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Abstract 

A model that integrates biophysical simulations in an economic model is used to analyze the 
impact of climate change on crop production. The biophysical model simulates future plant-
management-climate relationships and the economic model simulates farmers’ adaptation 
actions to climate change using a nonlinear programming approach. Beyond the development 
of average yields, special attention is devoted to the impact of climate change on crop yield 
variability. 

This study analyzes corn and winter wheat production on the Swiss Plateau with respect to 
climate change scenarios that cover the period of 2030-2050. In our model, adaptation options 
such as changes in seeding dates, changes in production intensity and the adoption of 
irrigation farming are considered. Different scenarios of climate change, output prices and 
farmers’ risk aversion are applied in order to show the sensitivity of adaptation strategies and 
crop yields, respectively, on these factors. 

Our results show that adaptation actions, yields and yield variation highly depend on both 
climate change and output prices. The sensitivity of adaptation options and yields, 
respectively, to prices and risk aversion for winter wheat is much lower than for corn because 
of different growing periods. In general, our results show that both corn and winter wheat 
yields increase in the next decades. In contrast to other studies, we find the coefficient of 
variation of corn and winter wheat yields to decrease. We therefore conclude that simple 
adaptation measures are sufficient to take advantage of climate change in Swiss crop farming. 

Keywords 

climate change, robust estimation, yield variation, corn, winter wheat, market liberalization 

 

1 Introduction 

In the next decades Swiss farmers will face changing climatic conditions, which are 
characterized by elevated carbon dioxide concentrations, reduced summer rainfalls and 
elevated temperatures for the Swiss Plateau region (OCCC, 2005). Furthermore, Swiss 
agriculture will face changing market conditions due to market liberalization. Both input and 
output prices are expected to decrease in the next decades. The goal of this paper is to assess 
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impacts of climate and price changes on Swiss corn (Zea mays L.) and winter wheat (Triticum 

L.) production.  
Previous studies that analyzed the effects of climate change (CC) on crop production and crop 
variability were either based on (crop) simulation or regression models. Crop simulation 
models simulate and compare crop productivity for different climatic conditions (e.g. 
TORRIANI ET AL., 2007a). Regression models use historical climate and agricultural data to 
outline potential effects of climate change on crop productivity (e.g. ISIK AND DEVADOSS, 
2006). Both approaches are not sufficient to analyze all aspects of impacts of CC on crop 
production (ANTLE AND CAPALBO, 2001). If the analysis is restricted to crop physiology, such 
as in crop simulations, farmer’s adaptation actions are not taken into account. But, sufficient 
inference requires consideration of farmers’ reactions to changes in climate and economic 
conditions. This contrasts the extrapolation of historical farm-level and aggregated data that 
takes into account farmers’ historical reactions to changes in climatic and economic 
conditions. However, historical data is not able to capture future plant-climate interactions in 
a sufficient manner, in particular if the crop-weather relationship is restricted to a few 
variables such as temperature and rainfall. Moreover, such models cannot sufficiently 
integrate expected CO2 fertilization effects on plants due to low variation in historical CO2 
concentrations (ANTLE AND CAPALBO, 2001). In order to overcome these drawbacks, we use a 
combination of both approaches, simulation of future crop productivity and regression 
models.  
Existing studies show that CC will have particular influence on yield variation (MEARNS ET 

AL., 1996, TUBIELLO ET AL., 2000, SOUTHWORTH ET AL., 2002, FUHRER, 2003, CIAIS ET AL., 
2005, and, TORRIANI ET AL., 2007a). The analysis of yield variation was restricted on climatic 
variables such as shifts in annual means and intra-annual distributions of climatic variables. 
These studies do not take adaptation actions of the farmers into account. In contrast, our 
approach considers farmers’ adaptation actions to CC and is thus more sufficient to model the 
impact of CC on yield variation.  An empirical example for corn and winter wheat production 
on the Swiss Plateau is used to asses the impact of CC on both crop yields and yield 
variability. 
Our model covers no short term adaptation actions (i.e. tactical decisions) of farmers, but 
adaptation choices with a longer time horizon, i.e. strategic and structural decisions (cp. 
RISBEY ET AL., 1999). We consider strategic and structural decisions that consist of changes in 
production intensity, changes in seeding dates and the adoption of irrigation farming. Even 
though crop yields are influenced by various factors, our analysis is restricted on the crucial 
inputs nitrogen fertilizer and irrigation water. Thus, the analysis is of particular environmental 
and economic interest because application of both inputs can lead to the degradation of 
environmental systems (IEEP, 2000, and, KHANNA ET AL., 2000). Nitrogen fertilizer is 
furthermore a major source of climate relevant agricultural emissions (HUNGATE ET AL., 
2003).  
Our model is based on an integrated assessment approach that integrates a biophysical in an 
economic model. In contrast to other integrated models (e.g. ANTLE AND CAPALBO, 2001), 
farmers’ behavior is simulated using nonlinear programming. The model is divided into three 
major parts: data simulation, estimation of model parameters and economic simulation. Data 
simulation describes the yield simulation process which includes the experimental design that 
enhances yield variability with respect to nitrogen fertilizer and irrigation. Furthermore, 
current and simulated future daily weather data are crucial inputs for the simulation process. 
The data simulation results in individual datasets for each climatic scenario and crop that 
contain yield and input data. These datasets are used to estimate production and yield 
variation functions, respectively. Subsequently, based on these functions, farmers’ adaptation 
choices under different climate, price and risk aversion scenarios are simulated using 
nonlinear programming. Final assessment is based on a comparison of optimal input levels 
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and consequential yield levels, yield variation, coefficients of variation and utility of quasi-
rents for these scenarios of climate change, future prices and risk aversion. 
In Section 2, 3 and 4, the data simulation, the economic model and the estimation processes 
are described, respectively. Estimation and economic simulation results are presented in 
Section 5 and 6, respectively. A final discussion of the impact of climate change on Swiss 
corn and winter wheat production is given in the concluding Section 7.        

 2 Crop yield simulation and data 

Our analysis is based on yield data generated by the deterministic crop yield simulation model 
CropSyst (e.g. STÖCKLE ET AL., 2003). This is a process-based, multi-crop, multi-year 
cropping system simulation model. The model simulates above- and belowground processes 
of a single land block fragment representing a biophysically homogenous area. The model 
processes are simulated on a daily time step. They comprise the soil water budget, soil-plant 
nitrogen budget, crop phenology, canopy and root growth, biomass production, crop yield, 
residue production and decomposition, and soil erosion by water. These processes are 
simulated in response to weather, soil characteristics, crop characteristics, and management 
options. The model is therefore highly suitable to analyze the impact of environment and 
management on crop productivity, and has already been tested for a wide range of 
environmental conditions (e.g. DONATELLI ET AL., 1997, and, STÖCKLE ET AL., 2003). 
TORRIANI ET AL. (2007a) provide a model calibration, tests of yield simulation and a 
documentation of critical crop parameters of corn and winter wheat for the Swiss Plateau that 
are used in our yield simulation. In general, the comparability of simulated and observed 
yields is restricted because the simulations do not account for yield reducing events such as 
hail, disease and insect infestation. 
CropSyst requires daily values of maximum and minimum temperature, solar radiation, and 
maximum and minimum relative humidity. In CropSyst, phenology is determined by thermal 
time, i.e., a specific development stage is reached when the required daily accumulation of 
average air temperature above a base temperature and below a cutoff temperature is reached. 
Daily climate input as required by CropSyst is obtained from the monitoring network of the 
Swiss Federal Office of Meteorology and Climate (MeteoSwiss). We use data from six 
meteorological stations distributed over the Swiss Plateau ranging from 06°57' to 08°54' 
longitude (FINGER AND SCHMID, 2007). To simulate current climate conditions, we use 
climate data of the years 1981 to 2003. Compared to an approach with one single location, the 
use of observations from six different weather stations broadens the data base. For the 
atmospheric CO2 concentration input we use recordings from the years 1981 to 2003. They 
range from 339 ppm to 379 ppm (SCHRÖTER ET AL., 2005). 
Two climate change scenarios are applied to generate crop production functions for the 
coming decades. Climate scenarios with projections for the years 2030 and 2050 were taken 
from OCCC (2005). OcCC climate projections are based on simulations with two CO2 
emission scenarios, four global climate models, and eight regional climate models. These 
simulations with totally 16 scenario-model combinations on a grid of 50x50 km over the 
whole European continent were performed within the scope of the PRUDENCE project 
(CHRISTENSEN ET AL., 2001). The OcCC climate projections used in this study represent the 
median of the simulations with the 16 scenario-model combinations for the years 2030 and 
2050. The scenarios are abbreviated in the following as 2030 and 2050. The baseline for these 
climate anomalies is the year 1990. They include seasonal changes of temperature and 
precipitation for northern Switzerland (Table 1). 
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Table 1: Seasonal anomalies of temperature and precipitation  
2030 2050  

 
DJF MAM JJA SON DJF MAM JJA SON  

Temperature  + 1 + 0.9 + 1.4 + 1.1 + 1.8 + 1.8 + 2.7 + 2.1  
Precipitation  1.04 1.00 0.91 0.97 1.08 0.99 0.83 0.94  
          

*) Anomalies of temperature in °C (absolute value) and of precipitation in relative values with respect to the 
climate of the year 1990. DJF: December-February; MAM: March-May; JJA: June-August; SON: September-
November. 

Source: OCCC (2005) 

 

Based on today’s weather data and the anomalies of temperature and precipitation (Table 1), a 
set of climate data are generated for each of the climate change scenarios using the stochastic 
weather generator LARS-WG (SEMENOV AND BARROW, 1998). To achieve monthly 
anomalies as required by LARS-WG, the seasonal anomalies are linearly interpolated. For the 
2030 scenario, the CO2 concentrations (IPCC, 2000) range from 437 ppm to 475 ppm. For the 
2050 scenario, CO2 concentrations in the range of 495 ppm to 561 ppm are assumed. Within 
the simulation years, the atmospheric CO2 concentration is varied randomly within the 
defined range. 
For each location and scenario, the same soil type is assumed. It follows TORRIANI ET AL. 
(2007a) where this soil is used to calibrate the CropSyst model for Switzerland. The soil 
texture is characterized with 38% clay, 36% silt, and 26% sand. Based on the texture, 
CropSyst assesses the hydraulic properties of the soil. Soil depth amounts to 1.5 m and the 
soil organic matter content is at 2.6% weight in the top soil layer (5 cm) and 2.0% in lower 
soil layers.  
The applied management scenarios are uniform on the simulated crop area and include 
nitrogen (N) fertilization and irrigation. The amount of N applied per year ranged between 0 
and 320 kg ha-1 for corn and between 0 and 360 kg ha-1 for winter wheat. Currently applied 
amounts of N fertilizer (WALTHER ET AL., 2001) are expanded in the simulation in order to 
cover potential future N fertilization strategies. For corn (winter wheat), there are three 
fertilizer applications per year if N≤160 kg ha-1 (N≤180 kg ha-1) and four fertilizer 
applications per year if N> 160 kg ha-1 (N> 180 kg ha-1), respectively, as shown in Table 2. 
For higher N amounts, however, an additional application date is introduced between the 
second and third date. In the simulations, fertilizer application dates are defined relative to the 
seeding date and derived from DUBOIS ET AL. (1998) and WALTHER ET AL. (2001). 
 

Table 2: Distribution of annual fertilizer amounts  

 
Distribution of annual fertilizer [kgN ha-1] 

to the dates of application 

Corn 
up to 160 kg:  1 : 1 : 0 : 2 
up to 320 kg:  1 : 1 : 1 : 2 

Winter Wheat 
up to 180 kg:  6 : 7 : 0 : 5 
up to 360 kg:  6 : 7 : 5 : 5 

 
To simulate irrigation, we chose the automatic irrigation option of CropSyst. With this option, 
irrigation is triggered as soon as soil moisture is lower than a specific user-defined value. The 
degree of soil moisture is expressed as a value between 0 (permanent wilting point) and 1 
(field capacity). When soil moisture falls below the previously defined value, water is added 
to the soil until field capacity is reached. However, there is an upper limit of irrigation water 
of 20 mm per irrigation event. Irrigation starts one day after seed and ends on the day of 
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harvest. The simulated experimental framework is equal for each climate scenario. This 
allows for comparability of results.    
For simulations under current climate we use seeding dates provided by DUBOIS ET AL. (1999) 
and TORRIANI ET AL. (2007a). The temperature increase under the climate change scenarios 
leads to a shift of the annual temperature pattern and thus to a shift of the period of optimal 
crop development (TORRIANI ET AL., 2007a). Therefore, seeding dates are placed according to 
the temperature offset of the climate change scenario (Table 3). Even though seeding dates are 
placed earlier, CC leads to shorter maturity periods. Thus, shifts in average dates of maturity, 
which are equal to dates of harvest, are larger than for seeding dates (Table 3). 

 
Table 3: Seeding and average harvesting dates for the applied climate scenarios.  
 Climate Scenario Current climate 2030 2050 

Seeding date 10th May (130) 7th May (127) 4th May (124) 
Corn Average Day of 

Maturity (Harvest) 
17th September (263) 4th September (250) 28th August (240) 

Seeding date 10th October (283) 13th October (286) 16th October (289) 
Winter 
Wheat 

Average Day of 
Maturity (Harvest) 

05th August (217)  27th July (208) 18th July (199) 

*) Numbers in brackets are days of year.  

Source: CropSyst Simulations. 

 
For each location and year one simulation is conducted without application of fertilizer and 
irrigation. Furthermore, to broaden variability, the amount of fertilizer and the degree of soil 
moisture that triggers irrigation was varied randomly within the defined range. The datasets 
contain, depending on the crop and climate scenario, between 527 and 541 observations. A 
dry matter content of 85% and 90% is assumed for corn and winter wheat yields, respectively.     

3 The economic model 

Our analysis is based on utility-maximization with expected utility E(U) defined as follows: 

∫
∞

=
0

)()())(( ππππ dfUUE  (1)

Where E is the expectation operator and )(πU  is the utility of quasi-rents π  (revenue minus 
variable costs). The latter is treated as a random variable with density function )(πf . The 
stochastic character of quasi-rents can be the result of both stochastic yields and stochastic 
prices. Input and output prices are assumed to be deterministic in our analysis. Only crop 

yields are stochastic, with yield variation yσ . Production and yield variation functions are 

assumed to be known. Yield variation is therefore treated as risk and not as uncertainty. Risk 
preferences are incorporated with a preference parameter towards variation of quasi-rents 
( πσ ). The utility function, which is linear in quasi-rents, is defined as follows (following 

HAZELL AND NORTON, 1986): 

πγσππ −= )()( EU  (2)

Where γ  is the coefficient of risk aversion (defined as )//()/( πσπ ∂∂∂∂− UU ) which 

indicates risk-averse, risk-neutral and risk-taking behavior if 0>γ , 0=γ , and 0<γ , 
respectively.   
An indicator function, I , is used to model farmers’ adoption of irrigation farming: 1=I  for 
adoption of an irrigation system and 0=I  for crop farming without irrigation. Farmers are 
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assumed to implement an irrigation system if expected utility minus adoption costs is higher 
than expected utility of crop farming without application of irrigation. That is, 1=I  iff 
( ) ( ))()( 01 == >− II UEKUE ππ , where K are the variable costs of adoption, e.g. the rental 

costs of the irrigation system. Expected quasi-rent )(πE  is defined as 

IKZXXypEE −−= ))(()(π  (3)

Where y(X) denotes the functional relationship, i.e. production function, between output scalar 
(y) and the vector of inputs (X), p the output price scalar and Z an input price vector. The input 
vector consist of two inputs: nitrogen (N) and irrigation water (W). The decision on adoption 
of irrigation farming leads to two types of production functions in this model: one with and 
one without irrigation, respectively. This distinction is omitted in this section to ensure 
lucidity. The standard deviation of quasi-rent is defined as: 

))((( ππσπ EE −=  (4)

Under assumption of deterministic prices and by rearrangement of (4), the standard deviation 

of quasi-rent simplifies to yp σσπ = . Expected yields (i.e. solutions on the production 

function) are used to derive yield variation, )(Xyσ . The latter is defined as the absolute 

difference between observed yields (i.e. simulated observations) and expected yields (eqn. 5).  

)(()()( XyEXyXy −=σ  (5)

Therefore, the difference between observed and predicted yields for observation i is the 

absolute residual of the regression analysis, ie , i.e. )()()( iiiiiiyi XyXyeX −==σ . Yield 

variation is determined by weather and soil conditions and input use, ),()( NWIfXy ⋅=σ . 

In this model, the intercept captures weather and soil effects on yield variability. Irrigation 
water is part of yield variation functions only for irrigation farming, i.e. 1=I . Substitution of 
eqn. (3) and (5) in (2) leads to the following final optimization problem:  

( ) IKXpZXXypEUE y
yX

−−−= )())(()(max
,

σγπ  (6)

Expected utility (eqn. 6) is maximized subject to the production function constraint y(X). The 
first order condition for utility maximization is presented in section 6.  

4 Estimation methodology and functional forms 

The production function, )(Xfy = , is fitted to a square root functional form (eqn. 7), 
following FINGER AND HEDIGER (2007).  

1/ 2 1/ 2 1/ 2
0 1 2 3 4 5 ( )Y N I W N I W I N Wα α α α α α= + ⋅ + ⋅ ⋅ + ⋅ + ⋅ ⋅ + ⋅ ⋅ ⋅  (7)

Y denotes corn yield in kilogram, N the amount of nitrogen applied (kg ha-1), and W irrigation 
water applied in mm. The αi’s are parameters that must satisfy the subsequent conditions in 
order to ensure decreasing marginal productivity of each input factor: 1 2, 0α α >  and 

3 4, 0α α < . If 5 0α > , the two input factors are complementary. They are competitive if 

5 0α < , while 5 0α =  indicates independence of the two input factors.  

The estimation of model parameters is a two step procedure that is described in the following. 
First step is the estimation of production function coefficients (eqn. 7) using robust 
regression. These estimates are used to calculate robust regression residuals for the entire 
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dataset. Subsequently, robust regression residuals are used to estimate yield variation 
functions in a second step of estimation (eqn. 5).    
 
4.1 Robust Regression and the Production Function  

In this study, robust regression is used to estimate the coefficients of production functions 
(eqn. 7). This estimation technique was found to increase the accuracy of estimation and to 
expose the true underlying input-output relationship (FINGER AND HEDIGER, 2007).  
The main idea of robust regression is to give little weight to outlying observations in order to 
isolate the true underlying relationship. Outliers are characterized by exceptional yield levels 
and exceptional input-output relationships, respectively, i.e. they deviate from the relationship 
described by the majority of the data. The further away an observation is from the true 
relationship, the smaller is the corresponding weight of contribution to the robust regression 
analysis. The identification of the true relationship and of outliers, respectively, is a non-
trivial challenge, in particular, if the situation exceeds the simple regression case. We use the 
Reweighted Least Squares (RLS) regression for the robust estimation. RLS is a weighted least 
squares regression, which is based on an analysis of Least Trimmed Squares regression 
residuals that gives zero weights to observations identified as outliers (see ROUSSEEUW AND 

LEROY, 1987 for details). An observation is identified as outlier if the standardized residual 
exceeds the cutoff value of 2.5 (HUBERT ET AL., 2004). 
Extreme yield events, e.g. caused by extreme climatic events such as droughts, negatively 
affect risk-averse decision makers. Such extreme yield events increase yield variation and 
lead thus to decreasing levels of utility. The modeling of extreme yield events is inefficient if 
Ordinary Least Squares (OLS) regression is used for the estimation of coefficients and related 
residuals. One outlier can be sufficient to move the coefficient estimates arbitrarily far away 
from the actual underlying values (ROUSSEEUW AND LEROY, 1987, and, HUBERT ET AL., 2004). 
Thus, analyses based on regression residuals derived by OLS estimation are inefficient and 
can produce misleading results. In contrast, robust regression and robust regression 
diagnostics enable efficient estimation in the presence of outliers.  
In order to correct for heteroscedasticity, feasible generalized least squares (FGLS) regression 
is applied. Thus, weights are generated with respect to both, outliers and heteroscedasticity in 
the final estimation of production functions. The estimation is conducted with the 
ROBUSTREG and MODEL procedure, respectively, of the SAS statistical package (SAS 

INSTITUTE, 2004). 
 
4.2 Yield Variation Function  

Observations which are identified as outliers are not taken into account for the final 
estimation of production function coefficients. However, these observations are of particular 
interest for the estimation of yield variation because they increase yield variation. Therefore, 
residuals are calculated for the entire dataset, including the observations identified as outliers. 
The inclusion of outliers in the further analysis is possible if and only if no typing, copying or 
measuring errors but exceptional climatic events are source of the here identified outliers as 
proved for the here analyzed datasets by FINGER AND HEDIGER (2007). Residuals are the 
difference between observed (here: CropSyst simulations) and predicted observations (input-

output combinations on the production function), )(ˆ)( iiiii XYXYe −= . Yield variance is, 

among other factors such as weather and soil, determined by input use. This relationship is 
modeled using a square root function (eqn. 8) for corn. Irrigation water (W) is only an element 
of yield variation functions for irrigation farming ( 1=I ). 

5.0
2

5.0
10)( NWIXy ⋅+⋅⋅+= βββσ  (8)
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Where 0β  is the yield variation solely determined by weather and soil conditions. 1β  and 2β  

quantify the influence of irrigation and nitrogen application on yield variation, i.e. 
5.0/)( iyi XX ∂∂= σβ . An input is risk decreasing if 0<iβ  and risk increasing if 0>iβ , 

respectively. For winter wheat, a quadratic specification was found to be most adequate (eqn. 
9).  

NNWIXy ⋅+⋅+⋅⋅+= 3
2

210)( ββββσ  (9)

Interpretation of coefficients 0β  and 1β  remains as for eqn. 8. However, the influence of 

nitrogen on yield variation was found to have a quadratic shape for winter wheat, first 
decreasing, than increasing yield variation (coefficients 2β  and 3β  in eqn. 9).  

The yield variation function is estimated using the MODEL procedure of the SAS statistical 
package and FGLS regression in order to correct for heteroscedasticity. In contrast to other 
studies, which focus on heteroscedasticity correction (JUST AND POPE, 1979) and take 
simultaneous equation biases into account (ISIK AND KHANNA, 2003), our estimation approach 
focuses on efficient estimation in presence of extreme events. Taking into account that such 
events are more likely to occur along with changing climate (e.g. FUHRER ET AL., 2006), this 
property is of particular interest.   

5 Estimation Results  

This section is devoted to the presentation and interpretation of regression analysis results 
which are input for the economic model. Simulation results of the economic model that are 
used for final assessment are presented in Section 6.   
Coefficient estimates of the corn and winter wheat production functions (eqn. 7) for the 
assumed climate scenarios are presented in Table 4 and 5, respectively. It shows that 
coefficient estimates have the correct (i.e. the expected) sign. The intercept, i.e. the base yield 
where neither nitrogen nor irrigation is applied, shows an increase from the baseline scenario 
to the 2050 scenario for both crops. This is because of more favourable climatic conditions for 
crop growth. In particular an increased CO2 concentration leads to higher yield levels 
(FUHRER, 2003). Higher yield levels are furthermore the result of applied shifts in seeding 
days as this is a powerful adaptation option to avoid negative effects of climate change (cp. 
SOUTHWORTH ET AL., 2002, and, TORRIANI ET AL., 2007a). However, we are aware that current 
parameterizations of the CO2 effects as implemented in many crop models such as CropSyst 
have recently been questioned by LONG ET AL. (2006).  
The analysis of base yields, where neither irrigation nor nitrogen fertilization takes place, is 
purely hypothetical. Both winter wheat and corn farm management without any input use is 
inexistent in Switzerland. Therefore, conclusions of the impact of climate change on yield 
levels can be drawn if and only if optimal input levels and according optimal yield levels are 
calculated in the subsequent section.    
Table 4 shows furthermore a constant increase of the interaction parameter (NW)1/2 from the 
baseline to the 2050 scenario for corn.  Independency of nitrogen fertilizer and irrigation water 
in the baseline and 2030 scenario shifts to significant complementary interaction in the 2050 
scenario. The interaction is important, as nitrogen is taken up in a water solution (LIU ET AL., 
2006). In the first two scenarios, nitrogen uptake is sufficiently ensured by rainfall. In the 
latter scenario, which is characterized by lower amounts of rainfall (Table 1), optimal nitrogen 
uptake is only ensured if irrigation takes place. Moreover, nitrogen leaching is reduced if 
rainfall is substituted by irrigation that never exceeds field capacity as in our CropSyst 
simulations (not shown). Therefore, climate change is expected to increase the application of 
nitrogen fertilizer in presence of irrigation but to decrease nitrogen application if no irrigation 
is available. 
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Table 4: Coefficient Estimates: Production Function for Corn. 
 
 
 
 
 
 
 
 
 

 
*) Note: Statistics in parentheses are t statistics  

(**) – indicates significance at the 1% level 

(*) – indicates significance at the 5% level  

 

Table 5: Coefficient Estimates: Production Function for Winter Wheat. 
 
 
 
 
 
 
 
 
 
 
 

However, Table 5 shows that this is not the case for winter wheat. The interaction parameter 
(NW)1/2  is not affected by CC and remains insignificantly low. The different seasonal shifts in 
rainfall and temperature patterns (Table 1) and different timing of maturity stages (Table 3) 
lead to this difference between corn and winter wheat. TORRIANI ET AL. (2007a) already 
pointed out that irrigation will become more important for spring than for winter crops at the 
Swiss Plateau.  
5.1 Input use and yield variation  

In Table 6 and 7, final coefficient estimates for the yield variation functions for corn and 
winter wheat (eqn. 8 and 9) are presented. For both crops, the coefficient 0β , i.e. yield 

variation solely determined by weather and soil conditions, decreases from the baseline to the 
2030 scenario and increases in the 2050 scenario. If neither irrigation nor nitrogen fertilizer 
application takes place, yield variation increases from the 2030 to the 2050 scenario.  

 
Table 6: Coefficient Estimates: Yield Variation Function for Corn (Eqn.8). 

Climate scenario Coefficient 
Baseline 2030 2050  

0β  (Intercept) 409.0276 (14.78)** 381.7547 (18.33)** 468.5082 (19.52)** 

1β )( 5.0N  38.98357 (10.78)** 39.2059 (11.82)** 39.81619 (11.26)** 

2β  )( 5.0W  -8.1252 (2.41)* -12.7453 (5.32)** -20.2869 (8.19)** 

Coefficient of 
det. (adj.) 

0.1901 0.2441 0.2718 

  

Climate scenario 
Coefficient 

Baseline 2030 2050  
Intercept 6601.924 (162.13)** 6972.651 (180.68)** 7053.137 (165.17)** 
N

1/2
 313.0936 (16.34)** 347.6081 (19.79)** 309.8714 (16.36)** 

W
1/2

 67.1385 (4.17)** 59.65229 (4.69)** 71.58906 (5.50)** 
N

 -10.544 (8.15)** -10.9985 (9.38)** -9.59084 (7.60)** 
W

 -2.49922 (2.17)* -0.93264 (1.09) -1.0195 (1.19) 
(NW)

1/2 0.364377 (0.45) 1.04329 (1.55) 3.522244 (4.92)** 
Coefficient of 
det. (adj.) 

0.7330 0.8403 0.8371 

Climate scenario Coefficient 
Baseline 2030 2050  

Intercept 4582.359 (67.37)** 4894.397 (80.81)** 5142.069 (81.35)** 
N

1/2
 161.2262 (9.34)** 178.4068 (11.93)** 151.3398 (9.64)** 

W
1/2

 25.48017 (1.18) 70.16545 (3.73)** 68.29841 (3.38)** 
N

 -5.23933 (5.43)** -5.96726 (7.16)** -5.18194 (5.90)** 
W

 -0.85541 (0.56) -2.93945 (2.19)* -3.47498 (2.36)* 
(NW)

1/2 0.508462 (0.59) -0.35761 (0.48) 0.535636 (0.67) 
Coefficient of 
det. (adj.) 

0.3877 0.4663 0.3715 
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Table 7: Coefficient Estimates: Yield Variation Function for Winter Wheat (Eqn.9). 
Climate scenario 

Coefficient 
Baseline 2030 2050  

0β  (Intercept) 789.2329 (23.11)** 680.4995 (22.21)** 728.5457 (23.60)** 

1β  (W) -0.49937 (1.63) -0.40804 (1.50) -0.45408 (1.62) 

2β  ( N2) 0.004154 (2.37)* 0.006181 (3.97)** 0.008927 (5.75)** 

3β  (N) -2.19199 (3.85)** -2.50537 (4.97)** -3.37643 (6.69)** 

Coefficient of 
det. (adj.) 

0.0659 0.0548 0.0829 

 
For corn, irrigation causes a decrease ( 02 <β ) and nitrogen fertilizer causes an increase 

( 01 >β ) in yield variation (Table 6). The property of irrigation to lower corn yield variation 

( 2β ), continuously increases along our climate change scenarios. Higher temperatures and 

decreased rainfalls make irrigation to a more risk decreasing activity in future. The coefficient 

1β , the property of nitrogen fertilizer to increase yield variation, is nearly constant under 
different climate conditions (Table 6). There is no impact of climate change on the 
relationship of yield variation and nitrogen for corn production.  
For winter wheat, nitrogen first causes a decrease, than an increase in yield variation (Table 
7). Irrigation causes a decrease of the latter. In contrast to results for corn, the relationship 
between input use and yield variation is not affected of CC for both inputs nitrogen and 
irrigation (Table 7). However, conclusions on the impact of climate change on the yield 
variation can be drawn if and only if utility maximizing input levels and according yield 
variations are calculated in the subsequent section.  

6 Optimal Input Use, Yield, Expected Utility, Yield variation and Adoption Rates 

Prediction of influence of climate change upon yield, input use and farmers’ utility requires 
modeling of farmers’ behavior, i.e. maximization of expected utility (eqn. 6). The derived 
optimal input levels provide the highest expected utility per hectare. The input price vector W 
is restricted on variable costs. Therefore, total variable costs ZX consist of variable nitrogen 
costs (nitrogen applied times nitrogen price) and the variable irrigation costs (irrigation water 
applied times price of irrigation water). Other costs are assumed constant and thus irrelevant 
for the profit maximizing input combination. The optimization problem of eqn. (6) leads to 
the following first order condition:  

0//)( * =⋅−−∂∂ iiii pzxxf βγ  (10)

Where iz  denotes the price and *
ix  the optimal level of input i. A risk premium is included in 

the tangency condition if 0≠γ . The risk premium is the product of the coefficient of risk 

aversion and the influence-coefficient of input i on yield variation, i.e. iγβ . This is the 

difference between expected marginal productivity and the ratio of input and output prices at 
the optimal level of input use. Therefore, the optimal level of factor use for an input that 
increases (decreases) yield variation is smaller (larger) for a risk-averse than for a risk-neutral 
agent. Eqn.10 is solved for both irrigation and non-irrigation farming independently.  
 
6.1 Prices and Risk Aversion  

Due to market liberalization, Swiss agriculture will face diminishing output-input price ratios 
in crop production down to levels of, for instance, the European Union (EU). The differences 
between current Swiss and EU prices are much smaller for inputs such as nitrogen fertilizer 
than for outputs such as corn and wheat. Price forecasts for the periods of interest in our 
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analysis, i.e. 2030 to 2050, are impossible. In order to show the sensitivity of adoption 
processes to both climate and economic variables, we assume three price scenarios for 2030 
and 2050: current EU prices (PEU), 1.5 x PEU and 2 x PEU. Price assumptions are presented in 
Table 8 and are documented more detailed in FINGER AND SCHMID (2007). 
 

Table 8: Price Scenarios (in CHF) 
Price 
Scenario 

Corn kg-1 Wheat kg-1 Nitrogen kg-1 
Irrigation (mm 
per ha) 

Current 0.396 0.57 1.33 0.6 

PEU 0.185 0.182 0.91 0.6 

1.5 x PEU 0.2775 0.273 0.91 0.6 

2 x PEU 0.37 0.364 0.91 0.6 

 

Specifying a parameter towards farmers’ risk attitude is crucial for the analysis. Various 
studies estimated farmers’ risk parameter γ  with widely differing results (HAZELL AND 

NORTON, 1986). However, no such case study exists for Swiss farmers. Therefore, we restrict 
numerical analysis on two cases of constant (i.e. independent from the level of utility) risk 
aversion: 5.0=γ  and 1=γ , respectively.   
 
6.2 Results  

 
There are 3 x 2 scenarios for each crop (price and risk aversion scenarios). For reasons of 
lucidity, not all results are presented in detail. For one scenario ( 5.0=γ , PEU) optimal input 
levels, expected utility, optimal yield levels and optimal yield variation are presented in Table 
9 and 10. In these tables, results are presented for both irrigation and non-irrigation farming. 
Furthermore, differences in input levels, utility, yields and yield variation between irrigation 
and non-irrigation farming are presented. All results are within the range of the data.  
Table 9 shows that the assumed combinations of price and climate change scenarios have only 
small effects on optimal use of nitrogen fertilizer for corn. In contrast, the optimal amount of 
applied irrigation water more than doubles from the baseline and the 2030 scenario to the 
2050 scenario. Future levels of utility are lower for both climate scenarios mainly due to the 
decline in output prices. Yield levels increase by up to twenty percent from the baseline to the 
2050 scenario for irrigation farming ( 1=I ). In contrast, optimal levels of corn yields decline 
from the 2030 to the 2050 scenario for non-irrigation farming. Corn yield variation decreases 
from the baseline to the 2050 scenario for irrigation farming but increases for non-irrigation 
farming.  
For winter wheat (Table 10), optimal amounts of nitrogen and irrigation water are smaller for 
the future scenarios compared with the baseline scenario mainly because of the reduced 
output/input price ratio. Both climate change and irrigation farming have only small impacts 
on yield variation of winter wheat. Therefore, differences between irrigation and non-
irrigation farming are much smaller for winter wheat than for corn. In particular the increase 
of expected yield levels due to irrigation is in maximum 307 kg ha-1 for winter wheat (2050 
scenario, Table 10) but 1596 kg ha-1 for corn (2050 scenario, Table 9).  
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Table 9: Corn: Optimal input levels, expected utility, yields and yield variation.  
Irrigation Indicator 
 
Climate Scenario  
 

Nitrogen  
(kg ha-1) 

Irrigation Water 
(mm) 

Expected 
Utility per 
ha 

Optimal 
Yield  
(kg  ha-1) 

Optimal Yield 
Variation 

I=1      
Baseline  114.10 87.48 3286.2 9189 749.4 
2030  112.48 85.20 1632.79 9995 679.9 
2050 137.93 208.49 1685.66 10788 643.2 
I=0      
Baseline  111.5 0 3147.22 8732 820.7 
2030  106.16 0 1567.24 9387 785.7 
2050 99.84 0 1529.5 9192 866.4 
Difference  
I=1 and I=0 

     

Baseline  2.6 87.48 138.98 457 -71.3 
2030  6.32 85.2 65.55 608 -105.8 
2050  38.09 208.49 156.16 1596 -223.2 

*) Scenario: 5.0=γ , PEU. For irrigation ( 1=I ) and non-irrigation farming ( 0=I ). 

 
Table 10: Winter Wheat: Optimal input levels, expected utility, yields, yield variation.  

Irrigation Indicator 
 
Climate Scenario  
 

Nitrogen (kg ha-1) Irrigation Water 
(mm) 

Expected 
Utility per ha 

Optimal Yield 
(kg  ha-1) 

Optimal Yield 
Variation 

I=1      
Baseline  138.59 90.01 3019.59 5976 520.3 
2030  75.03 30.87 1007.01 6274 514.7 
2050 71.33 30.92 1023.44 6348 519.1 
I=0      
Baseline  131.72 0 2934.92 5743 572.6 
2030  76.58 0 973.16 5999 524.9 
2050 68.93 0 986.67 6041 538.2 
Difference  
I=1 and I=0 

     

Baseline  6.87 90.01 84.67 233 -52.3 
2030  -1.55 30.87 33.85 275 -10.2 
2050 2.4 30.92 36.77 307 -19.1 

*) Scenario: 5.0=γ , PEU. For irrigation ( 1=I ) and non-irrigation farming ( 0=I ). 

 
Adoption of irrigation farming is triggered by utility differences between irrigation and non-
irrigation farming in our model. For both crops, utility differences ( ) ( ))()( 01 == − II UEUE ππ  

decrease from the baseline to the 2030 scenario due to the decline of output prices (Table 9 
and 10). In contrast to winter wheat, this difference increases for corn in the 2050 scenario. 
Even though the output price is lower, CC leads to a higher profitability of irrigation in corn 
farming.  
Results of the other scenarios can be summarized as follows. Higher output prices lead, in 
general, to higher input use, higher yield levels, lower yield variation and higher levels of 
utility. Furthermore, this leads to larger utility differences between irrigation and non-
irrigation farming for both crops. That is, an increase of output prices increases the 
profitability of irrigation farming. The increase of the coefficient of risk aversion from 0.5 to 
1.0 leads to lower amounts of nitrogen for corn, but higher optimal nitrogen use for winter 
wheat. This leads furthermore to an increase of the optimal amount of irrigation water and the 
profitability of irrigation farming. Yield variation decreases for both crops if risk aversion 
increases. The effect of changes in risk aversion on yield levels is ambiguous. 
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6.3 Adoption of Irrigation Farming  

 
Farmers’ are assumed to adopt irrigation farming, 1=I , if and only if 
( ) ( ))()( 01 == >− II UEKUE ππ , where K denotes the variable adoption costs for e.g. renting 

of equipment. Adoption costs are modeled stochastically to reflect heterogeneous adoption 
costs for farmers due to, for example, differences in farm size, access to irrigation water and 
infrastructure endowments (KULSHRESHTHA AND BROWN, 1993). 100000 draws are made 
from a normal distribution )40,200(N . This results in simulated costs that range between 20 
and 385 with an interquartile range between 173 and 226. Even though this distribution of 
costs is not representative, it avoids corner solutions compared with a single value for 
adoption costs. Thus, this approach is more suitable to highlight the sensitivity of the model. 
Comparability between the scenarios is ensured by applying equal distribution of costs for 
each scenario.   
Every simulated observation adopts irrigation farming if the utility difference between 
irrigation and non-irrigation farming (see Table 9 and 10) is larger than the simulated costs: 
The simulated adoption rates never exceed one percent for winter wheat. Irrespective of the 
price and risk aversion scenarios, the assumed CC scenarios lead not to adoption of irrigation 
farming in winter wheat production because of shifts in maturity stages (Table 3) and only 
small reductions of relevant spring rainfall in the applied climate change scenarios (Table 1). 
This is consistent with the results of TORRIANI ET AL. (2007a) that show only marginal 
benefits of irrigation in winter wheat farming.  
In contrast, the baseline adoption rate for corn is 6.5 % ( 5.0=γ ) and 12.3% ( 1=γ ), 
respectively. As shown in Figure 1, the future adoption rates are mainly determined by future 
prices and future risk aversion of farmers. In general, higher prices and higher risk aversion 
lead to higher adoption rates. As a consequence, all farmers switch to irrigation (corn) 
farming in 2050 for the 1.5 x PEU and 2 x PEU scenarios. Assuming PEU, however, the highest 
adoption rate is 29% for the 2050 scenario with 1=γ . That is, even in 2050 the adoption of 
irrigation farming will be relatively small if Swiss farmers’ face current EU prices.  

 
Figure 1: Adoption Rates of Irrigation Farming for Corn. 
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*) Note: Price EU -1 denotes the PEU, 1=γ scenario.  

To obtain final results, the adoption rates are combined with the results for input use, yield 

level, yield variation and utility. For instance, the final result for optimal yields ( *
Y ) is 

calculated as follows: )0()1()1( *** =⋅−+=⋅= IYrateadoptionIYrateadoptionY . In order 
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to derive utility for farmers that adopt irrigation farming, the average costs of the adopters in 
the simulated sample are subtracted from the expected utility (e.g. in Table 9).  
Final model results for yield levels, yield variation, coefficients of variation, nitrogen use and 
utility of quasi-rents are shown in Figure 2 and 3. It shows that both yield levels and utility of 
quasi-rents are less affected by levels of risk aversion than by output prices. That is, 
differences between risk aversion scenarios for a single price scenario are smaller than vice 
versa. In contrast, nitrogen use and yield variation are clearly affected by both risk aversion 
and output prices.  
Figure 2 shows increasing yields and decreasing yield variation for future corn and winter 
wheat production. Even though corn yield variation increases for two scenarios ( 5.0=γ , PEU 
in 2050; and; 5.0=γ , 1.5 x PEU in 2030, Figure 2), the coefficients of variation, i.e. the ratio 
of yield variation and yield level, for all scenarios are unambiguously decreasing (Figure 2). 
Figure 2 further shows that an increase of both risk aversion and output prices leads to a 
decrease of the coefficient of variation for corn and winter wheat, respectively.  
The optimal amount of applied nitrogen for winter wheat decreases mainly due to output price 
reductions (Figure 3). Increasing output prices lead, however, to increasing optimal amounts 
of applied nitrogen. In contrast, the latter increases up to 250 kg ha-1 for corn in the 2050, 

5.0=γ , 2 x PEU scenario. High adoption rates of irrigation farming (Figure 1) and the 
positive interaction between nitrogen use and irrigation in the 2050 scenario (Table 4) lead to 
this strong increase of nitrogen use. Utility of quasi-rents for winter wheat depends on output 
prices but not climate change as shown in Figure 3. Neither adoption of irrigation farming nor 
changes in production intensity are profitable (i.e. used) adaptation strategies to CC in winter 
wheat farming. In contrast, for high corn prices the adaptation possibility of adoption of 
irrigation farming enables even increasing utility levels for climate change scenarios (Figure 
3).  
 



Figure 2: Final Model Estimates for Yield, Yield Variation and Coefficient of Variation for Corn and Winter Wheat.  
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Figure 3: Final Model Estimates for Nitrogen Use and Utility of Quasi-Rents for Corn and Winter Wheat. 
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7 Discussion and Conclusions 

Approaches of earlier studies that analyzed the impact of climate change on crop production 
were not able to incorporate both future climate-plant interactions and adaptation measures 
simultaneously. To overcome this drawback, we use a modeling approach that combines 
predicted climate-plant relationships (crop simulation modeling) and an economic model that 
focuses on strategic adaptation.   
We found beneficial effects of climate change if adaptation measures such as changes in 
seeding dates, changes in production intensity and implementation of irrigation systems are 
taken into account. For the time horizon considered in this analysis (2030-2050) we found 
corn and winter wheat yields to increase above current levels. FLÜCKIGER AND RIEDER (1997) 
projected decreasing corn and increasing winter wheat yields in Switzerland using a 
regression modeling approach. For winter wheat this is consistent with our analysis because 
the adaptation options considered in our study do not significantly change the impact of 
climate change on winter wheat production. The difference for corn yield projections is due to 
adaptation measures that are taken into account in our analysis but are not considered in 
FLÜCKIGER AND RIEDER (1997).   
Yield variation of corn is projected to increase but decrease for winter wheat in the analysis of 
TORRIANI ET AL. (2007a). The latter result is consistent with our findings. The increase of corn 
yield variation contrasts our results because in particular changes in production intensity are 
not taken into account in TORRIANI ET AL. (2007a). However, it has to be taken into 
consideration that the applied climate change scenarios in FLÜCKIGER AND RIEDER (1997), 
TORRIANI ET AL. (2007a) and our analysis are different.  
Altogether, higher and less variable yields projected from our analysis lead to a decrease of 
the coefficient of variation for future corn and winter wheat production at the Swiss Plateau. 
We chose numerical examples of constant risk aversion. However, several studies (see SERRA 

ET AL., 2006) point out decreasing instead of constant risk aversion of farmers. That is, risk 
aversion of farmers increases with decreasing utility. All but one of the scenarios assumed in 
our study leads to lower utility levels in future. Thus, farmers are expected to be more risk 
averse in future than currently. An increase of risk aversion causes lower coefficients of 
variation. Therefore, even higher reductions in the coefficients of variation for corn and 
winter wheat are expected than indicated by our study. 
In order to validate the here presented results, further soil types and further CC scenarios 
should be considered. Further climate change scenarios should emphasize the altitude of 
future extreme climatic events such as droughts. The here applied estimation procedure for 
model parameters, using robust regression, is in particular suitable for the incorporation of 
such extreme climatic events.  
In conclusion, our approach of modeling impacts of climate change on crop production and 
production risk is valuable for further research, because it enables the simultaneous analysis 
of climate change, price and risk aversion scenarios. It can be extended with further 
adaptation measures. Our case study shows that simple adaptation measures such as changes 
in seeding dates, changes in production intensity and adoption of irrigation farming are 
sufficient to generate positive effects of climate change for corn and winter wheat production 
at the Swiss Plateau. Taken into account that further adaptation measures such as breeding 
and financial instruments such as weather derivates were found to be valuable adaptation 
strategies for Swiss crop production (TORRIANI ET AL. (2007a,b), the latter will take advantage 
of climate change. 
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