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Abstract

Let U be an unobserved random variable with compact support
and let ¢; be unobserved i.i.d. random errors also with compact sup-
port. Observe the random variables V;, X;, and Y; = L{U +0X;+¢; <
Vi},t < T, where 0 is an unknown parameter. This type of model is
relevant for many stated choice experiments. It is shown that under
weak assumptions on the support of U + ¢, the distributions of U and
€; as well as the unknown parameter § can be consistently estimated
using a sieved maximum likelihood estimation procedure. The model
is applied to simulated data and to actual data designed for assessing
the willingness-to-pay for travel time savings.
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1 INTRODUCTION

Observe a sequence Y;, = {Y,;};—1.r of binary choices for individual n =
1,..., N generated by the model

Yntzl{éXnt+Un+€nt<Vnt} t:O,...,T,n:]_,...7N (].)

where 6X,; + U, is a preference parameter consisting of a systematic part
5X,: which may vary over choices, x € R? and a random part U, € R
representing individual heterogeneity, considered to be constant across the
choices of each individual; V,,; is set by design for each choice situation ¢ and
€n¢ 18 an observation specific error. We are interested in the situation where
T > 1 is fixed and N — o0.

The objective of this paper is to show that the distributions of U, and
€ne can be consistently estimated using semi-nonparametric methods, given
some not very restrictive conditions.

Horowitz and Markatou (1996) provide nonparametric estimates of the
densities of U,, and ¢,; in the linear model Y,; = 6.X,,; + U,, + €,,;. Honoré and
Lewbel (2002) show identifiability of the Euclidean parameter ¢ in the binary
model (1) and give a root-N consistent estimator for this. They do, however,
not consider identifiability nor estimation of the unknown distributions of U,
and €,;. A number of approaches are available for the binary model without
the panel data dimension, i.e. Y,, = 1{0.X,, + U, < V,,}. See the review in Li
and Racine (2007).

An application for the binary model, with or without panel data, is the
estimation of a willingness-to-pay (WTP) distribution from experimental
stated choice survey data (e.g. Hanemann and Kanninen 1998). Individ-
uals are often thought not to be able to explicitly state their WTP for a
good; instead they are asked whether their WTP is larger or smaller than
some bid. Lewbel, Linton and McFadden (2002) consider the nonparamet-
ric estimation of moments and quantiles of a WTP distribution from such
binomial data. They do not however consider panel data. Lewbel et al.
(2002) recognise that the distribution that they measure may be a convo-
lution of the target WTP distribution and psychometric errors (e, above)
but state that the “difficult problem of deconvoluting a target distribution
in the presence of psychometric errors is left for future research.” In fact it
seems inconsistency and hence error is a prominent feature of such data (see
Saelensminde 2001, Seelensminde 2002, Rouwendal and de Blaeijj 2004). This
paper deals with the situation when variation is created both by heterogenous
preferences and by errors.

Gabler, Laisney and Lechner (1993) discuss the application of the method
of sieves to binary choice models. Following Gallant and Nychka (1987), such
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models are often called seminonparametric (SNP). Chen and Randall (1997)
estimate a SNP binary response model to obtain the WTP for an environmen-
tal quality improvement where both the random and the systematic variation
in WTP are estimated by a SNP form. Belluzzo (2004) compares competing
semi-parametric methods for recovering the WTP distribution from binomial
data. Neither use panel data and so they do not take errors into account.
The paper is structured as follows. The model specification is set out in
section 2 and identification of the model is shown in section 3. Consistency of
the sieved (seminonparametric) maximum likelihood estimator is established
in section 4 with some additional restrictions on the parameter space. Section
5 presents some examples of applications of the model and the estimator,
first to simulated data and second to survey data designed for assessing the
distribution of the WTP for travel time savings. Section 6 provides a few
concluding remarks. Longer proofs are deferred to the appendix.

2 MODEL SPECIFICATION

We parametrise the model in terms of (6, f, h) with true values (§*, f*, h*),
where f is the density of €,; and h is the density of U,,. We make the following
assumptions:

a) €, are i.i.d. with bounded support and F(e,) = 0. When T = 2, €,
are also required to be symmetric.

b) The U, are i.i.d., independent of €,; and with bounded support.
c¢) The support of U, + €, is contained in the support of V,,; — §*X,;.

d) (Xut, Vi) are i.d.d. with E[|| X,||] < oo and E[|V,¢|] < oo, independent
of the unobservable random variables (€,;,U,). We let p denote this
distribution.

e) There exists a set in the support of X,,; with positive probability and
with non-empty interior of its convex hull.

Assumption c¢) is weaker than the assumption in Honoré and Lewbel (2002),
who require that the support of U, +6* X,,; +¢€,; is contained in the support of
Vit This requirement may be hard to satisfy in practice and it may hence be
important to only have the present weaker requirement. The distribution of
V,.+ may be chosen to depend on X,,; and may be chosen such that assumption

¢) holds.



Assumption e) may seem somewhat technical. It ensures that §.X,,; is not
constant unless 0 = 0. In particular, it ensures that X, ; does not contain an
intercept term which is essential for the identifiability of ¢ and the support
of U,.

The unknown parameters (6%, f*, h*) lie in the parameter space A x & x I"
where A is a subset of R%, ® is a set of densities with bounded support and
mean zero, and [ is a set of density functions with bounded support. In the
case T'= 2, ® is a set of symmetric densities with bounded support.

We use the notational shorthand y,, = {yn1,...,Yn 1}, etc. Using (1) the
conditional likelihood of an observation can be expressed as

LY\X,V(& f7 h) = P(YH/?X? 67 f7 h)
T

_ /h<u) I1 [(zyt — 1) F (Vi — 6 X — u) + (1 — Y3)| du,

t=1

(2)

where F' is the distribution function corresponding to the density f. Note
that assumption c) implies that the distribution of (U, + €,¢)¢=1,... 7 is identi-
fied from the likelihood (2) as this is equal to the joint distribution function
of (Up + €nt)i=1...7 when all Y,,; = 1.

.....

3 IDENTIFICATION

We start by showing that the model is identified i.e. that the chosen parametri-
sation of our model is injective. We do this by showing that the true param-
eter (0%, f*,h*) is the unique value of the parameter which maximises the
expected conditional log-likelihood

106, £,h) = E*[log P(Y|V, X, 6, f. )]
:/ Z log P(y|v, x, 6, f, h) - P(y|lv,z, 0%, f*, h*)dp(v, x) (3)
ye{0,1}7
with the expectation, E*, evaluated under the true parameter (6*, f*, h*).

Theorem 1. Under assumptions a)-e¢), the parameters of the model are
identified: If P(Y|V,X,6, f,h) = P(Y|V,X,0* f*,h*) then § = 6*, and
(h, f) = (h*, f*) almost everywhere.

Proof Observe that since |log x| < 1/x for z €]0; 1] we have
E*[|log P(Y|V, X, 6%, f*,h)|] < E*[1/P(Y|V, X, 6", f*, h")]

:/ > ldp(v,z) =2" < o0

ye{0,1}7



so that the expected conditional log-likelihood is finite at the true value of

the unknown parameter.
For any (d, f,h) € A x & x ' we get

18, f,h) = 10", f*, h)
0,
/ Z |: y|?j)|vxl'5* J(J'C, h>*) P(y|1}’x75*7f*7h*>dp(v’x)

ye{0,1}T
(ylv, x, 0, f, h)
1 0", f*,h*)d
/ g >, 5 y|v PRI P(ylv, 2,8, f*, h*)dp(v,x)
ye{0,1}T
/log Z P(ylv, z, 0, f, ) I{P(y|v,z, ", f*,h*) > 0}dp(v, x)
ye{0,1}T

g/log(l)dp(v,az) 0
by Jensen’s inequality with strict inequality unless for all y
P(ylv,x,6, f,h) = P(y|v,z,0", f*,h*), p(v,z) a.e.
Letting y = (1,...,1) this implies that
PU+e <v—0x,t<T)=PU" +¢€ <vy— 6z, t <T), p(v,x) a.e.

where U ~ h, U* ~ h* and ¢ ~ f, ¢f ~ f*. By assumption c) we can
identify the distribution of U* + €; over the whole of its support for all ¢.
By the above equality we can similarly identify the distribution of U + €.
We note, however, that due to the presence of §* and 9§, we do not yet have
U+ e ~U*+ €. Rearranging yields

PU+dxi+e <v,t <T)=PU" "+ 02 +¢€ <v,t <T), plv,z) a.e.

and the distributions on both sides of this equation are identified.
As the distributions of U 4+ dx; + ¢, and U* + 0*x; + €] are the same, they
share the same moments. In particular

5*1'15 -+ E*[U* + 6:] = (Sl't -+ E*[U + Et]

Varying x; shows that § = ¢* (and E*[U* + €f] = E*[U + ¢]). Consequently

(U + €t)t=1... 7 and (U* + €/)i=1,...r have the same distribution.
Identifiability of f* and h* then follows from Horowitz and Markatou

(1996). We shall present a simpler proof of the latter assertion by showing
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that Fe;® = Ee¥ for all k, which implies that Z ¢, as the distributions
have bounded support.

Given identifiability of 6*, the joint distribution of (U* +€%,...,U* + €)
is identical to the joint distribution of (U + €1,...,U + €er). It follows that
the distribution of € — s = (U 4 €1) — (U + €3) equals that of € — €5. Denote
by my the k’th moment of €,,. Consider first the case where T"= 2 and the
distribution of €] is assumed symmetric. In this case we have

E(e; — e)f = mp(1 4+ (=1)%) 4+ qr(ma, ... ,mp_1) (4)

for some function g; with a similar expression for E (e} —e€3)*. By induction it
follows from (4) that Eei* = Eef when k is even and since all odd moments

are zero for a symmetric distribution, f = f*. In the case T' > 2 we may

dispense with the assumption of symmetry. We observe that €] + €5 — 2¢j E4

€1 + €9 — 2¢3 and that
Eler + e —2e3)" = mp(2 + (=2)F) + qg(my, ..., mp_y) (5)

By assumption a) m; = 0 so by induction we may conclude that Eei* = Ee¥
for all £ implying that f = f*.

The identifiability of A* follows immediately, since by independence of U*
and €; we have:

E[(U* + Er)k] = mk + Cj(mk_l, e ,ﬁ’ll;mk, .. .ml)

where m;, = EU*. By induction, we see that all moments of h* are identified
and hence h* is identified. O

4 CONSISTENCY

4.1 Estimation

In this section we shall demonstrate that the parameters (0, f,h) can be
consistently estimated by a sieved maximum likelihood estimation proce-
dure. Thus we estimate (¢, f,h) by maximising the observed conditional
log-likelihood

N
In(6, f, ) = % > 108 P(yn|vn, ., 8, f, h) (6)

n=1

over the set A x &5 x ['y where &5 C ® is chosen so that the closure in
Li-norm of Uy®y is @ and similarly I'y C IT' is chosen so that the closure in
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Ly-norm of UyT'y is I'. We define @ and 'y in a straight-forward manner
using piecewise constant approximations for the densities A~ and f. One
could use other approximations; indeed our proof of consistency below will
show consistency of a large number of approximating spaces, subject to some
mild conditions. In particular, &5 may be replaced by any set of (uniformly
bounded) densities corresponding to distributions with mean 0 and, if 7' = 2,
that are symmetric. However, the piecewise constant approximations are easy
to work with, the necessary conditions are easily imposed and unlike many
other approximations —polynomials, splines— they do not, in our point of
view, suggest a functional form which is more a function of the approximation
than a function of the data. Our estimator has the form of a histogram, which
is easy to understand, and which is not easily over-interpreted.

In order to estimate the unknown parameters it is useful to fix the sup-
ports of the unknown distributions of U, and ¢,;. By reparametrising the
model in the manner described below, we may restrict I' to consist of den-
sities h with the convex hull of the support of h equal to the unit interval
[0; 1]. Similarly, ® is restricted to densities f with convex hull of the support
of f contained in the interval [—1; 1]. This is obtained as follows:

Multiplying V,,; by a scale parameter v ensures that we can ensure that
the smallest interval of the form [—¢;¢| containing the support of f is the
interval [-1;1]; in the case when f is assumed to be a symmetric density we
may thus assume that the convex hull of its support is [—1;1]. We include a
constant term in the covariate X,; in order to fix the infimum of the support
of h to 0 and introduce a parameter ¢ for the maximum of the support such
that the convex hull of the support of h is the interval [0;¢]. Finally, we
replace U, by (U, such that the convex hull of the support of U, is the unit
interval.

In summary we have

Ynt:1{(92m>CUn—|—em} tzl,,T,nzl,,N (7)

where Z,,; = (1, Xy, Vi) and 0 = (01, =9, 7). We let © denote the parameter
set for the Euclidean parameter (6, ().

Given Mj,, the number of “parameters” in the approximation of h, we
divide the unit interval into M), 41 intervals Io s, , - - -, I, 0, of equal length
and assign to each interval a positive mass A, a7, Then the approximation

to h is defined by

My,

ha, (u) = (M, + 1) Z Aoty 1 € Ty, }

m=0

where A\, ar,, m = 0, ..., M), are positive, smaller than K/(Mj, + 1) for some
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K not depending on Mj,, and sum to 1. This approximation is bounded by
K. When M, = 0, ho(u) reduces to the uniform distribution on the unit
interval. We let 'y be the set of such functions for some M) depending on
N with M, — oo.

In Lemma 2 in appendix A.l it is shown that I' = cly, (UpI'ys) with
closure in Lj-norm may be identified with the space of densities on the unit
interval bounded by K: If & is such a bounded density there exists a sequence
h,, € Uy 'y with ||hm — h“l — 0.

We use a similar approximation to f:

My
M +1
f2 > N, <l{x € Ly, } + 1{-z € Jm,Mf}) for T' =2
fo(]f) = m?\/[()f
(Mp+1) > Ny, {22 =1 € Lnas, } for T > 2

m=0

with A7, /. positive, smaller than K'/(M; + 1) for some K’ and summing
to 1. Without the assumption of symmetry, we further need to impose the

condition
My

1 o2m + 1
N =1
A@+12;’“@ 2

to ensure that the mean of the distribution is 0. For M; = 0 this is the
uniform distribution on [—1; 1] and ¢z, (UpPys) may be identified with the
space of (symmetric, if 7" = 2) densities on [—1,1] bounded by K’. We
define ® to be the set of such densities for some M depending on N with
M f .

This choice of I' and ® does restrict the model somewhat compared to
what we discussed in section 3 as we have now imposed a bound on the
unknown densities. Some sort of regularisation clearly is necessary to ensure
consistent estimation. Otherwise one would expect the estimators of h and f
to be functions of spikes, regardless of the true form. Note also that we have
fixed the support of these distributions but that this is not a new assumption
but a result of the re-parametrisation. Finally we need to restrict attention
to the case where © is a compact set which is an additional restriction on
the supports of the distributions of €,; and U,, compared to section 2. Thus
we assume

f) f*, h* are bounded by given constants K and K'.

g) © is a compact subset of RI+2,



We equip © with the Euclidian norm, while ® and I' are equipped with
Li-norms. The whole parameter space ¥ = © x I' x ® is equipped with the
norm given by the sum of these norms. We let 0 = (6, f, h) denote an element
of this parameter space with ¢* denoting the true value. Considering I" we
note that L, is a complete metric space and that I' is closed by construction.
As it is a VC hull class of functions (see appendix A.2) it is totally bounded
and thus compact. The same argument applies to ®, in the case T = 2
upon noting that the set of symmetric densities is closed. It follows that ¥
is compact.

4.2 Proof of consistency

In order to prove consistency we need two further assumptions.
h) There exists a sequence oy € Xy such that oy — o* and

P(y|z,07)

< (C p-a.e. z for some C. 8
P(y|Z7UN) N P ( )

Assumption h) is an assumption on the rate of approximation of ¥ by
Yn. In particular, should o* € Xy for all sufficiently large IV, then the
assumption holds with C' = 1. We can now prove the following theorem.

Theorem 2. Under assumptions a)-h) the sieved maximum likelihood esti-
mator found by maximising

N
1
lN<U) = N Zlog P(yn|zn70)
n=1

over Xy = O x I'yyvy X Py 18 consistent.

The following lemma established Lipschitz continuity of the likelihood
function.

Lemma 1. The likelihood P(Y,|Z,,0) is Lipschitz continuous.

\P(Yo|Zn,0) — P(Y,|Z,,6)|
T
=Rl + TN f = flh+ TK|C =+ K'Y | Zoi - (60— 0)]

t=1



The proof is given in appendix A.1.

Proof of Theorem 2 Without loss of generality we may assume that the
constant C' in the assumption h) is larger than 1. Then we have

|P(ylz,0") = P(ylz,0n)|

log P *) —log P <
| og (y|270 ) og <y|ZJO-N)| — C P(y|Z,O'*)

This implies by Lemma 1 that
1 & 1 &
~ ;log P(Yp|Z,on) — ~ ;log P(Y,|Z,,0%)| — 0 (9)

as oy — 0" since E||Z;]| < co. Hence

N

1

5 D log PV, o) 2 E'llog P(Y|Z,07) (10)
=1

As 6 maximises the conditional log-likelihood over ¥y we have

N N
1 . 1
0 SN E log P(Y,|Z,,0n) — N ,?1 log P(Yy|Zn, oN)

n=1
N
——3"1
1< 1 X
- (N ;log P(YolZy,on) = ;log P(Yn|Zn,a*)>

Y |Zmo-N)
log 1
NZ P(ValZn o) T 0P

by (9). By the concavity of the logarithm

N
1 P(Yn|Zn,0N P(Y,|Zn,65) + P(Yp|Zn, 07)
=N N og oo plfm TN § :1
N nz;: % PVl Zny o) 2P (Y| Zy, 0%)

——Z Y|Zn,O'N)+P<Y|Zn,O'>
N 2P (Y| Z,,, 0%)

_ [log P(Y|Zon)+ P(Y|Z, a*)} )

2P(Y|Z,0%)
P(Y|Z,65) + P(Y|Z,0%)
2P(Y|Z,0%)

+ E* {bg
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The first term goes to 0 by the uniform law of large numbers; the proof of
this is somewhat involved and we defer it to Appendix A.2. The second term
may be bounded as follows:

1 P(Y|Z, 6 P(Y|Z,o*
L g log ( ‘Z,O’N)—i— ( |Z,O’)
P 2P(Y|Z,0%)
P(Y|Z,6x)+ P(Y|Z,0") -
s E \/ 2P(Y|Z, 0*) (o, ")

where h(oy,0*) is the Hellinger distance between (p(y|z,0) + p(y|z,0*))/2
and p(y|z,c*) given by

hQ(O'N, *)
P(ylz, ) + P(ylz,0")\ AY
> 5 — P(ylz,0")"* | p(2)dz.
ye{0,1}7
Thus we obtain the inequality
0 <h’ (0N7 )
Plylz.6w) + Plolz o)) AY
> . — P(ylz,0")"* | p(2)dz
ye{O 13T
Z P(Yo|Zp,on) + P(Ya|Zn, 07)
=N 2P (Y| Zy, 0")
e P(Y|Z,on)+ P(Y|Z,0%)
2P(Y|Z, 0"

N N
1 1 .
- <N ;logp(yn‘ZmUN) - N;logP(Yn|Zn70 ))
showing that h(éy,0*) = op(1). This implies that
N
Z log P(Yy|Zn,0n) < —ZlogP (Y| Zn,6n)

N
1 )
S v E: log P(Y,|Zn,0%) + 0p(1)
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which by (10) implies that
1 N
~ > “log P(Y,|Zy,6w) — E*[log P(Y|Z,0")]
n=1

Now by compactness of 3, every subsequence of (6x)y has a further subse-
quence (oy;); which converges; let ¢ denote the limit of this subsequence.
Then, as (a'/? — /)2 < |a — b| for a,b >0

W (on,,0%) < %/ 3

ye{0,1}T

—1 | X 1Pulsox) - Pl o)

ye{0,137

P(ylz,on;) + P(y|z,0")
9

— P(y|z,07)| p(2)d=

p(z)dz — 0

by the Lipschitz-continuity. Hence we get
h*(6,0%) < h*(5,0n,) + h*(on,,0%) = op(1).

This implies that

P(y|z,0) + P(y|z,07) )
which using the argument proving identifiability in section 3 shows that ¢ =
o*. Hence o, is consistent in the norm on . O

5 EXAMPLES

We illustrate the performance of the estimator first on simulated data and
then we also apply the estimator to empirical data. Programming is carried
out in Ox (see Doornik 2001) and the code is available on request. Evalu-
ation of the likelihood requires integration. Analytical integration seems to
be possible in principle. The actual expression for the outer integral is very
complicated however and this integral in the likelihood is therefore approx-
imated by simulation using pseudo-random Halton draws (Train 2003); the
inner integral (F(V,: —0X,x — u)) is evaluated analytically.

5.1 Simulated data

We simulate observations from 1000 individuals making 8 choices each. This
size of data is in line with our empirical dataset. We generate data for
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Table 1: First and second moments of U
Avg of estimated mean Avg of estimated second moments

TRUE -0.333 0.238
2,1) -0.330 (0.018) 0.196 (0.015)
(2,2) -0.330 (0.016) 0.196 (0.014)
(3,2) -0.331 (0.014) 0.195 (0.014)
(3,3) -0.332 (0.014) 0.196 (0.013)

Table 2: Estimated ranges of U and e
Avg of min U Avg of max U Avg of scale of ¢

TRUE 1 1 1
(2,1)  -0.899 (0.083) 0.591 (0.158)  0.885 (0.079)
(2,2) -0.879 (0.060) 0.597 (0.171)  0.930 (0.119)
(3,2) -0.932 (0.101) 0.649 (0.197)  0.884 (0.108)
(3,3)  -0.951 (0.103) 0.621 (0.215)  0.873 (0.097)

U, from an asymmetric beta(2,4) distribution, then we multiply by 2 and
subtract 1 such the generated U, have support on the interval [—1;1]. We
draw errors €,; from a symmetric beta(2,2) distribution and again multiply
by 2 and subtract 1. Now U,, + €,,; have support on [—2;2]. We draw random
bids from a uniform distribution on this interval. We have generated 100
such datasets for each of four estimated models. In order to obtain the
likelihood we integrate analytically over the distribution of €,;, while the
integration over the distribution of U, is performed by simulation using 300
Halton draws.

We estimate four models, differing in the number of parameters used to
represent the distributions of U, (M},) and €., (M). We have estimated with
(My, My) =(2,1),(2,2),(3,2) and (3, 3) and we have constrained the € to be
symmetric. The average of the first and second moments of the estimated
distribution of U are presented in the table 1. We note that the first moment
is estimated rather precisely and the average estimate is very close to the true
value, most so for the models with many parameters. The second moment is
generally estimated lower than the true value, which has to do with the thin
tails of the true distribution of U.

We also present the estimated ranges of U and €. We note that the ranges
are consistently too small compared to the true ranges, this again has to do
with the thin tails of the true distributions and especially the thin right tail
of the distribution of U.

Finally, figure 1 shows the pointwise average of the estimated cfd’s of U
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and € for the case with (3,3) parameters along with pointwise 90 per cent
confidence bands and the true distribution. It is evident that the estimator
is able to track the true distribution quite closely.

5.2 Empirical application

The model has been applied to a real dataset originating from a survey
designed to measure the WTP for travel time savings. Subjects were asked
to choose between two alternatives described by travel time 7; and cost y;,
such that one alternative is cheap and slow and the other is expensive and
fast. Each subject is faced with (up to) eight such choices. There is implicit
in each choice a bid trade-off price of time, —Ax /AT, ranging between 0.27
and 27 Euro per hour, up to more than three times the ex ante expectation
of the mean WTP. The bids are transformed by v = log(—Ax/AT) (see
also Fosgerau 2007). We select a sample of 1204 subjects choosing between
different trips by bus. No covariates are used in this application. The number
of Halton draws for the numerical integration is set to 300.

The model has been estimated with M; = M; = 3. Beyond this point,
improvements in the likelihood were very small. Confidence intervals have
been generated by drawing 100 bootstrap samples with replacement from the
original sample.

Figure 2 first shows the estimated cdf of U. It seems the distribution
is estimated quite precisely. Figure 2 further indicates the support of V.
When considering the estimated cdf of €, shown in figure 3, it appears that
the support condition c¢) is not met, such that our proof of identification
does not apply. A possible remedy is to introduce an index assumption to
parametrise the location of U,, as indicated above. This is done with similar
data in Fosgerau (2006) and Fosgerau, Hjort and Lyk-Jensen (2007), where
the latter indicates that the support condition is then close to being met.

6 CONCLUDING REMARKS

We have shown that an unknown target distribution can be deconvoluted
from an unknown error distribution in a model for binomial panel data as-
suming bounded support for both distributions. The estimator seems to
perform well with both simulated and actual data.

So far, we have managed to establish consistency of the estimator. Fur-
ther issues to consider are the rate of convergence of the estimator and the
asymptotic distribution of particularly the Euclidian parameters. Another
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Figure 1: Estimation results, simulation study
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relevant issue is partial identification when the main support condition ¢) is
not met, which we conjecture is common in applications.
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A Appendix

A.1 Proof of Lemma 1 and some additional lemmas

Proof of Lemma 1 We start by noting that for any density f € ®, the
corresponding distribution function F' is Lipschitz with parameter K'. Note
that for distribution functions F and F with densities f and f

sup|F(z) — F(z)| < sup / |f (@) = fla)ldz < |If = fls

—00

Consequently, for f, f € ® with corresponding distribution functions F and
F we have

[F() = FE)| <IF() = )|+ |F(2) - F) ~
SK'|z =2+ sup |F(2) = F(2)] < Ko = 2|+ 1] = Flh.
Thus
[P (020 — CUy) = F(0Z00 — CUy)|
K (10 =)« Zual +1¢ = - Un) + 11 = fl
Now putting
e = (2Y — V) F(0Z, — CU,) + (1 — Yie)
and
Gt = 2V — 1) F (02 — CU,) 4 (1 — Yyy)
and using

Ith%—ZH%( 4Q{mw (1)

t=1 s<t s>t

we see that since |a,:| < 1 and |a,,| <1

\P(Yo|Zy,0) — P(Y,|Z,,5)|
~ T T
g/\h(u) —h(u)]H&mdqu/
t=1 t=1
~ T
<h—hh+ Y / s — i) ds
t=1

T
<l =Rl + TS = flli + TE')C =+ K> | Zui - (6 — )

t=1

T
H&”t h(uw)du
t=1
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as E[U,| < 1. O

Lemma 2. Consider the set of densities on the unit interval bounded by K :
D={feLi0;1]:If[i=1,0<f <K}

Let Iy be as defined in section 4. Then for any f € D there exists a sequence
(hn)nen with h, € Uy Ty such that hy, — f in Ly. In particular, D may be
identified with the Li-closure of UpLpy.

Proof. T' C D follows by definition. To prove the converse, let f € D be
an arbitrary point. Now the set of continuous functions on the unit interval
is dense in L; (Rudin 1986, Theorem 3.14), so we can select a sequence of
continuous functions {f,} such that ||f — f.|li < 27" Since 0 < f < K we
have ||f = (fo, VO)AK ||y < ||f — full1, so we can ensure that 0 < f,, < K by
truncating.

As a continuous function on a compact set, each f, is also uniformly
continuous. Hence we can find M,, such that |z, — x| < 1/M,, = |fu(z1) —
fulza)| < 277,

We shall then approximate f,, by defining

My,

hp(x) = (M, + 1) Z/J fo(2)dz - H{u € Ly, }

m=0

We have || f,, — hn|ls < 27" and || f,||l1 = ||Anl|l1- Furthermore, 0 < h,, < K
but ||h,||1 may be different from 1. We will define a function g,, to make up
the difference, i.e. ||gn|l1 = 1 — ||hn|l1 and hy, + gn € Tag,. I, say, ||hal1 < 1,
then g, must add some positive mass. This can just be added to intervals
I, v such that we maintain that 0 < h, + ¢, < K. Then

1f = (B + ga)lls <N = fullt + 1fn = Bnlls 4 [lgnlln
<274+ 27" 4+ 1 — ||hy]| — O,

since || full1 = [|hnli — 1. 0

Lemma 3. T" is contained in the pointwise closure of UpL'py.

Proof For any h € I' there exists a sequence of functions h, € Up"y,
converging to h in L;. By Theorem 3.12 in Rudin (1986) we may select a
subsequence such that h,, converges pointwise to h a.e. Thus I' is contained
in the pointwise closure of Uy I'"y,. O
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A.2 Uniform convergence

We wish to show that

A}im sup |sy(0) — Esy(o)| = 0 almost surely (12)
X geX
where N
1 P(Y,|Zy,0)+ P(Y,|Zy, o)
sy(o) = ~ ;log TAAS

To do this we first review the concepts of the covering number of a class of
functions, then calculate the covering number for a specific class of functions,
before finally proving the desired uniform result.

In this appendix we will identify ® with the set of distribution functions,
F, corresponding to the densities, f,we are estimating.

A.2.1 Covering numbers

The covering number, N(g,G, || - ||), of a set of functions, G, is the smallest
number, k, of functions ¢i,...,gr such that for any ¢ € G there is a j €
{1,...,k} such that ||g — g;|| < e. The “centres” ¢i,...,gr may depend on
the norm and need not be functions in G.

Theorem 2.4.3 of van der Vaart and Wellner (1996) states that if for any
e>0and any M > 0

log N(e, G, || - lv) = op(N) (13)

where
Gu ={9-{G < M}:g€g} (14)

where G is an integrable envelope for the measurable class G of functions,
i.e. a function such that |g(z)| < G(z) for all z and [ GdP < oo, and the

norm || - |5 is the L;-norm corresponding to the empirical distribution then
| N
lim sup |— 9(X;) — Elg(Xy)]| =0 15
Alm_sup N?—l (Xi) — Elg(X1)] (15)
for iid random variables X1, ... X,,.

Thus to obtain (12), we need to bound a suitable covering number. To do
this we need to introduce the concept of VC (or Vapnik-Cervonenskis) classes
of sets, VC hull-classes of functions and VC-major classes of functions. A
collection of subsets C of a set X’ shatters a set A = {xy,...,2,} C X of size
n if

{AﬂC:C’EC}
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is the set of all subsets of A. If for some n C does not shatter any set of
size n then C is a VC class of sets, and the smallest such n is called the
VC index of the class. The covering number of the indicator functions for a
VC class of sets is bounded by a constant (depending on the VC index but
not the norm) times 1/ raised to the power of VC index minus 1 (van der
Vaart and Wellner 1996, Theorem 2.6.4). In particular, it is small compared
to the requirements of Theorem 2.4.3 of van der Vaart and Wellner (1996).
Examples of VC classes of sets are the set of intervals on the real line (VC
index 3) and the set of half-spaces in R? (VC index d + 2); see Example 2.6.1
and Problem 2.6.14 in van der Vaart and Wellner (1996).

A class of functions G is a VC-hull class of functions if any f € G is the
pointwise limit of functions of the form

Z OéilCi ((L’)
=1

with «; arbitrary subject to the constraint > " |a;| < ¢ for some fixed c
and the sets C; chosen from a VC class of sets. Such a class of functions
also have covering numbers that are polynomial in 1/¢ (van der Vaart and
Wellner 1996, Corollary 2.6.12). We note that the set I" as defined in section
4 is VC-hull, since any function in I' may be thought of as the pointwise
limit of “histogram”-approximations; see Lemma 3. As noted in section 4
this implies that I" is totally bounded.
Finally, a class of functions G is a VC-major class if the sets

{zeX:fa)>t}:teR, feg}

is a VC class of sets. It is easily shown (van der Vaart and Wellner 1996,
Lemma 2.6.13) that if G is a VC-major class with functions that are bounded
by some M, then G is also VC-hull. By van der Vaart and Wellner (1996,

Lemma 2.6.19) sets of monotone functions are VC-hull.

A.2.2 Calculation of covering numbers

Using the facts of the previous subsection, it now follows that the set of
functions

{(w,u) = 6w — Cu: (6,¢) € O}

is a VC-major class as the corresponding set of sets are half-spaces and thus
VC. Moreover, as ® is a class of bounded monotone functions

{(w,u) > F(6w —Cu) : (0,{) € ©,F € ¢}
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is VC-major (van der Vaart and Wellner 1996, Lemma 2.6.19) and bounded.
It follows from Lemma 2.6.20 in van der Vaart and Wellner (1996), that the
class

{(y,w,u) = [2y = DF(Ow — Cu) + (1 —y)] : (0,¢) €6, F € @} (16)

is also VC-hull. Repeated use of Lemma 2.6.20 of van der Vaart and Wellner
(1996) allows us to extend this class of functions to reflect the fact that 7' > 1
in our model. However, to keep notation simple we do not do this here.

I is by construction a subset of a VC-hull class and it follows by Lemma
2.6.20 in van der Vaart and Wellner (1996) that the class

{(y,w,u) = h(w) [(2y — 1) F(Ow — Cu) + (1 —y)] -

(0,.() €©O,Fe® heTl} (17)

is a subset of a VC-hull class. In particular, its covering number is bounded
by a constant times a power of 1/ with neither the constant nor the power
depending on the norm.

Now consider a Li-norm corresponding to the product of a probability
measure 4 and the Lebesgue measure on [0; 1] and let fi,..., fi be the cor-
responding centres. Now consider the function class

g = {(y,w) — /h(u)F(Qw —Cu)du: (0,() € ©,F € d,h e F} (18)

Then for any choice of h € I', F € ® and (0,() € © with corresponding
centre g; we have

/’/h(U)F(ﬁw—Cu)du—/gj(v,x,u)du‘du(vjx)
S/ |h(uw)F (0w — Cu) — g;(v, z,u)|dudp(v, x) < e

Hence the covering number of the class G (18) is at most as large as the
covering number of the class (17).

A.2.3 Uniform convergence

To summarise, we have now shown that the class

{(y,2) = P(ylz,0) : 0 € X}
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has a covering number which is polynomial in e. Let P;(y|z) denote the
centres corresponding to the covering of size € for the norm

9(Yo, Z0)
N v e P(Y,|Z,,0%)

% Zn:l 1/P(Yn|vaU )

lgll =

Consider now the class

G = {(y,z) ~ log (P(y|z’“>+P(y|Z’“*)) :JEE} (19)

2P(y|z, 0%)
Now
5 P(y|z,0) + P(y|z, %) 1 P;(y|z) + P(y|z, 0%)
e (M) s ()
[P(ylz,0) = P(y[2)]

- P(ylz,0%)

Recalling that what we need is the covering number for (19) under the random
norm || - ||, (see (13)), we bound the relevant distance as follows:

1 o [P(Ya|Zny 0) = Pi(Ya| Zn, 0%))]
o
n=1

P(Y,|Zy, 07)
1 Z |P(Yn|ZnaU) — Pj(Yn|Zn70*)| N
N en=t P(Yn|ZnuU*) lz 1
B ¥ St 1/ P(Yal Zn, %) N & P(ValZn, )
1 X
<g.—
=N ; P(Y, |Zn,a )
Noting that
1 & / P(ylz,0%)
Z 9 Z p(2)dz = 27 almost surely
Nn - P(Y, |Zn,0‘ it y|z o*

it follows that (13) is satisfied.
To verify the envelope condition (14), we note that

P(ylz,0) + P(ylz,0%)
P(ylz.0%) ) =

1
log§ < log ( —log P(y|z,0")
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which provides us with the integrable envelope
G(y,2) = log2 —log P(yl|z,07)

for G given by (19).

What now remains for the application of Theorem 2.4.3 in van der Vaart
and Wellner (1996) is to argue that the class G is measurable (van der Vaart
and Wellner 1996, Definition 2.3.3). However this follows from the fact that
functions in G may be approximated pointwise by functions from a countable
subset of G constructed by considering functions obtained when (6, () is in a
countable dense subset of ©, h and h are given by rational a;s and intervals
with rational endpoints.

Remark: In the proof of the uniform convergence, we do not need re-
strictions on ® nor on the set © which may be the entire RY. Also I' may
be all of H (or even more as long as I' is a VC-hull class). However, some
restrictions are necessary in order to ensure the compactness and continuity
required in proof of consistency.
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