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Abstract

This paper investigates the determinants of co-inventor tie formation using micro-
data on genomic patents from 1990 to 2006 in France. In a single analysis, we
consider the relational and proximity perspectives that are usually treated
separately. In order to do so, we analyse various forms of proximity as alternative
driving forces behind network ties that occur within existing components (i.e.
closure ties) as well as those between two distinct components (i.e. bridging ties). In
doing so, we contrast network and proximity determinants of network formation
and we investigate to what extent social networks allow economic actors to cross
over geographical, technological and organizational boundaries.

Keywords: Social networks, relational perspective, proximity, co-patenting, network
formation.

JEL codes: D85, 031, R12, 713



1. Introduction

The significance of social networks in relation to innovation is now widely acknowledged,
and even considered a truism (Lobo and Strumsky, 2008). A growing body of literature
convincingly argues that knowledge is far from being “in the air” and accessible to all actors
but rather follows specific channels between socially and personally linked individuals
(Breschi and Lissoni, 2005, 2009; Knoben, 2009). These “social proximity” arguments
strongly contrast with previous studies on geographical proximity that investigate
agglomeration economies and argue that knowledge circulates more or less freely among
co-located industrial and academic actors, suggesting that they benefit from a premium
depending upon their location (Jaffe, 1989; Jaffe et al. 1993; Audretsch and Feldman, 1996;

Aharonson et al. 2008; Boufaden and Plunket, 2008; Knoben, 2009).

Although social networks suggest that innovation and diffusion of knowledge do not simply
depend upon location, the strong link cannot be ignored (Boschma, 2005; Torre et Rallet,
2005). Networks and proximity appear as highly interrelated phenomena since the
formation of networks is highly spatially localized, at least in its earliest stages (Ponds et al.
2010), and mainly found within organizational and cognitive boundaries (Singh, 2007). The
dynamics of network formation are a major research objective for the geographical analysis
of innovative networks (Boshma and Frenken, 2009). These debates raise a number of
qguestions: first, to what extent are geographical and social proximity overlapping
phenomena? Second, to what extent do networks enable to reduce geographical,

organizational and cognitive boundaries and offer the opportunity to access non-local



knowledge (Gluckler, 2007)?

The aim of this paper is to investigate these questions by analysing the determinants of
scientific and technological network collaborations, namely inter-individual co-inventions.
We address this issue through the formation of network ties using a longitudinal analysis of

French co-patenting data in the field of genomics between 1990 and 2006.

In order to disentangle network and proximity effects, we consider the impact of various
forms of proximity in establishing two different types of network ties. In the first case,
individuals are at least indirectly linked within the same network component; they share
some level of social proximity and form a closure tie. This enables them to increase the
cohesion of a group of individuals, favour trust and facilitate the sharing of resources
(Coleman, 1988). In the second case, actors belong to distinct components and they have no
network connection. They form a bridging tie that allows for the connection of distinct
groups of individuals, thus establishing a channel across networks, which facilitates access to
different resources or assets (Burt, 1992). This distinction allows us to account for network
effects explicitly through social proximity and preferential attachment relative to
geographical, technological and organizational proximity (Boschma, 2005) as driving forces
behind network formation. Considering both of these determinants in the same framework
allows investigating not only their respective impacts on collaborations, but also how they

overlap, interact, and possibly act as substitutes or complements.

Our findings support the idea that within-network effects (i.e. closure ties) occur among
actors that share a strong organizational proximity and technological similarity. Moreover,

social, geographical and organizational proximity act as substitutes, in the sense that



geographical proximity is less important when individuals are already connected through
common acquaintances or act under similar governance. In this sense, social connections
allow actors to cross over geographical and organizational boundaries. In contrast, across-
network effects (i.e. bridging ties) occur rather when individuals seek some level of variety
and diversity in collaboration, and this occurs mainly through inter-organizational ties for

which technological distance is more important.

The paper is organized as follows: Section 2 presents the theoretical framework and stresses
the element of novelty in our work relative to the existing literature. Section 3 provides a
description of data and an explanation of how networks have been built up. Section 4
describes the estimation design and discusses the results of the econometric analysis.

Section 5 concludes.

2. The Determinants of Network Tie Formation

An increasing body of literature investigates innovation networks considering clusters of
firms within regions and their impact on performance. Since networks are crucial for
innovation, it seems important to consider the conditions under which these networks are
formed and the relative importance of factors acting as network drivers. The dynamics of
network formation have only recently begun to be empirically investigated and most existing
studies run some form of pairwise regression (Bramoullé and Fortin, 2010), in which case the

variable to be explained is represented by the links themselves.

Within existing studies, the formation of network ties are explained by different bodies of

literature that offer two distinct perspectives: (a) the relational perspective assumes that



trust and knowledge access and control of information are conferred through the actors’
position within the network; (b) the proximity perspective focuses on the relative position of

economic actors in space, however defined™.

These two perspectives rely on different mechanisms. However, they highly interact in
shaping the evolution of observable social networks. The proximity determinants explain the
contexts in which people meet and may become connected. For instance, two individuals
are located in the same region. Once connected, they are part of a network that offers
opportunities to form new ties and, in doing so, to cross organisational and geographic
boundaries. While different streams of literature rely on two distinct perspectives and have
been developed more or less independently, researchers are increasingly concerned with

how both patterns overlap and interact.

2.1. The Relational Perspective

The relational perspective focuses on direct and indirect connections among individuals; it is
sometimes referred to as a ‘within-the-network’ approach, since the “focal predictor of
network change is hypothesized to be the shape and structure of the network in a prior time

period” (Rivera et al., 2010, p. 97).

Two main explanations are identified: closure and preferential attachment. The former
concerns the tendency of actors to form clusters, the latter deals with the actors’ propensity

to link to the most connected individuals.

One of the characteristics that distinguish social from biological or technological networks is

clustering (Newman and Park, 2003). Coleman (1988), and many others after him, have



argued that being embedded in a very dense, interconnected, “cliquish” network generates
benefits by enhancing the trust among individuals and thereby encouraging joint activities
and the sharing of tacit and complex knowledge. Consequently, the effect of sharing a
mutual acquaintance increases the likelihood of forming a dyad between indirectly
connected actors. Said differently, open triads tend to close over time. These so-called
“triadic closures” occur when an actor becomes connected to one’s partner’s partner, that
is, when they share some level of social proximity. As will be discussed later, this social
proximity strongly interacts with other forms of proximities since prior ties are highly
localized and strongly embedded in kinship, professional and friendship networks (Boschma,
2005, Breschi and Lissoni, 2009, Ter Wal, 2011). For the sake of analytical clarity, social
proximity is defined in a very restricted manner; it refers to direct or indirect inter-personal
connections between any two actors. It is different from other forms of proximity such as
being located in the same region, working for the same company or being part of the same
technological community. The fact that individuals are proximate in those dimensions does

not necessarily mean that they share inter-personal relationships.

However, being embedded in very dense and strongly cohesive networks may also harm
individuals in their search of new knowledge and their learning processes. In fact, Burt
(1992) argues that knowledge accessing is more efficient when individuals occupy structural
holes that enable the link up of unconnected actors. Individuals positioned in structural
holes are able to broker knowledge flows across unconnected groups (e.g. Gargiulo and
Benassi, 2000). In sum, if clustering seems to be quite a general tendency, some strategic

reasons may lead actors to avoid these configurations and, instead, seek out structural holes



by forming bridging ties. As Baum et al. (2012) argue, “(...) closure is about fostering
cooperation and integration within close-knit groups, bridging is about seeing variation in
ideas and practices across groups [...] Bridging positions afford timely access to diverse
information and resources from non-redundant contact, and opportunities to broker this
novel information and resources between unconnected partners (Burt, 1992)”. Individuals
may form bridging ties in order to gain access to different or complementary resources

outside their close network.

Skewed degree (i.e. the number of links per node) distribution is another recurring feature
of networks. The main explanation initially proposed by Barabasi is the preferential
attachment model (Barabasi and Albert, 1999); the rate at which actors acquire new ties is a
function of the number of ties they already have. This is explained by the fact that actors
looking for new partners consider the other agents’ number of existing ties as a factor of, for

instance, productivity.

However, in some cases, establishing and maintaining a partnership could require a non-
negligible (opportunity) cost, which can limit the number of partners an actor can efficiently
collaborate with. Thus, the relationship between degree centrality and tie-accumulation
could be weaker in those networks where certain actor’s constraints (e.g. time or resources)
are important. Moreover, Newman and Park (2003) have noticed that social networks, as
opposed to biological or technological ones, display a specific characteristic: a tendency for
the most connected actors to connect amongst themselves. Popular actors tend to attach to

popular actors; likewise, low degree actors do so with their peers.



2.2. The Proximity Perspective

Geographical proximity is at the heart of the network formation issue and often appears as
one of its main drivers, since many ties take place between actors located within a short
distance (Boschma and Frenken, 2009). Moreover, we know that knowledge creation and
innovation are spatially concentrated activities for mainly two reasons. First, geographical
proximity facilitates information and knowledge sharing through frequent interactions,
especially when knowledge is tacit, complex and sticky (Bathelt et al., 2004). This close
proximity also contributes to solving coordination problems through trust building and inter-
organisational learning. Second, the concentration of firms and universities in industrial
clusters and large agglomerations offer a wide range of potential partners and more
opportunities to meet and share knowledge. These reasons largely explain why i) individuals,
firms and universities collaborate primarily on a local basis, ii) networks are locally
embedded and iii) knowledge spillovers are spatially bounded (Maggioni et al. 2007).
Networks and network ties are locally embedded to the extent that economic actors are
geographically concentrated. However, geographical proximity, per se, does not seem to be
a necessary or sufficient condition for knowledge sharing and interactive learning (Boschma,
2005), as opposed to being part of these networks (Ter Wall, 2011; Breschi and Lissoni,
2009). In explaining knowledge flows, Agrawal et al. (2008) as well as Breschi and Lissoni
(2009) show that patent citations are more likely to occur among inventors who share social
proximity, held through co-ethnicity or labour mobility. In summary, geography seems more
important for promoting initial connections. Once these connexions exist, they enable one

to overcome geographical boundaries, and spatial proximity ultimately plays little or no role



in the formation of collaborations (Maggioni et al. 2007; Autant-Bernard et al. 2007).

Besides geography, the proximity literature highlights other forms of proximity such as
cognitive and organisational proximity (Boschma, 2005). Cognitive proximity means that
actors share the same knowledge base or technology. On the one hand, actors are more
likely to collaborate when they have very similar knowledge bases, since it makes
communication, learning processes and knowledge sharing easier (Jaffe, 1989). On the other
hand, too much cognitive proximity may harm collaboration and innovation because of
possible redundancy of knowledge. The process of innovation requires some level of
dissimilarity and complementarity in the knowledge base. Network tie formation may also
result from a technological brokerage strategy whose aim is to connect previously separated
technological communities (Stuart and Podolny, 1999; Burt, 2004) thus leading to cross-
disciplinary fertilization (Fleming and Marx, 2006). Therefore, it is difficult to predict the
impact of cognitive distance on network tie formation, unless we consider the types of ties,

as will be discussed below (Section 2.3).

Organisational proximity refers to the fact that “relations are shared in an organizational
arrangement, either within or between organizations” (Boschma, 2005, p. 65).
Organizational proximity is high when individuals share the same affiliation, in our case,
when they patent for the same company or university (prior to tie formation). These ties are
believed to be beneficial for innovation collaborations because they reduce uncertainty and
opportunism. They are also more manageable when individuals share similar routines and
processes, and they ease confidentiality requirements (Singh, 2005). Thus, organizational

proximity facilitates knowledge production, diffusion and exploitation as shown by Fleming



and Marx (2006). They highlight IBM Almaden Valley Labs’ structural role as IBM highly
invested in research and offered a doctoral program for Stanford University students, thus
favouring the connection between IBM and their doctoral students’ future appointments.
Similarly, in his study on patent citations, Singh (2005) shows that citations are three times
larger when they happen within the same firm, whereas they are only 66% more likely when

there is spatial proximity, that is, when they emanate from the same region.

Despite uncertainty and the risks of opportunism, different organizations find advantages in
collaboration as they share knowledge and financial resources. Collaboration may be
facilitated when they cooperate under similar organizational types (either between private
companies or between research institutions) because they have a common language, similar
incentives and coordination routines, especially between academics. For private companies,
collaboration may nevertheless be hampered by a number of difficulties, such as potential
competition, risk of opportunism and other conflicting interests. When cooperation occurs
between different organizational types, that is, between private companies and research
institutions, a number of problems, such as different routines and incentive schemes, and
difficulties in coordinating labour and accessing funds (Ponds et al. 2007) may also hamper
collaboration. Nevertheless these arrangements are increasingly implemented and
encouraged in regional and European innovation programs, especially in science-based
industries such as genomics. In summary, while high organizational proximity clearly
increases the likelihood of any tie, the impact of inter-organizational relations is less easy to

predict, and presumably depends on the type of tie, as is discussed in the following section.
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2.3. Closure, Bridging and Proximity Interactions

Following Amburgey et al. (2008), it is possible to classify each new link according to the
connectivity to the overall network. Taking two individual inventors as our focal point, they
may become connected through four categories of links, as represented in Figure 1: (1) a link
bridging two components; (2) a link determining the creation of a new component; (3) a

pendant to an existing component; or (4) an intra-component link.
[Figure 1]

The formation of each type of link has different implications for the overall network

structure, as summarised in Table 1.
[Table 1]

Bridging and intra-component ties have very different consequences on network structure.
The former allows for the linking of separate groups of inventors and establishing channels
that facilitate the access to resources or other assets. The latter type allows for the
establishment of a direct link between actors already (indirectly) connected and the increase
of the cohesion of a group, favouring trust and enabling the sharing of resources. In the
data, most of intra-component ties occur between inventors that are at very close social
distance prior to the tie formation. More precisely, 84% of intra-component ties are formed
between individuals that are indirectly linked at a geodesic distance (i.e., the shortest path
between two individuals within a network) smaller or equal to 3. This means that the
formation of these ties allows individuals to make their local network denser, closing triangle

(geodesic distance equal to 2, namely “triadic closure”) or square relations (geodesic
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distance equal to 3 — hereinafter labelled “quadratic closure”). Finally, for simplicity, we

label all intra-component ties as closure ties.

By construction, network ties differ in the sense that social proximity only plays a role for
establishing closure ties. This may have two consequences that we test in this article: first,
bridging ties enable actors to gain access to different organizations and knowledge
resources; second, social proximity may act as a moderator for geographical, technological

and organizational proximity, as has already been discussed in the previous section.

Concerning geographical proximity, we expect physical propinquity to explain the formation
of network links, whether bridging or closure ties. However, as Torre and Rallet, (2005)
argue, face-to-face and frequent contacts do not require permanent proximity, in the sense
that agents do not need to be located in the same region. As a consequence, geographical
proximity is not a necessary condition for collaboration and learning since other forms of
proximity may be as important. Since networks and geography are strongly overlapping
phenomena, and since they endorse similar roles of reinforcing the bonds of trust, reducing
uncertainty and finally facilitating knowledge sharing and interactive learning (Boschma,
2005), we expect social proximity and geography to act as substitutes (Agrawal et al. 2008;
Breschi and Lissoni, 2009). In other words, the impact of geography may be less important

for triadic and quadratic closure, i.e. when social proximity is very close.

As discussed earlier, the impact of technological and cognitive proximity on collaboration is
difficult to predict, since two different mechanisms of opposite sign are at work. As
explained by Nooteboom et al. (2007), cognitive distance creates opportunities for

innovation by combining distinct and complementary bodies of knowledge, and at the same

12



time, cognitive distance must not be too large, because of a lack of absorptive capacity. As a
consequence, we expect actors looking for similar bodies of knowledge, to search for
partners in their close networks and rather form closure ties. However, when they search for
complementary and dissimilar types of knowledge, they may be inclined rather to look for
partners outside their close networks, and form bridging ties. “Because there is a limit to the
ideas and opportunities that can be created using a given knowledge base, bridging ties also
increase a firm’s potential for finding new combinations by exposing it to novel variations”
(Baum et al., 2012). However, if cognitive distance increases and if there is no social
proximity (as in bridging ties), actors may need to rely on other forms of proximity, such as
being part of the same organization or being located in the same region. We expect their

interaction to be complementary.

Finally, we expect the likelihood of forming any tie to be greater when two actors have a
high organizational proximity (i.e. they have already patented for the same organization). In
this case, organizational and geographical proximity may act as substitutes, as already
discussed in the previous section. When actors have previously patented for different
organizations, we expect the likelihood of collaboration to be smaller for closure ties and
larger for bridging ties, especially for actors belonging to different organizational types,
namely company-research institution collaborations. We also expect the role of geography
to be more important in order to compensate for the lack of organizational proximity as

argued by Ponds et al. 2007.
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3. Patent Networks in Genomics

3.1. Description of the Data and Network Formation

The dataset under investigation is composed of all the genomic patents published at the
European Patent Office between 1990 and 2006, with at least one inventor reporting a
French postal address and their co-inventors, whatever their location within or outside

France.

The database was built during a recent research project carried out by ADIS-Paris Sud,
LERECO-INRA and the OST — Observatoire des Sciences et des Techniques - supported by the
French National Research Agency (ANR — Agence National pour la Recherche). The EPO
Worldwide Patent Statistical Database (PATSTAT) was searched using a specific strategy
involving genetics and genomics keywords in order to define the genomic field (Laurens, Zitt
and Bassecoulard, 2010). “Genetics stricto sensu is the science of gene heredity and
variation of organisms by looking at single genes... in contrast, genomics typically looks at all
the genes or at least at large fractions of a genome as a dynamic system, over time, to
determine how they interact and influence biological pathways, networks and physiology, in
a much more global sense” (ibid, p.649). A number of experts were asked to validate the
lexical query for filtering genomics out of genetics and ultimately the field delineation and

the border areas.

Our final database is a sub-sample of 2104 patents filed by 496 applicants and 4456
inventors. These represent 7976 patent-inventor couples among which 6034 report a French

postal address and 1942 a foreign address.
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Every patent provides information on the inventors, their name and postal address, which
enables the definition of their geographical location at the NUTS 3 level for European
inventors and the geographical distance between them. The patent also offers information
on applicants, for which we have determined whether they are private companies, research
institutes and universities, non-profit organizations or individuals. For each patent, we also
know their IPC — International Patent Classification — codes, which identify their
technological fields. We use all of this information in order to define the inventor’s individual
characteristics, such as geographical location, technological specialization and affiliation. The
affiliation is, in this case, the organization for which the patent is filed and not necessarily
the employer. For instance, it may happen in a number of cases that academic inventors file

patents for a private company instead of their own university.

In order to build the network,? we assign a link (edge) between any two inventors (nodes)
who file a patent together. The actors that co-patent form small components that increase
over time and eventually connect to other components through new co-patenting activities.
Networks may thus be described as bundles of actors that are connected, but all the actors

within a network are not necessarily linked.

The aim of our paper is to understand the formation of dyads between co-inventors. These
new links are explained by the network structure and the inventors’ individual
characteristics. In order to avoid simultaneity biases, we consider all determinants with a lag
of one period. For this reason, we may only investigate links among already active actors,
that is, bridging and closure ties. Another reason for investigating these links comes from the

specificity of patents as compared to publications (Fafchamps et al.,, 2010, Ponds et al.,

15



2007); co-inventors of a given patent have, by definition, the same affiliation®> and
technological field (IPC codes). For this reason, this information cannot be used to highlight

organizational or technological determinants.

Finally, since ties may die out after a certain period of time, we use a five-year moving
window to get a more realistic picture of the network for any given year. So, for instance,
the network in 1994 comprises all the patents published between 1990 and 1994.
Accordingly, an inventor is considered as active (e.g. in 1994), if he/she has at least one
patent over the 1990-1994 period. The observed co-patents and the potential co-patents

actually used for the regressions as controls start in 1996 and go through 2006.

3.2. Networks Structural and Dynamic Properties

Figure 2 displays the number of active inventors over time. At the beginning of 2000, the

number of inventors clearly grows and then stabilizes around 2004.
[Figure 2]

More striking is the time-varying pattern depicted by the giant component: first, it appears
to be relatively small throughout the period compared to the size in similar studies (e.g.
Fleming and Frenken, 2007). Second, it reaches its maximum in the year 2002, and starts

decreasing before reaching a plateau.

While previous analyses focus on the giant component, our paper tracks the network
dynamic by considering all sub-components (Baum et al., 2003; Fleming and Marx, 2006;
Fleming and Frenken, 2007). It is interesting to consider the formation of the giant

component over time and understand why some network subparts become connected and
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grow over time whereas others do not. The formation of the largest component may be the
result of two scenarios that are not necessarily mutually exclusive. In the first, the largest
component may result from the connection of relatively large existing components that
increase over time, have their own dynamics and finally become connected in a larger one.
In the second scenario, the largest component may result from an incremental process
wherein small components become connected, within a short time period, to a single
relatively large component. In the former scenario, bridging ties would play a pivotal role for

network connectivity, while such would not be the case in the latter scenario.

[Figure 3]

Figure 3 illustrates the evolution of the first four largest components in the 1998 network.
The first component (137 inventors in 1998, around 13% of active inventors) is mainly
composed of inventors located in the Paris region, lle-de-France (the same holds for the
second and partially for the fourth component), while the bulk of the third component is
located in the Rhone-Alpes region. The components also differ in terms of patent applicants.
The first component includes several big corporations (e.g. Aventis and Centillion) and
foreign universities; the second mainly includes public actors such as CNRS, INSERM and
certain Parisian universities as well as biotechnological firms (e.g. Neurotech SA). Finally, the
third component revolves around one main applicant, Bio Merieux, while the fourth one is
mainly composed of inventors working for a spin-off of CSIRO, the Australian government
research agency and for a French firm located in the central region of Auvergne. Most
striking is that the ‘public’ component, i.e. the second one, breaks up during the first years

(which is represented in Figure 3, by the fact that line 2 disappears in 2001), while the other

17



components converge into a giant component. Finally, in the most recent years (2005), the
size of the giant component decreases with its members splitting into three subgroups. In
summary, examination of the giant component formation confirms the usefulness of

analysing the specific role of bridging ties and their determinants.

Table 2 reports the number and share of new links relative to the period we intend to

explain, i.e. 1995-2006.

[Table 2]

Most ties happen to involve new inventors either through the formation of new components
or through pendant links. Indeed, the most adopted strategy to enter into a network is
forming a new component. The corollary is that one should already have patented (i.e. sent

a signal), before attaching to some active inventor.

[Table 3]

A fortiori, this implies a more central role for bridging ties. If the majority of inventors enter
into a network establishing a new component, the overall network’s connectivity depends
mainly upon actors’ ability to link already existing components (i.e. bridging link) rather than

inventors’ ability to attach themselves directly to already active inventors (i.e. pendant link).

Moreover, descriptive statistics (Table 3) suggest that intra-component ties are to a large
extent formed within the same applicant or with subsidiaries, whereas bridging ties are

formed by different types of applicants, namely between academia and private companies.
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4. Estimation Design and Variables

How do network configuration, proximity and their interactions affect the formation of
network ties? Do they explain differences between bridging and closure tie formation? To

address these questions econometrically, we use two different estimation procedures.

First, we use a conditional logit specification to test the impact of relational and proximity
factors on the likelihood of forming a network tie, whether closure or bridging, as compared
to the non-formation of any tie. Second, we use a multinomial logit specification to predict
the likelihood of forming a bridging versus a closure tie, that is, forming a link across
separate components rather than within one’s component. The differences between the
two types of ties may thus be considered regarding their specific network dynamic and

configuration.

4.1. Dependent Variable and Estimation

4.1.1 The Conditional Logit Approach

For two inventors ¢ and j, the probability of forming a tie Pi follows a conditional logit

distribution given by (Cameron and Trivedi, 2005):

py = ZPEB) itk 1 = B.C.No Tie
Eexp(x' B)

m

Xrepresents a vector of covariates whereas B is a vector of parameters to be estimated. If
the tie is observed, the dependent variable takes the value of 1 and it is O otherwise. Three

cases are considered whether we distinguish between closure (C), bridging (B) or No tie.
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Therefore, the estimations subsequently consider the likelihood of forming a closure tie or a

bridging tie versus no tie.

In order to estimate this model, we first compute all existing and potential ties between any
two pairs of inventors. All of the possible and realized dyads generate around four million
observations and the realized links represent only a marginal portion of all possible ties.
Since this gap raises important difficulties of estimation, we adopt a case-control approach
(Sorenson et al., 2006). For any realized tie and its related co-inventors, we randomly select
five possible but not realized co-inventors that have filed a patent in the same year as the
observed tie, which provide five controls for each co-inventor. In summary, for each realized
tie, we have ten controls. Each realized tie and its controls represent a group and the
estimation is realized within this group; we use a cluster robust procedure to adjust standard
errors for intra-group (matched case-control) correlation. The corollary is that variables
characterized by constant within-group effects, such as year dummies, cannot be estimated.
We begin with a sample that has 2684 (i.e. 244 observed dyads + 244*10 controls) and 2123
(i.e 193*(10+1)) observations respectively for the bridging and intra-component cases. But,
since we estimated geographical distance for European inventors only, we could not obtain
kilometre distances for European and non-European inventors and, for this reason, a
number of observations have been dropped and we end up with a sample of 2421 and 1604

observations respectively. The same sample is then used for the multinomial estimations®.

4.1.2. The Multinomial Logit and Probit Approach

The multinomial logit model is equivalent to a series of pairwise Logit regressions, except

that the whole sample is used in order to reduce the potential biases that may arise from
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dropping part of the observations. In this framework, it is supposed that inventors choose
between three outcomes, forming a bridging tie (B), a closure tie (C) or not forming any tie
(No tie). In our case, we choose “closure tie” as the “reference category” or comparison
group, in order to estimate if proximity and relational variables explain differences between

closure and bridging ties.

Let Yibe the dependent variable with/ nominal outcomes that are not ordered. Pi is the

probability of observing outcome B given explanatory variables vector X.

The probability may be written as follows (Cameron and Trivedi, 2005):

P, =ZPEP) ik 72 B No Tie
Eexp(x‘ B

m

In the Multinomial framework, the assumption of independent and identically distributed
error terms in the specification of each alternative (IIA) must hold. To test the assumption of
the independence-of-irrelevant-alternatives, we compute and report in the appendix the
Hausman-McFadden and Small-Hsiao tests. The results are in favour of the IIA assumptions.
However, one test is not conclusive and provides little guidance to the violation of the IIA
assumption (Long and Freese, 2003). Since errors may be correlated among alternatives, we
finally estimate a multinomial probit specification, which enables to relax the IIA
assumption; we obtain very similar results to the multinomial logit estimations. As is often

the case, these tests give inconsistent results and. However, the tests are

4.2. Independent Variables

Two sets of variables are considered according to the relational and proximity perspectives.
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The relational perspective is tested using social proximity and degree centrality measures in

order to grasp the closure effects. Social proximity is computed as the inverse of the

geodesic distance d; petween two inventors i and j, that is, the shortest path connecting
them in the network. This measure is only appropriate for closure ties since the geodesic
distance between unconnected nodes is infinity, which is the case for all bridging ties by
definition. Social proximity increases the likelihood of forming a tie since inventors may
collaborate more easily with their partners’ partners because “knowing” them facilitates
trust and collaboration. The impact of social proximity is estimated by computing two
dummy variables to account for triadic and quadratic closure: “social proximity (=2)” is equal
to 1 when the geodesic distance is 2 and 0 otherwise and likewise, “social proximity (=3)” in
the case geodesic distance is equal to 3. These variables are then interacted with
geographical and organizational proximity to estimate to what extent they may be
substitutable or complementary (see Appendix A for a table with all the variables’

definitions).

Social proximity is expected to increase the likelihood of forming a tie; however inventors
cannot manage an increasing number of collaborations. For this reason we expect that the
likelihood of forming a tie increases with the number of common partners up to a certain
threshold, and after that it may decrease. In other words, we expect an inverted U-curve
relation between collaboration and the number of common partners. In order to test this
relationship, we compute four dummy variables (“common (= 1, 2, 3 and 4)) according to the

fact that co-inventors have 1, 2, 3 or 4 common partners with a geodesic distance of 2.

To account for preferential attachment, we consider the degree centrality measure. Since
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the study considers the likelihood of two inventors in forming a tie, we must examine this

measure for both inventors and consider the average Mjand the difference A%of both

inventors’ degrees (Fafchamps et al. 2010).

__(n+n))
n; =T

Ay =[n, |

For each type of tie, we expect a different sign. In particular, we expect the average measure
to be positive and the difference to be negative for closure ties and vice versa for bridging
ties. When actors belong to the same sub-network, individuals tend to link to partners
similar to themselves in terms of degree: thus the difference in the number of partners
should tend to zero. This is even more important for individuals with a greater number of
collaborations since they are more visible within the network. When individuals are
searching for an effective collaboration that enables them to access new and different
resources, it is likely that similarity is less important or even plays a negative role. In this
case, a greater difference would have a positive effect on tie formation and, consequently,

we should expect a negative effect of the average degree as well.

The proximity perspective is assessed through geographical, technological and organizational
proximity. In order to calculate the “geographical proximity” in kilometres, we locate each
inventor at the NUTS 3 level based on its postal address. All European inventors are
identified this way; the non-European inventors have been dropped from the regressions’.
The distance is calculated using the latitude and longitude coordinates of each NUTS 3

centroid.® We calculate the distance in kilometres divided by 100’. Geographical proximity is
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thought to have a positive impact on the likelihood of forming a tie since proximity

decreases transaction costs.

Collaboration is easier among inventors that share similar technological interests and

specializations. For this reason, we suppose that “technological proximity” increases the

likelihood of collaboration. It is computed as the Jaffe’s (1989) index’i, which is a proximity
measure ranging between zero and one, depending on the degree of overlap between the

co-inventors’ prior patent IPC codes.

D

IS

Ji and S represent each inventor i and j technological position.

We then consider the impact of organizational proximity. Organizational proximity occurs
when two inventors file a patent for the same applicant. When inventors file a patent for
different organizations, two inventors may work for similar types of organizations, either
among academia and public research centres or among private companies (Ponds et al.
2007). We suppose that inventors are more likely to form ties within their own
organizational boundaries or with inventors belonging to similar organizational types. In
order to account for different organizational settings, we consider three occurrences: “Same
applicant” takes the value of 1 when inventors have patented for the same organization
prior to tie formation and 0 otherwise; “Same type” takes the value of 1 when inventors
have patented for the same organizational type (firms or companies) and 0 otherwise; and

“Different type, different applicant” as the last occurrence, in our case university — industry
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relationships.

We interact these variables with geographical and social proximity in order to test if they
may have substitutable or complementary impacts on network tie formation. Our
hypothesis is that inventors will choose closure ties when they require similar competences
that may be found in a close neighbourhood. They will choose bridging links when they need

distinct skills that may not be found in their own environments.

We introduce two types of controls. We first control for the distinction between French
located inventors and foreigners. Since being a foreigner is strongly correlated with
geographical distance, we prefer to consider the specific case of foreigners located in border
countries by introducing a dummy for inventors located in one of the French border
countries, that is, Spain, Germany, Italy, Switzerland, and Belgium. We expect the impact to

be positive.

We also consider the number of years since the first tie in order to control for experience
with the patent process. Again, in order to account for the symmetric relation, we introduce
the difference and average value of both inventors’ experiences, namely Experience —

absolute difference and Experience —average difference.

All variables are considered and computed for the period prior to the tie formation for which
we estimate the likelihood. We cannot control for year fixed effects in the conditional logit
model since by definition it includes group fixed effects for the inventors and their controls®.
In order to control for changes through time, we have introduced year fixed effects in the
multinomial probit estimation. However, introducing year fixed effects does not change the

overall results.
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5. Estimation Results and Discussion

5.1. Explaining Network Tie Formation

Table 4 presents the results from a series of conditional logit models with cluster robust
standard errors. Models 1-5 demonstrate the impact of relational and proximity variables on
the likelihood of forming closure ties, and 6-8 test the same variables on bridging ties. Across
models, variables and controls remain consistent overall in sign and magnitude, suggesting

that they are rather robust to the introduction of additional variables.

Since social proximity is infinite by definition in the case of separate components, and in
order to enable comparison between closure and bridging ties, we first test the impact of
networks through degree centrality in all models. The results for the absolute difference and
average for the inventors’ prior degrees show distinct patterns of dissimilarity between both
types of ties. As expected, the inventors’ relative position within the network explains
closure tie formation. The difference in degrees has a negative impact whereas average
degree has a positive impact in this case. This confirms that the likelihood of forming such
ties decreases when inventors are more dissimilar and it increases when they have high
degrees, namely when they are more visible and attractive within the network. Yet, these
impacts are only slightly significant as opposed to the bridging ties for which the signs are
opposite but highly significant, suggesting that bridging ties are driven by a search for
diversity. The corollary is found in the negative sign for the averages. The attractiveness is
not a question of visibility for bridging ties; inventors are apparently looking for other

characteristics and resources.
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The absolute number of years since the first patent does not seem to play an important role
in the formation of network ties, as opposed to average years of experience. This impact is
especially strong for closure ties, which depend on within-network relationships that are

built over time.

Regarding the proximity mechanisms, all the sources of similarity impact collaborations, as
expected. The likelihood of forming a tie is larger when co-inventors share similar
technological fields and work in close spatial distance. The impact is even twice as large for
the closure ties in the case of technological proximity. This is not very surprising given that
84% of closure ties occur within a short social proximity with geodesic distance of 2 (66% of
cases) and 3 (18%); given that they occur within such a short social distance, knowledge
bases are highly overlapping, or even redundant. Organizational proximity is also strongly
significant and positive; the likelihood of forming a tie increases when inventors patent for
the same applicant, even in the case of bridging ties. This confirms the fact that inventors

patent first of all with individuals that belong to their own organization (Singh, 2005).

In summary, collaborations mainly occur when inventors are located in close geographical
distance to each other, work in similar technological areas and presumably patent for the
same organization. However, the interaction term Geographical proximity x Same applicant
is strongly negative for closure ties. This suggests that combining geographical and
organizational proximity reduces the likelihood of forming a closure tie, which means that
that geographical proximity matters less for collaborations when inventors already patent
for the same organization. The interaction is negative although non significant for bridging

ties which implies that the facilitating role of geographical proximity is as important for
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inventors patenting for the same or for a different organization, presumably to compensate

for the lack of social proximity.

[Table 4]

In contrast, proximity in organizational type has a negative impact. Since the large majority
of collaborations between similar types of organizations occur between private companies
(see Table 3), this result is not very surprising if we consider the risks due to opportunism
and competition. This negative sign also means that science-industry relations are most
likely to occur among inter-organizational collaborations. The interaction of “Same type”
with geographical proximity is positive, confirming Ponds et al. (2007) findings that

geographical proximity compensates for organizational distance.

Finally, forming a tie with a foreigner located in countries bordering France has a positive

impact on network tie formation, although slightly less positive for bridging ties.

When introducing dummies for the number of common partners, previous results remain
consistent overall in sign and significance, although the magnitude of coefficients is reduced
for all proximity variables. Since these dummy variables represent the number of common
partners, they explicitly account for triadic closure, and it appears that social proximity and
other proximity variables partly overlap. This aspect will be further developed in the next
section when social proximity is explicitly introduced in the regression. We expected an
inverted U-shape for the number of common partners. The results do not confirm this
hypothesis. Signs remain positive overall; coefficients first become larger for two partners in
common, they subsequently become smaller for three partners in common and finally

insignificant after four common partners.
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[Table 5]

Table 5 further explores the impact of social proximity on closure ties. Most of these ties
(84%) occur within a geodesic distance of 2 or 3, and regressions show that social proximity
is a strong determinant of network tie formation. Once it is accounted for, all other network
and proximity variables become less important, technological proximity becoming even
insignificant. In a sense this confirms that closure ties occur among a close community of
inventors that share similar knowledge bases, and at least as regards technology, ties appear
as rather redundant when they occur at such a close social distance. The interactions with
geographical and organizational proximity are very negative and highly significant for very
close social proximity (i.e. geodesic distance = 2). This means that social, geographical and
organizational proximity act as substitutes in facilitating collaborations. Geographical and
organizational proximity matter less for collaboration when inventors have one partner in

common.

The opposite impact occurs among similar organizations; only very close social proximity will
facilitate collaboration among similar types of organizations. This result is explained by the
fact that for the 165 closure ties, only 21 occur among similar organizations, and all but one
concern private and distinct companies. This supports the view that having a partner in
common creates sufficient trust to compensate for the risk of opportunism. Social
propinquity and similar organizational types appear as complements since the former

moderates the negative sign of the latter when explaining collaborations.

5.2. Bridging Versus Closure Ties
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Until now we have considered the determinants of bridging and closure ties as opposed to
not forming any tie. The previous regression tables have revealed that behaviours are rather
similar as regards geographical, technological and organizational proximity. Some
differences appear in the coefficients that are slightly smaller for bridging than for closure
ties, but this does not enable us to infer any clear conclusion regarding differences between

both ties.

In order to further investigate these differences, we estimate a multinomial probit
presented in Table 6. These results provide direct evidence for the argument that bridging
ties occur outside organizational boundaries with some technological diversity.
Geographical, technological and organizational proximity have all negative signs, which
means that more proximity leads to closure ties rather than bridging ties. We may infer from
this result that bridging ties occur when inventors cross local networks (no social distance),
organizational and technological boundaries. The interaction term is positive, which
confirms that geographical proximity is more important when individuals have no social
proximity. In other words, when there is no social proximity as in bridging ties, geographical

and organizational proximity complement each other.

[Table 6]

Finally, it is specifically worth considering the interaction between geographical,
technological and organizational proximity to fully understand how bridging ties allow
individuals and firms to cross over different types of boundaries. Figure 4 displays the
probabilities of forming bridging and closure ties for three levels of technological distance,

that is, none, average and large technological distances given the co-inventors geographical
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and organisational distances.

[Figure 4]

It appears that closure ties are preferred when inventors belong to the same organization
and share the same research area. Within organizational boundaries and with no
technological distance, geographical distance can be overcome (Figure 4, upper left). When
technological distance reaches an average level, closure ties are still preferred whatever the
geographical distance. For greater geographical distances, even within organizational
boundaries, inventors will use bridging ties, but the differences in probability are marginal.
The picture becomes sharper when technological distance becomes larger as well. Bridging
ties appear to be dominant when there is organizational distance, namely for academia-firm
linkages, whatever the level of technological distance. The probability of forming closure
ties, in this case, decreases as technological distance increases, and it becomes nearly null
when there is no technological overlap between inventors. These results are somewhat
counterintuitive because we would expect social proximity to facilitate crossing over
geographical boundaries, but this does not seem to be the case. On the contrary, social
proximity seems very much correlated to geographical, technological and organizational
boundaries. The likelihood of inter-regional bridging ties increases with technological
distance and different applicants. These ties are formed outside one’s component and in
other regions in order to find different technological skills that are not easily found in close

technological, geographical and organizational neighbourhoods.

If the likelihood of forming a tie is increased within one’s organization for bridging as well as

for closure ties, interregional collaboration offers the opportunity to find new partners
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outside organizational boundaries.

5.3. Robustness Check

Since the proportion of ties in the sample (11%) is much higher than the proportion of ties in
the population (less than 0.005%), logistic regressions may be biased (King and Zeng, 2001;
Sorenson et al., 2006). For this reason, rare event logistic models may be more appropriate
to estimate models based on a case-control design, as discussed by these authors. As a
robustness check to the conditional logit model implemented in this paper, we have also
estimated a rare event logistic model using the method proposed by King and Zeng (2001)
and implemented through the Relogit Stata routine proposed by Tomz (1999). The strategy
is to select all the “cases” for which the event is realized (pj=1, we observe a realized tie in
the population as well as in the sample) and we consider a random selection of controls (p;
=0, the tie is potential but not realized). Using this sampling method, we know the fractions
of ones in the population; in our case, we know that we have 244 bridging ties and 193
closure ties. To estimate the rare event logit, we implement the prior correction procedure,
which involves computing the usual logistic regression and correcting the estimates using
prior information about the fraction of ones in the population. In doing so it is possible to
correct the estimation, taking in account the difference between the probability of a positive
case observed in the sample and the rarity of the event actually observed in the population.
In our case, we compute the fraction of ones in the population by dividing the number of
realized ties by the number of potential ties’, which corresponds to .005425% for bridging
ties and .00429% for closure ties. The number of realized dyads in the sample is 11% since

we have for each observed dyad, ten controls, i.e., five for each inventor.
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These regressions are similar as regards signs, magnitude of coefficients and statistical
significance to the conditional logit procedure discussed in the previous section. In
particular, regarding the interaction terms between geographical and organizational

proximity, we end up with similar results. They are presented in the appendix (Table 7).

6. Conclusion

The aim of the paper was to investigate the dynamics of network formation using data on
research collaborations identified through co-patenting in the field of genomics in France
over the last two decades. Two main questions have been raised. First, to what extent are
geographical and social proximity overlapping phenomena? Second, to what extent do
networks enable the reduction of geographical, organizational and cognitive boundaries and
offer the opportunity to access non-local knowledge? In order to answer these questions,
we have considered two distinct network configurations as whether these collaborations
occur within the same network through closure ties or across separate network components
through bridging ties. The fundamental difference between both situations is the existence
of social proximity. Considering both of these determinants in the same framework enables
to investigate not only their respective impact on collaborations, but also how they overlap,

interact, and possibly act as substitutes or complements.

Our findings contribute to identifying the extent to which networks and proximity strongly
overlap. Geographical, technological and organizational proximity strongly determine the
likelihood of forming network ties. However, once network ties are established, social
proximity becomes predominant, in the sense that it acts as a substitute for geographical

and organizational proximity for further tie formation. When there is social proximity,
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geographical and organizational proximity are less important. This confirms previous studies
analysing the link between networks and geography (Maggioni et al. 2007, Autant-Bernard
et al. 2007, Agrawal et al. 2008 and Breschi and Lissoni, 2009) and means that social
proximity, once established, enables one to cross geographical and organizational
boundaries. However, this result is only valid for triadic closure when geodesic distance is 2,
that is, when collaboration occurs with once partner’s partner. For higher geodesic distances
and for inter-organizational relationships, geographical proximity is again more important
because it allows for compensation of risk and uncertainties (Ponds et al. 2007). This is the
overall picture when collaborations occur within networks and especially for triadic closure,
for which trust and reputation seem to play a prominent role. However, this happens only
when technological distance is rather reduced, and apparently the advantages of closure

disappear as technological distance increases.

When technological distance increases, individuals may have to cross over their close
networks through bridging ties. These bridging ties are explained by a different dynamic,
mainly driven by organizational and technological diversity. These ties are mainly inter-firm
and firm-university collaborations. As illustrated by the figure 4, bridging ties enable the
crossing-over of organizational boundaries in search of some technological variety, but they
mainly occur within a certain geographical proximity, at least when they occur. This result
may be explained by the two facts. First, our data are mainly composed by dyads among
French inventors, thus geographical distances are overall limited. Second, in France,
genomics has benefited from large public and private funding that has enabled the creation

of five regional-based Genopoles in France. This has largely favoured the development of
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public research, private spin-offs and ultimately science-university research projects.

The role of bridging versus closure ties as it appears in this analysis may also advance some
explanations regarding industrial clustering and specialization effects. It appears that local
clustering is mainly based on within-network closure ties that facilitate collaborations
between academic and non-academic organisations within similar technological fields, thus
contributing to the increase of local specialisation effects. While the cluster increases over
time, different technological resources are needed, and these are brought to the network
through bridging ties, which enable the bringing together of communities that are
technologically separate. This is clearly related to the debate on ‘local buzz and global

pipelines’ (Bathlelt et al. 2004).

The main limitations of our study fall under three categories. The first concerns how time is
taken into account. Although the impact of time is considered through the path-dependent
effect of prior network connections and network structural position, the impact of time itself
is not explicitly considered. Yet, it could be interesting to analyse in future studies the effects
of interplay of the different forms of proximities and networks, that is, how the substitution
or complementary effects changes over time through the different stages of development,

and how the role of geographical proximity evolves over time (Boschma, 2005).

The second limitation is related to our definition of social proximity, which is reduced to the
geodesic distance between inventors in a network of patent collaborations. In other words,
we capture only a subset of relevant interpersonal relations. An extension could be to
supplement social proximity with additional data such as collaborations through

publications. This way we could have a broader picture of network connections (Breschi and
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Catalini, 2010).

The third limitation is related to the motivation of individuals. Our framework does not allow
accounting explicitly for the motivation nor for the strategies of individuals in establishing
their collaboration. For this reason, our analysis proposes to disentangle the effect of
different dimensions of proximity in establishing one type of tie rather than the other. We
could not infer anything from this analysis in terms of individuals’ strategic behaviour, nor
did we analyse the effect of this collaboration on individuals’ productivity. However, the
former topic has been analysed in a different theoretical context (see for instance Carayol
and Roux, 2009 who explicitly model individuals’ choice and test their arguments using
similar micro-data on co-invention). Concerning the second issue, we intend to address the

effect of different type of ties on individuals’ performance in a further analysis.
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* Even for industry-university collaborations, usually there is only one affiliation for a given patent. For this
reason, inventors of a given patent have the same affiliation even if the applicant designated in the patent does

not employ them.

* We limit our estimations to bridging and closure ties since we are not able to estimate geographical, or
organizational and institutional distances for the pendant and new component ties, because these ties are

formed by new inventors for which we have no information about their characteristics in t-1.

> In order to ensure that dropping all non-European inventors do not affect regressions, we have estimated all
models with a proxy of the geographical distance to non-Europeans by introducing a geographical distance of
6000 km for all North-American inventors. Observations are substantially increased with 1999 observations for

closure ties and 2671 for bridging ties. Results remain overall similar in signs, magnitude and significance.

® we adjust the latitude and longitude coordinates for the earth curvature; thus the distance in km between

two points A and B is computed as:

d(A,B) = 6371 x arccos[sin(latitude(A)) x sin(latitude(B)) + cos(latitude(A)) x cos(latitude(B)) x cos(|longitude(A)

— longitude(B) |)]
’ We also calculated the Euclidean distance and we obtained similar results.

¥ We have also estimated a logit model with cluster robust errors and year fixed effects, and we obtain similar

results to the conditional logit. These tables can be provided upon request.

% If n is the number of active inventors, n*(n-1) is the number of potential ties between these inventors. We

estimate this number to be approximately 3000.
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Fig. 3 Evolution of the first four 1998 components
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Note: The figure displays the evolution of the first four components in terms of size as measured in 1998. The
fact that two lines converge (as line 2 and 3 in 1999) means that two components have been merged by a
bridging link.



Fig. 4 Relative probabilities of forming bridging versus closure ties

given different technological distances
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These probabilities correspond to a multinomial logit estimation with all the variables set at their mean except for
geographical distance which ranges from 0 to 800 km and the technological distance which is set to zero, its average and
its extreme value depending on whether we consider no, average or large technological distances.




Type of link

1. Bridging links

2. New component links
3. Pendant links

4. Intra-component links

Tab. 1 Consequence of tie formation

Size of the network Number of components
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Tab. 2 New link: type of networks ties

Size of components

/I\

2~
2~
—

Links Total number %

1. Bridging links 244 1,88
2. New component links 8723 67,03
3. Pendant links 3853 29,61
4. Intra-component links 193 1,48
Total 13013 100




Tab 3. Organizational relationships among types of ties’

Bridging ties

Closure ties

Whole sample

Regressions

Whole sample

Regressions

Total % Total % Total % Total %

Organizational proximity

Within the same applicant 77 31,56 74 32,03 148 76,68 121 73,33

Among academics 12 4,92 12 5,19 1 0,52 1 0,61

Among firms 43 17,62 38 16,45 21 10,88 20 12,12
Organizational distance

Between firms and academics 112 45,90 107 56,32 23 11,92 23 13,94
Total 244 100 231 100 193 100 165 100

Note : The definition and coding of variables are explained in the next section and summarized in Appendix

A

! The definition and coding of variables are explained in the next section and summarized in the appendix A.
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Tab. 4 Conditional logit — Determinants of network ties

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8
Closure Closure Closure Closure Closure Bridge Bridge Bridge
Geographical proximity 1.205*** 2.031*** 1.783*** 0.969*** 0.847*** 1.334%** 1.308*** 1.339%**
(0.187) (0.258) (0.325) (0.205) (0.226) (0.143) (0.156) (0.162)
Technological proximity 2.704*** 2.678%** 1.753+ 2.529%*** 1.779* 1.430** 1.427** 1.430**
(0.770) (0.771) (0.916) (0.751) (0.905) (0.456) (0.458) (0.457)
Same applicant 2.221%** 1.470*** 1.164** 2.289*** 1.870*** 1.306*** 1.402%** 1.304***
(0.307) (0.327) (0.396) (0.312) (0.363) (0.210) (0.281) (0.213)
Geographical proximity x Same applicant -1.789%** -1.674%** 0.191
(0.326) (0.418) (0.276)
Same type -0.575+ -0.342 0.011 0.053 0.303 -0.678%** -0.678%** -0.691*
(0.348) (0.356) (0.389) (0.429) (0.500) (0.194) (0.193) (0.302)
Geographical proximity x Same type 0.872** 0.737+ -0.016
(0.329) (0.395) (0.264)
Border 1.487*** 0.898* 0.408 1.414*** 0.897+ 0.637* 0.649** 0.638*
(0.396) (0.454) (0.547) (0.403) (0.518) (0.251) (0.248) (0.251)
Degrees - Abs.diff. -0.254+ -0.281* -0.212 -0.233 -0.145 0.288* 0.290* 0.288*
(0.146) (0.143) (0.180) (0.146) (0.185) (0.130) (0.131) (0.131)
Degrees - Avrg 0.383 0.417+ 0.014 0.337 -0.066 -0.504** -0.501** -0.505**
(0.239) (0.237) (0.342) (0.242) (0.333) (0.188) (0.189) (0.189)
Experience - Abs.diff 0.163 0.238 0.268 0.191 0.159 -0.048 -0.045 -0.049
(0.285) (0.294) (0.365) (0.286) (0.355) (0.191) (0.194) (0.191)
Experience - Avrg -0.365%* -0.396* -0.400+ -0.369* -0.342+ -0.170 -0.167 -0.169
(0.169) (0.176) (0.205) (0.173) (0.207) (0.114) (0.115) (0.114)
# common partners (= 1) 2.454%*** 2.513***
(0.410) (0.399)
# common partners (= 2) 3.103*** 3.257***
(0.646) (0.648)
# common partners (= 3) 2.171** 2.220**
(0.679) (0.731)
# common partners (= 4) -0.875 -0.815
(1.177) (1.225)
Observations 1604.000 1604.000 1604.000 1604.000 1604.000 2421.000 2421.000 2421.000
Log Likelihood -185.703 -173.642 -124.896 -183.211 -130.087 -393.782 -393.597 -393.780
Pseudo R-Square 0.504 0.536 0.666 0.510 0.652 0.273 0.274 0.273

Cluster Robust standard errors in parentheses + p<0.10, * p<0.05, ** p<0.01, *** p<0.001 - Dependent variable: closure tie (model 1 to 5) or bridging tie (model 6 and 8) versus no tie




Tab. 5 Conditional logit — Determinants of network ties with social proximity

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7
Closure Closure Closure Closure Closure Closure Closure
Social proximity (= 2) 3.432%** 2.214%*** 5.138*** 3.828*** 2.226*** 3.045*** 1.975%%*
(0.431) (0.480) (0.583) (0.634) (0.478) (0.460) (0.517)
Social proximity (= 3) 2.189*** 1.680** 2.727*** 1.986* 1.667** 2.032%*** 1.632**
(0.436) (0.557) (0.734) (0.844) (0.556) (0.482) (0.594)
Technological proximity 1.366 1.010 1.283 0.966 1.030 1.030 0.966
(0.995) (1.001) (1.056) (1.074) (0.993) (1.040) (1.008)
Geographical proximity 0.889*** 1.968*** 0.731** 1.854*** 2.016*** 0.921%** 2.009***
(0.210) (0.499) (0.233) (0.559) (0.506) (0.216) (0.529)
Social proximity (= 2) x Geographical proximity -3.939%* -3.500** -3.898%** -3.471%*
(1.203) (1.300) (1.175) (1.224)
Social proximity (= 3) x Geographical proximity -0.877 -0.624 -0.902 -0.843
(0.697) (0.689) (0.694) (0.688)
Same applicant 1.136** 1.031** 2.651*** 2.333%** 1.178*** 1.703*** 1.441%%**
(0.395) (0.369) (0.645) (0.588) (0.300) (0.359) (0.343)
Social proximity (= 2) x Same applicant -3.164%** -2.837%**
(0.808) (0.839)
Social proximity (= 3) x Same applicant -1.587+ -0.977
(0.918) (0.898)
Same type -0.227 -0.297 -0.271 -0.268
(0.397) (0.429) (0.556) (0.568)
Social proximity (= 2) x Same type 2.121** 1.472%*
(0.733) (0.707)
Social proximity (= 3) x Same type -0.304 -0.636
(0.943) (0.949)
Degrees - Avrg -0.311 -0.380 -0.207 -0.398 -0.431 -0.352 -0.448
(0.374) (0.383) (0.400) (0.398) (0.384) (0.384) (0.383)
Degrees - Abs.diff. 0.044 0.149 -0.079 0.080 0.163 0.049 0.169
(0.197) (0.217) (0.198) (0.219) (0.215) (0.215) (0.227)
Border 1.177** -0.267 1.331%* 0.186 -0.183 1.343** 0.230
(0.446) (1.065) (0.468) (1.168) (1.030) (0.458) (1.088)
Experience - Abs.diff -0.040 0.431 0.285 0.826+ 0.475 0.141 0.556
(0.357) (0.380) (0.411) (0.462) (0.370) (0.366) (0.386)
Experience - Avrg -0.391+ -0.470%* -0.360 -0.396 -0.479* -0.429* -0.454*
(0.205) (0.216) (0.237) (0.246) (0.214) (0.210) (0.220)
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Observations 1604.000 1604.000 1604.000 1604.000 1604.000 1604.000 1604.000
Log Likelihood -121.052 -106.132 -110.711 -98.367 -106.311 -116.141 -103.903
Pseudo R-Square 0.677 0.716 0.704 0.737 0.716 0.690 0.722
Tab. 6 Multinomial probit — Bridging and no tie versus closure ties
(1) (2) (3) (4)
Network tie Network tie Network tie Network tie
Bridge No tie Bridge No tie Bridge No tie Bridge No tie
Geographical proximity -0.068 -0.804*** -0.397** -1.140%** -0.068 -0.804*** 0.039 -0.690***
(0.126) (0.111) (0.149) (0.132) (0.126) (0.111) (0.146) (0.131)
Technological proximity -0.707 -1.356%** -0.690 -1.343%** -0.707 -1.356%** -0.689 -1.340%**
(0.460) (0.407) (0.463) (0.411) (0.460) (0.407) (0.459) (0.407)
Same applicant -1.149%** -2.002*** -0.871%** -1.681%** -1.149%** -2.002*** -1.177%%* -2.030***
(0.178) (0.159) (0.205) (0.184) (0.178) (0.159) (0.182) (0.163)
Geographical proximity x same applicant 0.715** 0.765%**
(0.234) (0.202)
Same type -0.366+ 0.048 -0.428* -0.016 -0.366+ 0.048 -0.594* -0.201
(0.198) (0.167) (0.205) (0.176) (0.198) (0.167) (0.271) (0.221)
Geographical proximity x Same type -0.352 -0.369+
(0.237) (0.197)
Border -0.156 -0.593** 0.122 -0.311 -0.156 -0.593** -0.083 -0.518*
(0.248) (0.210) (0.283) (0.252) (0.248) (0.210) (0.255) (0.218)
Experience - Abs.diff -0.175 -0.256+ -0.176 -0.254+ -0.175 -0.256+ -0.177 -0.257+
(0.177) (0.145) (0.179) (0.147) (0.177) (0.145) (0.178) (0.145)
Experience - Avrg 0.149 0.297** 0.169 0.319** 0.149 0.297** 0.159 0.307**
(0.112) (0.099) (0.115) (0.102) (0.112) (0.099) (0.114) (0.100)
Degrees - Abs.diff. 0.204* 0.058 0.211* 0.068 0.204* 0.058 0.205* 0.060
(0.100) (0.075) (0.102) (0.077) (0.100) (0.075) (0.100) (0.075)
Degrees - Avrg -0.608%*** -0.172 -0.623%** -0.192 -0.608*** -0.172 -0.615%** -0.180
(0.171) (0.131) (0.174) (0.134) (0.171) (0.131) (0.171) (0.131)
Constant 2.411%** 3.809*** 2.211%** 3.598*** 2.411%** 3.809*** 2.452%** 3.857***
(0.523) (0.447) (0.525) (0.451) (0.523) (0.447) (0.526) (0.450)
Observations 4025.00 4025.00 4025.00 4025.00
Log Likelihood -1174.32 -1167.20 -1174.32 -1172.81
LR Chi Square 699.08 602.98 699.08 682.21

Robust standard errors are in parentheses. + p<0.10, * p<0.05, ** p<0.01, *** p<0.001 — Comparison group : Closure ties — Year dummies included




Appendix:
Al. Variables: definitions

Variables
Dependant variables
Closure tie

Bridging tie

Network variables

Common (= 1) (=2) (=3) or (=4)

Absolute difference in degree
Average degree

Social proximity (= 2) or (=3)
Proximity variables
Geographical proximity
Technological proximity

Same applicant

Same type

Other Controls

Absolute difference in experience

Average experience

Border

Definitions

Takes value 1 if two inventors already in the network form an intra-component tie
Takes value 1 if two inventors already in the network form a bridging tie

Four categorical variables take the value 1 if two inventors have respectively 1, 2, 3 or
4 partners in common with a geodesic distance of 2.

Absolute value of the differences between the co-inventors’ respective degree
centrality

The average value of the co-inventors’ respective degree centrality

Social proximity takes the value 1 if two inventors have a geodesic distance of 2 or 3

The inverse of the distance in km/100 between NUTS3 regions prior to attachment
(in logs) — very similar to the Euclidean distance

The Jaffe’s index using IPC codes for each co-inventor’s patents prior to attachment
Takes the value of 1 when inventors have patented for the same organization prior to
tie formation and 0 otherwise; it is a proxy for close organizational proximity

Takes the value of 1 when inventors have patented for the same organizational type
(firms or companies) and 0 otherwise. It is a proxy for proximity in organizational
type.

Absolute value of the differences between each co-inventors’ number of years since
first patent

The average value

Takes value 1 if one of the co-inventors belong to a border country to France, 0
otherwise



A.2. Variables: descriptive statistics
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15.

Variables

Geographical proximity
Technological proximity
Border

Same applicant

Same type

Absolute difference in degree
Average degree

Absolute difference in experience
Average experience

Common (=1)

Common (=2)

Common (= 3)

Common (=4)

Social proximity (= 2)

Social proximity (=3)

Observations

4069
4069
4069
4069
4069
4069
4069
4069
4069
4069
4069
4069
4069
4069
4069

Mean

-1.148249
7295127
1162448
1162448
4885721
1.654726
1.972993
3.144651
3.920225
.028754
.0103219
.0044237
.0014746
.04522
.0292455

Std. Dev.

7218783
1953041
.3205576
.3205576
4999308
.8848728
.5389898
2.090464
1.33827

.1671349
.1010837
.0663717
.0383764
.2078118
.1685147

Min

-2.584302

.6931472

1.098612

Note : all continues variables are in logs except Technological proximity and are taken for the period prior to attachment

o O O O o o

O O O o o o

4.025352
3.676301
5.966147
5.971262
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A.3. Correlations

1.0000

0.1659*
-0.2816*
0.3147*
-0.2231*
0.0299

0.0564*
-0.1423*
0.1335*
0.1902*
0.0893*
0.0678*
0.0561*
0.2293*
15. 0.1559*
Note : * p<0.05
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1.0000
-0.1311*
0.1359*
-0.0715*
0.0886*
0.2208*
-0.0319*
0.1391*
0.0858*
0.1020*
0.0287
0.0370*
0.1363*
0.0897*

1.0000
-0.0143
-0.0093
-0.0675*
-0.0686*
-0.0552*
-0.1487*
-0.0486*
0.0540*
0.0105
-0.0139
-0.0125
-0.0447*

1.0000
-0.3545*
0.0340*
0.0495*
-0.2762*
0.1256*
0.2725*
0.2057*
0.1376*
0.1060*
0.3860*
0.2556*

1.0000
-0.0202
-0.0027
0.0741*
0.0413*
-0.0858*
-0.0755*
-0.0503*
-0.0376*
-0.1299*
-0.0909*

1.0000
0.6941*
0.1806*
0.3164*
0.0247
-0.0124
0.0395*
0.0057
0.0301
0.0204

1.0000

0.1407*
0.4814*
0.0502*
0.0512*
0.0509*
0.0393*
0.0925*
0.0855*

11

1.0000
0.2991*
-0.2589*
-0.1536*
-0.1003*
-0.0578*
-0.3274*
-0.2611*

1.0000

0.0832*
0.0881*
0.0510*
0.0329*
0.1336*
0.1677*

10.

1.0000

-0.0176
-0.0115
-0.0066
0.7906*
-0.0299

11.

1.0000

-0.0068
-0.0039
0.4693*
-0.0177

12. 13. 14. 15.

1.0000

-0.0026 1.0000

0.3063* 0.1766* 1.0000

-0.0116 -0.0067 -0.0378* 1.0000



A. 4. Test of the independence of irrelevant alternatives (lIA).

The IIA assumption is assessed using the Hausman and Small and Hsiao test.

Test of the independence of irrelevant alternatives (l11A)

Hausman tests of [IA assumption Small-Hsiao tests of IIA assumption
Omitted chi2 df  P>chi2 evidence chi2 df P>chi2 evidence
Closure 2.701 7 00911 for Ho 7.374 7 0.391 for Ho
Notie -24.221 7 - 5.330 7 0.620 for Ho
Bridge 0.730 7 0.998 for Ho 3.353 7 0.851 for Ho

Ho: Odds(Outcome-J vs Outcome-K) are independent of other alternatives.
Note: If chi2<0, the estimated model does not meet asymptotic assumptions of the test.

(Number of observations =4069)

According to Freese and Long (2006), “The negative test statistics are very common; Hausman and McFadden (1984:1226) note this possibility and conclude that a negative
result is evidence that IIA has not been violated. “
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Tab. 7 — Rare events logit of the likelihood of a network tie

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8
Closure Closure Closure Closure Closure Bridge Bridge Bridge
Geographical proximity 1.060*** 1.850*** 1.372%%* 0.789%** 0.507* 1.118*** 1.106*** 1.087***
(0.218) (0.243) (0.246) (0.240) (0.214) (0.117) (0.134) (0.136)
Technological proximity 1.531* 1.457%* 0.569 1.455%* 0.554 0.947% 0.942* 0.955*
(0.692) (0.648) (0.626) (0.670) (0.659) (0.379) (0.380) (0.382)
Same applicant 2.121%** 1.490*** 1.013** 2.211%** 1.695%** 1.261*** 1.291%%** 1.269***
(0.256) (0.256) (0.323) (0.273) (0.304) (0.182) (0.231) (0.184)
Geographical proximity x same applicant -1.686%** -1.517%** 0.049
(0.322) (0.335) (0.280)
Same type -0.563* -0.385 -0.567+ 0.065 -0.247 -0.521%** -0.522%** -0.442+
(0.279) (0.281) (0.318) (0.358) (0.402) (0.169) (0.169) (0.264)
Geographical proximity x Same type 0.909** 0.597+ 0.093
(0.326) (0.332) (0.249)
Border 1.243*** 0.379 -0.751 1.052** -0.036 0.652%** 0.654*** 0.644%**
(0.352) (0.430) (0.490) (0.381) (0.434) (0.177) (0.174) (0.176)
Degrees - Abs.diff. -0.172 -0.192+ -0.086 -0.167 -0.062 0.241* 0.242* 0.240%
(0.117) (0.115) (0.170) (0.115) (0.169) (0.112) (0.112) (0.112)
Degrees - Avrg 0.214 0.175 -0.136 0.205 -0.104 -0.517** -0.517** -0.515%*
(0.189) (0.191) (0.278) (0.188) (0.271) (0.161) (0.162) (0.161)
Experience - Abs.diff 0.476** 0.560** 0.764%** 0.497** 0.701%** 0.060 0.063 0.059
(0.184) (0.182) (0.206) (0.182) (0.200) (0.116) (0.117) (0.116)
Experience - Avrg -0.381* -0.404%* -0.466* -0.390%* -0.444%* -0.221%* -0.220%* -0.222%*
(0.159) (0.157) (0.181) (0.160) (0.181) (0.107) (0.107) (0.107)
# common partners (= 1) 2.702%** 2.783***
(0.317) (0.328)
# common partners (= 2) 3.599*** 3.732%**
(0.596) (0.618)
# common partners (= 3) 2.079** 2.144**
(0.742) (0.790)
# common partners (= 4) 1.357 1.215
(1.003) (0.994)
Constant -11.609%** -11.180%*** -10.964*** -11.730%** -11.480%** -8.799%** -8.810%** -8.823%**
(0.644) (0.610) (0.706) (0.649) (0.750) (0.360) (0.365) (0.369)
Observations 1604.000 1604.000 1604.000 1604.000 1604.000 2421.000 2421.000 2421.000

72,801 dyads (Intra-component ties: 11% realized ties vs. 0.00429% in population;
Bridging ties 11% realized ties vs. 0.005424% in population) * p < 0.05; ** p < 0.01; ***p < 0.001.




