring (2003) consider
an order restriction on covariate dependence in hazard regression models.
They develop Bayesian methods for inferring on the restriction that the effect
of an ordinal covariate is higher for higher levels of the covariate; in other
words, they conduct inference on trend in conditional hazard functions. We
work with restrictions on covariate dependence which are different in two
respects. First, the covariate is continuous in our case and not categorical.
Second, our order restriction is related to convex/ concave partial ordering of
conditional hazard functions rather than trend. Consequently, we express our
constraints in terms of monotonic age-varying covariate effects, and propose
a different methodology for Bayesian inference.



2.2 Order restricted frequentist inference

Order restrictions relating both to the shape of the baseline hazard function
(ageing) as well as the effect of covariates (covariate dependence) are im-
portant in the study of hazard regression models. However, the literature on
frequentist order restricted inference in hazard regression models deal mainly
with covariate dependence.

In the two sample (binary covariate) setup, testing for proportionality of
hazards against some notion of relative ageing (such as, monotone hazard
ratio, or monotone ratio of cumulative hazards) has been an active area of
research (Gill and Schumacher, 1987; Deshpande and Sengupta, 1995; Sen-
gupta et al., 1998). Order restricted estimation in two samples under the cor-
responding partial orderings (convex ordering and star ordering) has not been
considered in the literature. However, estimation in two samples with right-
censored survival data under the stronger constraint of stochastic ordering
has been considered in Dykstra (1982), and extended to uniform conditional
stochastic ordering in the k-sample setup by Dykstra et al. (1991). These
inference procedures are, however, not very useful in the hazard regression
context, where covariates are typically continuous in nature.

In a recent contribution, Bhattacharjee (2006) extended the notion of
monotone hazard ratio in two samples to the situation when the covariate
is continuous, and proposed tests for proportional hazards against ordered
alternatives. Specifically, the alternative hypothesis here states that, lifetime
conditional on a higher value of the covariate is convex (or concave) ordered
with respect to that conditional on a lower covariate value:

THRCC : whenever x; > za, A(t|x1)/A(t|z2) T (= (T|X = 21)<(T|X = z2)
DHRCC : whenever x1 > xa, AN(t|z2) /A\(t|z1) T H(= (T|X = 29)<(T|X = 1)
(2)

where x; and x5 are two distinct values of the covariate under study, <.
denotes convex ordering, and IHRCC (DHRCC) are acronyms for "Increasing
(Decreasing) Hazard Ratio for Continuous Covariates". Bhattacharjee (2004)
shows that, in the absence of unobserved heterogeneity, monotone covariate
dependence of this type can be nicely represented by monotonic age varying
covariate effects, so that

THRCC : A(t|z;)
DHRCC : \t|z;)

No(t)- exp [B(t)..]  B(1) T ¢ (3)
No(t)-exp [B(t).] , B(2) | ¢,

Thus, the above partial orders can be conveniently studied using age-varying
covariate effects; using this representation, Bhattacharjee (2004) proposed
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biased bootstrap methods (like data tilting and local adaptive bandwidths)
to estimate hazard regression models under these order restrictions. Bhat-
tacharjee (2007) extended the test for proportionality to a regression model
with individual level unobserved heterogeneity with completely unrestricted
frailty distribution.

In this paper, we will consider order restrictions on the shape of the
baseline hazard function in addition to constraints on covariate dependence.
This kind of ordering is relevant in many applications. For example, relevant
theory may suggest that the the effect of a covariate is positive but decreases
to zero with age. In addition, the baseline hazard function decreases with
age.

3 Our Bayesian model

The Bayesian framework offers several advantages in conducting order re-
stricted inference in the current problem. First, inference on order restric-
tions jointly on covariate dependence and ageing is a challenging problem,
and the Bayesian setup is better equipped to deal with such difficult prob-
lems. Second, prior beliefs can be explicitly incorporated in the model, in-
cluding beliefs on order restrictions. Third, the framework provides very
good flexibility where frailty of different kinds can be included and inferred
on.

The major challanges, on the other hand, are (a) appropriate representa-
tion of prior beliefs in the model, and (b) ensuring numerical tractability of
posterior simulations.

As mentioned earlier, the inference procedures in this paper are developed
with reference to an application to firm exits due to bankruptcy in the UK.
The major objective of our empirical analysis is to understand the effect of
macroeconomic conditions on business failure. Age of the firms is measured
in years post-listing. The lifetime data are right censored, left truncated and
contain delayed entries. Most of the covariates included in the regression
model (firm-specific and macroeconomic) are time-varying. In addition, our
data includes industry dummies which are fixed over age.

Initially, we consider the Cox proportional hazards model with time vary-
ing covariates, fixed regression coefficients and completely unrestricted base-
line hazard function (Equation 1). We will incorporate into the model ad-
ditional features of our analysis: (a) order restricted covariate dependence —



time varying (and possibly monotonic) covariate effects, (b) unobserved het-
erogeneity — fixed effects heterogeneity and frailty, and (c) order restrictions
on ageing.

To facilitate analysis and presentation, we partition the time axis [0, c0)
into a finite number of disjoint intervals (in our case, in years), say I1, I, . .., 541,
where [; = [a;_1,a;) for j =1,2,...,9+ 1 with ap = 0 and az4; = co. We
assume the baseline hazard function to be constant within each of these in-
tervals (taking values Aj, Ao, ..., A\g41), and the age-varying covariate effects
to be similarly piecewise constant.

3.1 Order restricted covariate dependence

Like many other applied disciplines, economic theory does not usually imply
functional forms or exact distributions, but rather order restrictions such as
monotonicity, convexity, homotheticity etc. In the context of survival models,
there are many applications where there is evidence of order restrictions of
the kind described in (Equation 2) or (Equation 3) on the nature of covariate
dependence.

For example, Metcalf et. al. (1992) and Card and Olson (1992) observed
that the impact of real wage changes varied with duration of strikes, and the
variation was in the nature of ordered departures. In particular, Card and
Olson (1992) found that, while longer duration strikes (lasting more than
4 weeks) were most common for strikes with wage changes of less than 15
per cent, shorter duration strikes (1 to 3 days) were most frequent for wage
changes above 15 per cent. Similarly, Narendranathan & Stewart (1993)
observe that the effect of unemployment benefits on unemployment durations
decreases the closer one is to the termination of benefits.

In a previous study using the current dataset, the impact of macroeco-
nomic instability on business exit is found to decrease with age of the firm
post-listing (Bhattacharjee et al., 2002). Such evidence of monotonic co-
variate effects are not confined to economic applications. For survival with
malignant melanoma, for example, Andersen et. al. (1993) observe that,
while “hazard seems to increase with tumor thickness” (pp. 389), the plot
of estimated cumulative baseline hazards for patients with ‘2mm < tumor
thickness < 5mm’ and ‘tumor thickness > 5mm’ against that of patients with
‘tumor thickness < 2mm’ reveal “concave looking curves indicating that the
hazard ratios decrease with time” (pp. 544-545).

Based on the above discussion, covariates with both fixed and age-varying
covariate effects are included in our analysis. For some covariates with non-
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proportional hazards, the age-varing effects monotonically increase with age
while for some others, the effect decreases as time goes on.

3.2 Unobserved heterogeneity

We account for unobserved covariate effects in two distinct ways. First, there
are unobserved covariates at the industry level which create variation in exit
rates across industries (other factors remaining constant). Since industry
membership is observed for all firms, these factors can be incorporated by
including fixed effects heterogeneity. In essence, we include a dummy variable
for each industry in our regression model. The estimates for these fixed
effects will then be interpreted as the effect of all unobserved regressors at
the industry level.

Second, we include a multiplicative frailty variable that is independent
of all other included or industry level covariates. Unlike previous Bayesian
studies, the frailty distribution is fully nonparametric in our case. We imple-
ment this feature using a method suggested by Heckman and Singer (1984),
where the unknown distribution is approximated by a sequence of multino-
mial distributions based on progressively increasing number of mass points.
For example, with two mass points, log-frailty is assumed to have a two point
distribution (say, with mass at m; = 0 and my, and corresponding probabil-
ities m; and my = 1 — my); one of the mass points is set at zero because of
scaling. The number of mass points is increased sequentially until no substan-
tial improvement in the model is observed. At that point, the multinomial
distribution approximates the unknown frailty distribution reasonably well.

Modeling frailty distribution in this way offers excellent opportunities for
inference and interpretation. For example, a two support point distribution
with 71 = 0.25 would indicate that, with respect to the unobserved covariate,
there are two types of subjects. 25% of these subjects draw a lower value
from the population and consequently have a lower hazard rate. Contrast
this with a gamma distributed frailty; similar inferences on the estimates of
the frailty distribution are not so readily derived.

3.3 Ageing

In addition to covariate dependence, it is often reasonable to expect order
restrictions on the shape of the baseline hazard function. For example, in a
similar application based on the current data, Bhattacharjee et al. (2002) find
that the baseline hazard function exhibits some negative ageing. However,
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this evidence is not in the nature of a decreasing hazard rate, but perhaps
a weaker form of partial order. This indicates a weak form of learning not
related to other observed covariates. This would suggest an additional or-
der restriction, perhaps in the nature of a "new worse than used" lifetime
distribution.

We incorporate such order restrictions in our application to evaluate any
evidence on ageing.

Incorporating the above three features in the Cox PH model (Equation
1), we have the following hazard regression model:

A(ID, 2D (), 2 (8), 1) = Ao(t). exp @T.L‘i)i +ﬁT.ﬂi(t) + @(t)Tﬁz(t) Vi,

(4)
where \g(t) is the unknown baseline hazard function which could potentially
have order restrictions on ageing, J¥; is a vector of dummy variables indi-
cating membership in the various industry groups, z\/) ;(t) are covariates with
proportional effects on the hazard function, z(*),(¢) are covariates with non-
proportional effects potentially represented by order restrictions on covariate
dependence, and v; is an individual-level multiplicative frailty variable with
arbitrary distribution.

3.4 Prior specification

We explore several models with different specifications for the prior distri-
butions. These prior distributions are related to models considered in the
literature, for example in Sinha et al. (1999). However, our models are
unique in that they explicitly consider order restrictions in covariate depen-
dence and ageing, in the presence of individual level multiplicative frailty.
Below we describe specification of priors for the three main categories of
parameters for our model: covariate effects, baseline hazard and frailty.

3.4.1 Covariate effects

We use three alternative prior distributions for modeling the covariate effects:

1. Truncated normal, with truncation reflecting whether the covariate ef-
fect is expected to be positive or negative. For the industry fixed effects,
there is no truncation, and the distribution is centered at zero.

2. Truncated normal, with variance proportional to the number at risk
(for age-varying covariate effects)

12



3. Exponential prior. Like above, for age-varying effects, parameter is

made proportional to number at risk.

For the covariates with potentially age varying effects, we model order
restrictions in three different ways:

1.

Initially, no order restriction is imposed, leaving the effects free to as-
sume any value (positive or negative). However, a first order smoothing
condition is assumed: E [§ (tx) |5 (tg—1)] = B (tx_1). Further, variance
was set at 10 for 5’s up to age 35, and variance was set at 1 thereafter
— this was to control for the cumulative uncertainty effect due to the
smoothing assumption.

Order restrictions in the posterior mean

Stochastic ordering: For example, for decreasing covariate effects, mean
set at a reasonable level initially, decreasing by a step each year. Steps
have exponential distributions, with parameter proportional to number
at risk.

We make use of the well known consistency property of Bayesian updat-
ing procedures that if the prior is supported completely by a subset of the
parameter space, then so is the posterior.

3.4.2 Baseline hazard

Four different specifications for the baseline hazard prior are explored.

1.

Gamma independent increments

. Truncated normal independent increments

. Neutral to the right gamma process

Gamma independent increments till age 10, stochastically decreasing
thereafter (this reflects a weak form of negative ageing)

3.4.3 Frailty

Our empirical work in the following Section is based on a two-point support
frailty distribution. Since we do not find substantial evidence of individual
level frailty, we have not extended the analysis to frailty distributions with
higher number of support points.

13



3.5 Model Implementation

We have formulated the model in the Bugs language and performed parame-
ter estimation using WinBUGS 1.4 (Spiegelhalter et al., 1999).

4 Results and discussion

Bhattacharjee et al. (2002) have analysed firm exits in the UK over the
period 1965 to 1998. The data pertain to around 4300 listed manufacturing
companies covering approximately 48,000 company years, and include 206
exits due to bankruptcy. The data are right censored (by the competing risks
of acquisitions, delisting etc.), left truncated in 1965, and contain delayed
entries. A major focus of the analysis is on the effect of macroeconomic
conditions and instability on business failure. Age is measured in years post-
listig, and all time varying covariatesare measured at an annual frequency.
Industry dummies are included in the analysis — these are fixed covariates.

Since the data includes delayed entries, our inference will be based solely
on the partial likelihood based on an appropriate definition of risk sets. Par-
tial likelihood inference is valid in a wide range of situations with delayed
entries (Andersen et al., 1993), even though some standard properties of
counting processes do not hold here.

Four measures of macroeconomic conditions and instability are consid-
ered: (a) US business cycle (Hodrick-Prescott filter of US output per capita),
(b) instability in foreign currency markets (maximum monthly change, year
on year for each month, in exchange rates over a year), (c) instability in
prices (similar to exchange rates, but measured in terms of RPI inflation),
and (d) a measure of business cycle turnaround (measured by the curvature,
or second order difference, of the annual Hodrick-Prescott filtered series of
UK output per capita). Theory suggests that the effect of the first and the
fourth measure on bankruptcy may be negative, and the second and third
ones positive. Because of learning effects, the adverse impact of instability is
expected to decline in the age of the firm, post-listing. Similarly, the effect
of the US business cycle, negative initially, may also rise with age.

A firm level variable — size, measured as logarithm of gross fixed assets
in real terms — is also included as a covariate.

Industry dummies are used as fixed effects control for unobserved factors
at the industry level.

We now report the results of two models under different specifications
of the prior distribution and different order restrictions, and corresponding
model estimates.
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4.1 Model A

For the i-th subject (in this case company), let the corresponding counting
process be denoted by N;(t). We model the process as having increments
dN;(t) in the time interval [t, ¢+ dt) distributed as independent Poisson ran-
dom variables with means A;(t)dt.

For computational simplicity we use the conjugacy property of Poisson-
Gamma distributions in this context and model the baseline hazard function
as a Gamma distributed random variable for each distinct age (measured in
years). In our implementation, we model the baseline hazard A\¢(t) using a
Gamma process prior with unit mean.

Two time varying macroeconomic indicators are included as covariates,
namely instability in exchange rates and business cycle turnaround. Note
that these indicators are calender time specific, while their effect on a com-
pany could potentially depend on the age of the company. Therefore, these
two covariates are assumed to have age varying effects; we denote the covari-
ates by Z!(t) and Z(t) respectively.

Further information on company size, industry code, etc. are available
but not used in the current preliminary model. Also, no order restriction on
ageing is included in the model.

Annual unbalanced panel data on 4320 listed companies over the period
1965 to 2000 are used for the analysis, accumulating to a total of 45546
company years. The maximum age observed in this data was 50 years. As
mentioned above, calender year specific data on exchange rates and US busi-
ness cycle were included in the analysis.

A total of 166 exits due to bankruptcy (involuntary liquidation) were
observed for these 4320 companies. Age at exit ranges form 1 year to 48
years. However, very few exits were observed after the age of 35 years. The
lack of failure data on the age range between 35-48 years requires a slightly
stronger modelling assumption in order to obtain usable inference.

The distributional assumptions for the likelihood and priors for this model
are described in the following

dN;(t) ~ Poisson [A;(t)dt],
Ai(t)dt = dAo(t) x exp [B(t) x ZZ(t) + B;(t) x Z{ ()], (5)
dAo(t) ~ Gamma(l,1), for t=1,...,50.

where dAg(t) = Ag(t)dt is the increment in the integrated baseline hazard
function during the time interval [t,t + dt), with Z’s and (’s being the cor-
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responding (age varying) covariates and (possibly age varying) regression
coefficients.

Economic intuition, and prior empirical evidence, indicates that the effect
of the business cycle on bankruptcy hazard is negative while te covariate effect
of exchange rate instability is positive. Further, these effects are strong for a
newly listed firm but gradually wane off with age (Bhattacharjee et al., 2002).
As mentioned above we will not assume any order restrictions on the covariate
effects explicitly, however we would like to infer on the direction of effect and
variation of covariate effects with age. This structure is incorporated in the
prior distributions as follows:

a) fu(1) ~ Normal(25,0.1) and 3/(1) ~ Normal(—25,0.1). Note that
the second parameter of normal indicates precision (i.e. inverse vari-

ance) and not variance.
b) 5.(t) ~ Normal(5)(t —1),0.1) where k =e,t and t = 1,...,35.

c) Bu(t) ~ Normal(B,(t —1),1) where k = e,t and t = 36,...,50. Note
that, data for later ages do not contain as much information as earlier
ones. The precision is accordingly set at a higher value to adjust for the
lack of data and to control the compounding propagation of uncertainty
through the first order model.

The posterior distributions, based on Model A, for the age varying co-
variate effects and the baseline hazard function offer useful and intuitively
appealing interpretation. The baseline hazard estimates do not show any
apparent trend. In other words, no substantial ageing is evident in the data,
after accounting for covariate effects of exchange rate instability and business
cycle turnaround.

However noticeable trend over time is evidenced in the regression coeffi-
cients. The posterior estimates strongly reflect the age-varying nature of the
effect of exchange rate instability (Figure 1). There is a strong positive effect
on exits when the firm is newly listed, but the effect decreases with age and
dies out at about the age of 13 years post-listing.

Similarly, the age varying effect of business cycle turnaround is negative
initially and rises to zero with age (Figure 2).

It is worth noting that these observed trends in the posterior is actually
a contribution from the data and not from the prior. In fact, other than
setting positive or negative direction for only the initial starting values for
regression coefficients of the two covariates no further structural assumptions
were made.
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(a) Prior (b) Posterior
2a 2b
0 5
-10 | 0]
_5,
-20 1 -10 | I
-30 1 -15
-20 4
-40 | L 25|
sl . . . . . . . 1 3
- ® - e 5 8 5 835 ¢ 5 - T e 5 € 5 8 3 ¢ 5
Age Age

Figure 2: Age varying covariate effects for business cycle turnaround:
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Therefore the results confirm the economic intuition and prior evidence
on order restrictions in covariate dependence. In summary, the model which
is rather simplistic nevertheless seems to yield meaningful and useful results.

4.2 Model B

Having experimented with a rather simplistic hazard regression model in the
preceding subsection, we now enhance the model in several important ways.
First, in addition to macroeconomic factors, we include covariate effect in
an important firm level covariate — size (measured by the log of gross fixed
assets). Second, we drop business cycle turnaround and include instability
in price and the US business cycle as covariates. Third, we include several
industry dummies to account for unobserved fixed effects heterogeneity at
the industry level. Fourth, and in addition to the above, we include a mul-
tiplicative frailty term representing unobserved heterogeneity orthogonal to
observed covariates. The frailty distribution is modeled as a two support
point multinomial distribution. Fifth, we now measure age in years since
inception, rather than years post-listing. This change is motivated partly by
the lack of evidence on negative ageing in the baseline hazard function, with
age measured in years post listing. The current definition of age is more in
line with prior research in empirical industrial organisation, where negative
ageing is interpreted as evidence of learning.

Because our model now includes individual level frailty, our dataset needs
to be modified to ensure that all included firms contain data for at least two
years. We also include two additional years of data on UK listed firms; our
data now covers the period 1965 to 2002. Further, as discussed above, we
now measure age in years since inception. The data includes 4117 companies
with 48176 company years. The maximum age of any company covered in
these data is 186 years and maximum exit age is 113 years. The data includes
208 exits due to bankruptcy, of which 203 exits occur by the age of 50 years
post listing.

As before we continue to exploit the conjugacy property of Poisson-
Gamma distributions and the baseline hazard function is modelled as a
Gamma distributed random variable in each year. However the prior dis-
tribution for the baseline hazard is adjusted to reflect the availability of
information at different ages. This is achieved by allowing the variance to
depend on the number at risk at the specified age.

We model the base line hazard A\¢(t) using a Gamma process prior, with
the parameter depending on the number at risk at each age. The prior
distribution is defined as follows:
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a) dAo(1) ~ Gamma(1,1),

b) dAo(t) ~ Gamma [ay(t), as(t)], for t = 2,...,50 where oy () and as(t)

such that the mean is dAg(t — 1) and variance Y'(¢)/100 (Y'(¢) being
the number at risk at age t), and

C) dAo(t) = dAo(t — 1) for ¢ > 50.

We implement the hazard regression model with fixed and age-varying
covariate effects, with fixed effects heterogeneity, and with individual level
frailty (Equation 4) as follows:

J 4 (d
weap | Do B0+ BDZD 0+ 80 20
+BO1).2 (1) + B ()29 (1) + 6,

The following covariates are included in the model:

1.

Industry dummies, Jj(f ) (J distinct industries, j = 1,...,.J), are in-
cluded in the analysis as fixed covariates.with corresponding age con-
stant fixed effects coefficients ﬁgd),

Covariates with proportional hazards (with age constant covariate ef-
fects): zgf ) (t) is size of the firm and zg )(t) is a measure of the US
business cycle (Hodrick-Prescott filter of output per capita), with cor-
responding coefficients Bgf ) and ﬁéf ).

Covariates with age varying coefficients: zg)) (t) and z,ﬁ’) (t) denote ex-
change rate and price instability, with corresponding nonproportional
covariate effects 8 (t) and BY)(t) respectively (the covariate effects
are expected to be positive initially and decreasing with age), and

. v; = exp(d;) is an individual level multiplicative frailty term with a two

point support distribution.

The prior distribution for log-frailty (6;) is modeled as having two support
points m; = 0 and msy, with corresponding probabilities p; and ps =1 — py;
my is fixed at zero because of scaling. We assume a standard normal distri-
bution for the prior of ms. The population assignment of a company is then
given by a latent variable, here assumed to have a multinomial distribution
with a Dirichlet prior for the probability p;. Our implementation, which is
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similar to Campolieti (2001), has two major advantages. First, it exploits
the Multinomial-Dirichlet conjugacy property which helps in computations.
Second, the model is easily extendible to a larger number of support points
for the frailty distribution.
Standard normal priors were considered for the industry fixed effects.
For the time constant coefficients nearly half normal distributions were
considered as priors, with a slight shift from zero:

Bgf),ﬁéf) ~ Normal(—0.01,10) truncated on (—o0,0).

For the age varying coefficients decreasing with age, Gamma distributed
increments were taken away from the coefficient at the previous age to main-
tain monotonicity in the prior distributions:

a) 55;’)(1) ~ Normal(0.25,1), k = e, m;

b) For t € (2,50), B,(:)(t) = B,(:)(t —-1)— [bg(t —1) x @}, where b (¢ —
1) ~ Gamma(0.01,1), Y (¢) is the number at risk at age ¢, and ¢ is the
maximum number at risk at any age in the data.

¢) For t > 50 (1) = g (¢t — 1)

The posterior estimates for the baseline hazard function (Figure 3a) do
not show any obvious evidence of ageing. This is a bit surprising since earlier
work has found evidence of negative ageing. This observation, however, does
not seem to be feature of the current data. In fact, estimates of the baseline
hazard function based on the partial likelihood estimates also show a very
similar age-varying pattern to the posterior mean (Figure 3a).

The age varying covariate effects for exchange rate and price instability
(Figures 4 and 5 respectively) indicate strong evidence of non-proportionality.
The age-specific coefficients are positive when the firm is newly listed, but
decline to zero as the firm gets older.

The usefulness of our model of unobserved heterogeneity, in terms of fixed
effects heterogeneity at the industry level combined with individual level
frailty with distribution on a finite number of support points, is emphasized
by the empirical results. The posterior distributions of the industry level
fixed effects demonstrate evidence of substantial unobserved heterogeneity
(Figure 3b). Other factors being equal, high technology industries such as
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"ICT" and "Electronics and Electricals" have a lower hazard rate of exit due
to bankruptcy, while the "Textiles" industry attracts a substantially higher
hazard. This is in reasonable agreement with economic intuition and prior
empirical evidence.

At the same time, we do not evidence of multiplicative frailty at the level
of the individual firm. In fact, the posterior distribution of frailty converges
to a single mass point. From an economic point of view, this evidence is not
surprising, because unobserved human capital may be rather homogeneous
in a sample of successful listed firms.

In summary, we find strong support for the order restrictions on covariate
dependence, but not much evidence of expected shape in the baseline hazard
function. We also find that the models and priors developed here are useful
for inference on order restricted covariate dependence and ageing, as well as
on the effect of unobserved heterogeneity.

5 Conclusion

There has not been much research on order restricted Bayesian inference in
survival models. In this paper, we make contributions to this literature by
proposing a Bayesian framework for order restricted inference in hazard re-
gression models in the presence of unobserved heterogeneity. We consider
constraints on covariate dependence; these constraints are in the nature of
convex (concave) ordering of lifetime distributions conditional on distinct
covariate values. Our proposed methods are very useful in understanding co-
variate dependence in situations where the proportional hazards assumption
does not hold.

In addition to covariate dependence, we also discuss order restrictions
on the shape of the baseline hazard function. These order restrictions in-
form about ageing properties of the lifetime distributions, holding observed
covariates and frailty constant.

Our methodology pays special attention to the modeling of frailty. In
addition to fixed effects unobserved heterogeneity, we model individual level
frailty nonparametrically using an expanding sequence of multinomial distri-
butions. This is in sharp contrast to the existing literature where frailties
are assumed to have parametric distributions that do not offer additional
insights.

The analysis of corporate failure data using our methdology offers inter-
esting new evidence on the nature of covariate dependence. In particular, we
find that the macroeconomic environment has a strong effect on the hazard
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rate of firm exits die to bankruptcy. Further, the effect of adverse economic
conditions which is quite drastic on young firms decreases to zero as the
firm gains in experience. However, in our application, we do not find much
evidence on ageing characteristics in the baseline hazard function.

While we observe substantial fixed effects unobserved heterogeneity at the

industry level, evidence points to absence of significant multiplicative frailty
at the level of the individual firm.
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