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ABSTRACT

We consider the following problem. A structural equation of interest contains two sets of explana-

tory variables which economic theory predicts may be endogenous. The researcher is interesting in

testing the exogeneity of only one of them. Standard exogeneity tests are in general unreliable from

the view point of size control to assess such a problem. We develop four alternative tests to address

this issue in a convenient way. We provide a characterization of their distributions under both the

null hypothesis (level) and the alternative hypothesis (power), with or without identification. We

show that the usual χ2 critical values are still applicable even when identification is weak. So, all

proposed tests can be described as robust to weak instruments. We also show that test consistency

may still hold even if the overall identification fails, provided partial identification is satisfied. We

present a Monte Carlo experiment which confirms our theory. We illustrate our theory with the

widely considered returns to education example. The results underscore: (1) how the use of stan-

dard tests to assess partial exogeneity hypotheses may be misleading, and (2) the relevance of using

our procedures when checking for partial exogeneity.

Key words: Subset of endogenous regressors; Generated structural equation; Robustness to weak

identification; Consistency.

JEL classification: C3; C12; C15; C52.
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1. Introduction

Inference methods using instrumental variables (IV) methods are mainly motivated by the fact that

explanatory variables may be correlated with the error term, so ordinary least squares (OLS) yields

biased and inconsistent estimators. It is well known that when explanatory variables are endoge-

nous, OLS estimators measure only the magnitude of association, rather than the magnitude and

direction of causation which is needed for policy analysis. IV estimation provides a way to nonethe-

less obtain consistent parameter estimates, once the effect of common driving variables has been

eliminated. Usually, researchers need to pretest the exogeneity of the regressors to decide whether

OLS or IV method is appropriate. In the linear IV regression, exogeneity tests of the type proposed

by Durbin (1954); Wu (1973, 1974), Revankar and Hartley (1973), and Hausman (1978), hence-

forth DWHRH tests, are often used as pretests for exogeneity. Recent studies1 have established that

they never over reject the null hypothesis of exogeneity even when model parameters are weakly

identified.

A drawback of DWHRH tests however is that the null hypothesis of interest is specified on the

whole set of supposedly endogenous regressors. When more than one regressor is involved, these

tests cannot pinpoint which regressor is endogenous and which is not, once joint exogeneity has

been rejected. This is particularly problematic from the viewpoint of estimation, since efficiency

requires to use available instruments only for the regressors which are endogenous. The use of

instruments for exogenous regressors often yields inefficient estimates of model parameters. To

avoid such situations, it is important to know which variables are endogenous and which are not

before inference. In models involving more than one supposedly endogenous variable, as it is often

the case in most empirical applications, it is important to find ways to assess the exogeneity of the

regressors separately.

However, the literature has focused on testing hypotheses specified on the structural parameters

and inference procedures that are robust to identification problems2. Although these robust pro-

cedures extend to hypotheses specified on subsets of structural parameters [Dufour and Taamouti

(2005, 2007), Kleibergen (2004, 2005), and Guggenberger and Smith (2005)], not much is known

about testing for partial exogeneity, especially when identification is weak.

In this paper we propose alternative tests for assessing partial exogeneity hypotheses in linear

1See for example, Staiger and Stock (1997), Guggenberger (2010), and Hahn, Ham and Moon (2010).
2Anderson and Rubin (1949, AR-test), Kleibergen (2002, KLM-test),Moreira (2003, MQLR-test).
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simultaneous equations models. The proposed tests do not require the exogeneity of the regressors

not being tested or strong instruments, so they can be described as identification-robust. To be more

specific, we consider a model of the form

y = Y β +Wθ + u

where y is an observed dependent variable, Y and W are matrices of observed (possibly) endoge-

nous regressors. We wish to test the exogeneity of Y, i.e. the hypothesis cov(Y, u) = 0.

First, we stress the fact that the regressors W whose exogeneity is not being tested can be or-

thogonalized through a methodology built on four steps. We refer to the transformed equation where

W has been replaced by the orthogonalized regressors, W̃ , as the generated structural equation.

An interesting feature of this generated structural equation is the structural parameters of interest β

and θ have the same interpretation as in the original model.

Second, we show that the exogeneity hypothesis of Y can be assessed by testing whether Y is

uncorrelated with the error of this generated structural equation, though the latter error typically

differs to the original structural one. We then follow Durbin (1954), Wu (1973), and Hausman

(1978) in proposing four statistics based on the vector of contrasts between ordinary least squares

(OLS) and instrumental variables (IV) estimators of β in the transformed model, upon scaling by

appropriate factors to guarantee the usual asymptotic χ2 distributions.

Finally, after formulating generic assumptions on model variables which allow one to charac-

terize the behaviour of the tests under both the null hypothesis (level) and the alternative hypothesis

(power), we consider two main setups. In the first setup, model parameters are strongly identified,

i.e., the reduced form parameter matrix that characterizes the strength of the instruments has full

rank. The second setup is Staiger and Stock’s (1997) local-to-zero weak instrument asymptotics. In

this setup, the parameter matrix that controls the strength of the instruments approaches zero at rate

[n−
1

2 ] as the sample size n increases. The later case is often interpreted as a situation where some

linear combinations of the structural parameters are ill-determined by the data [see the review of

Andrews and Stock (2006), Dufour (2003), and Stock, Wright and Yogo (2002)].

In all setups, we show that under the null hypothesis of interest, the usual χ2 critical values

are applicable whether the instruments are strong or weak. Furthermore, our analysis indicates that

test consistency may still hold over a wide range of cases where overall identification fails, pro-
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vided partial identification is satisfied. However, the tests exhibit lower power when all instruments

are weak. We present a Monte Carlo experiment and an empirical application which confirm our

theoretical results.

The paper is organized as follows. Section 2 formulates the model studied. Section 3 describes

the test statistics. Sections 3.1-3.2 study the asymptotic properties (level and power) of the tests in

both strong and weak identification setups. Section 3.3 presents the Monte Carlo experiment while

Section 4 deals with the empirical application. Conclusions are drawn in Section 5 and proofs are

presented in the Appendix.

Throughout the paper, Ik stands for the identity matrix of order k. For any full rank n × m

matrix A, PA = A(A′A)−1A is the projection matrix on the space spanned by the columns of A,

andMA = In−PA. The notation vec(A) is the nm×1 dimensional column vectorization ofA and

B > 0 for a squared matrix B means that B is positive definite (p.d.). Convergence in probability

is symbolized by “
p→ ” ; “

d→ ” stands for convergence in distribution while Op(.) and op(.) denote

the usual (stochastic) orders of magnitude. Finally, ‖U‖ denotes the Euclidian norm of a vector or

matrix U, i.e., ‖U‖ = [tr(U′U)]
1

2 .

2. Framework

We consider the following linear IV regression model

y = Y β +Wθ + u , (2.1)

Y = ZΠ+ υ, W = ZΓ+ ξ , (2.2)

where y ∈ R
n is a vector of observations on a dependent variable, Y ∈ R

n×my and W ∈ R
n×mw

(my + mw = m ≥ 1) are two matrices of (possibly) endogenous explanatory variables, Z ∈

R
n×l is a matrix of exogenous instruments, u = (u1, . . . , un)

′ ∈ R
n is the vector of structural

disturbances, υ ∈ R
n×my and ξ ∈ R

n×mw are matrices of reduced form disturbances, β ∈ R
my

and θ ∈ R
mw are unknown structural parameter vectors, while Π ∈ R

l×my and Γ ∈ R
l×mw are

unknown reduced form coefficient matrices. An extension of model (2.1)-(2.2) that is more relevant

for practical purposes arises when we add included exogenous variables Z1. However, the results of

this paper do not alter qualitatively if we replace the variables that are currently in (2.1)-(2.2) by the
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residuals that result from their projection onto Z1. We shall assume that the instrument matrix Z has

full-column rank l with probability one and l ≥ m. The full rank assumption requires excluding

redundant columns from Z . It is particularly satisfied when Zi is generated by power series or

splines through an underlying scalar instrument xi, i.e. if Zi = p(xi) = (1, xi, . . . , x
l−1
i )′ [see

Hansen, Hausman and Newey (2008, Assumption 1) for further details].

The usual necessary and sufficient condition for identification of model (2.1)-(2.2) is

rank(ΠY W ) = m, where ΠYW = [Π, Γ]. If ΠYW = 0, the instruments Z are irrelevant,

and (θ′, β′)′ is completely unidentified. If 1 ≤ rank(ΠY W ) < m, (β′, θ′)′ is not identifiable, but

some linear combinations of its elements are identifiable [see Choi and Phillips (1992), Dufour and

Hsiao (2008)]. If ΠYW is close not to have full rank [e.g., if some eigenvalues of Π′
YWΠYW are

close to zero], some linear combinations of (β′, θ′)′ are ill-determined by the data, a situation often

called “weak identification” in this type of setup [See for example, Staiger and Stock (1997); Stock

et al. (2002); Dufour (2003); Andrews and Stock (2006)]. We shall now introduce the statistical

problem of interest.

2.1. Statistical problem

We consider the problem of testing the partial exogeneity of Y , i.e. the hypothesis

H
p
0 : cov(Y, u) = συu = 0 (2.3)

where the regressors W not being tested may be endogenous [cov(W, u) = σξu 6= 0]. By con-

vention, we consider that a matrix is not present if its number of columns is equal to zero. We

assume my ≥ 1 but mw = 0 is allowed. In particular, if the null hypothesis (2.3) is specified in

the whole set of (possibly) endogenous regressors, we have mw = 0 and W drops out of model

(2.1)-(2.2) and H
p
0 is the standard exogeneity problem considered by Durbin (1954); Wu (1973);

Revankar and Hartley (1973); and Hausman (1978). In this case, Staiger and Stock (1997) and

more recently Guggenberger (2010) showed that DWH tests apply even when model parameters are

weakly identified.

Our concerned in this paper is how to test H
p
0 if mw 6= 0, as DWH-RH tests are no longer valid

except when W is exogenous. In this perspective, we aim to provide valid procedures for assessing

H
p
0 whether W is exogenous or not, with or without weak instruments.
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To illustrate the problem, consider the following workhorse example from Card (1995) that

analyzes the return on education to earnings.

Example 2.1 The structural equation of interest is given by

yi = Yiβ +W ′
iθ + Z ′

1iγ + ui (2.4)

where Yi is the length of education of individual i; Wi = (experi, exper
2
i )

′ contains the expe-

rience (exper) and experience squared of individual i where experi = agei − 6 − Yi; Z1i =

(1, racei, southi, IQi)
′ consists of a constant and indicator variables for race, residence in the

south of the United States and IQ score; and yi is the logarithm of the wage of individual i. All

variables in Z1i are assumed exogenous. It is well documented that both Yi and Wi are potentially

endogenous, hence instrumental variables are needed to consistently estimate β and θ in (2.4). The

matrix instruments Z contains age, age2 of individual i and two proximity-to-college indicators for

educational attainment; these are proximity to 2- and 4-year college.

To access the joint exogeneity of (educ, exper, exper2) in (2.4), we use Wu (1973) T2-statistic

and three alternative Hausman (1978) type-statistics, namely, Hj, j = 1, 2, 3. All these tests are

robust to weak instruments, i.e., there are still valid even when model parameters are not identified.

We use data from the National Longitudinal Survey of Young Men, which run from 1966 until 1981.

We exploit the cross-sectional 1976 subsample that contains originally 3,010 observations. When

accounting for missing data, the final sample has 2061 observations.

Our calculations give T2 = 7.01, H1 = 8.33, H2 = 8.53 and H3 = 20.92 as sample values of

the statistics, which correspond to p-values 0.000, 0.040, 0.036 and 0.000, respectively. This indi-

cates clearly the evidence against educ, exper and exper2 joint exogeneity for all tests. Since joint

exogeneity is rejected, one important question is: should we apply IV method to all the regressors

educ, exper, exper2? Note that because the joint exogeneity has been rejected does not imply that

all three regressors are endogenous. It could be that only one is endogenous and the two others are

not. If so, applying IV to all of them may result in inefficient estimates of model parameters. This

underscores the necessity of having ways to check for the exogeneity of each regressor separately.
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2.2. Approach and model assumptions

In this paper, we aim to provide valid procedure for assessing H
p
0 even when W is endogenous and

model identification is weak. The main challenge we are facing is how to deal with the possible

simultaneity driving W and u. The strategy that we propose is to replace W by a W̃ that is asymp-

totically independent with u under H
p
0. Suppose we have regressors W̃ satisfying this condition.

We can then express (2.1) as

y = Y β + W̃ θ + ũ (2.5)

where ũ = u + (W − W̃ )θ is asymptotically uncorrelated with W̃ . We call equation (2.5) the

“generated structural equation” to underscore the fact that W̃ are generated regressors. Along with

being uncorrelated with ũ, a suitable candidate W̃ in (2.5) should further leave invariant the null

hypothesis of interest in (2.3), i.e. cov(Y, ũ) = 0 if cov(Y, u) = 0.

We now wish to discuss the choice of W̃ . Note first that if ξ has zero mean, the choice of

the conditional mean of W given Z is plausible, i.e., W̃ = E(W |Z) = ZΓ. This choice then

entails that ũ = u + (W − W̃ )θ = u + ξθ. Because Z is exogenous and Γ is fixed, W̃ are also

exogenous, hence uncorrelated with ũ. A difficulty however is that Γ is unknown. This suggests

we replace Γ by an estimator, say Γ̃, which meets the above requirements. At first, one is tempted

to use the least squares estimator Γ̂ = (Z ′Z)−1Z ′W obtained from the first-step regression. Even

though Γ̂ is a consistent estimator of Γ when the model is correctly specified, it is well known that

√
n(Γ̂−Γ) = (Z ′Z/n)−1Z ′ξ/

√
n and Z ′ũ/

√
n are not independent, even asymptotically. Hence,

we will still face a simultaneity problem choosing W̃ = ZΓ̂.

Now, assume that σuξ = E(u′ξ) < ∞ and 0 < σ2u = E(u′u) < +∞. Suppose further that

(u, υ, ξ) have zero mean and 1√
n
Z ′[u, υ, ξ] is asymptotically Gaussian. Then, we can show that

Z ′u/
√
n and 1√

n
Z ′[(W − ZΓ) − 1

σ2
u
uσuξ] =

1√
n
Z ′[ξ − 1

σ2
u
uσuξ] are asymptotically independent

[see Kleibergen (2002)]. Let

W̃ = ZΓ̃, Γ̃ = (Z ′Z)−1(Z ′W − 1

σ2u
Z ′uσuξ) = Γ̂− 1

σ2u
(Z ′Z)−1Z ′uσuξ. (2.6)

The choice of W̃ in (2.6) then implies ũ = u+(W−W̃ )θ = u+MZξθ+σθPZu so that Z ′ũ/
√
n =

(1 + σθ)Z
′u/

√
n is proportional to Z ′u/

√
n, where σθ = σuξθ/σ

2
u is a scalar. Since Z ′u/

√
n
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is asymptotically independent of 1√
n
Z ′[ξ − 1

σ2
u
uσuξ], hence Z ′ũ/

√
n and 1√

n
Z ′[ξ − 1

σ2u
uσuξ] are

also asymptotically independent. Hence, Z ′ũ/
√
n and

√
n(Γ̃−Γ) are asymptotically independent;

which means that the choice of W̃ in (2.6) weighs out the simultaneity problem. Γ̃ can be viewed

here as the part of Γ̂ that is asymptotically orthogonal to u. Furthermore, when the above regularity

conditions hold, we have Y ′ũ/n
p→ συu + Συξθ, where Συξ = E(υiξ

′
i) for all i. In particular, if

υ and ξ are uncorrelated (i.e. if Συξ = 0 ) under H
p
0, we have p limn→∞ (Y ′ũ/n) = 0 and H

p
0 can

in principle be assessed by testing whether Y is exogenous in model (2.5).

However, it is practically impossible to exploit (2.6) as u, σuξ and σ2u are unknown. To alleviate

this difficulty, we suggest a strategy built on the following four steps:

1. project W on Z to obtain W̄ = PZW ;

2. regress y on Y and W̄ by OLS and recover the residuals, say û∗;

3. estimate σuξ by σ̂uW = û′∗MZW/(n−m) and σ2u by σ̂2u = û′∗MZ û∗/(n −m);

4. and generate W̃ as

W̃ = ZΓ̃, Γ̃ = Γ̂− (Z ′Z)−1Z ′û∗(û
′
∗MZ û∗)

−1û′∗MZW. (2.7)

Note that Γ̃ in (2.7) can be expressed as Γ̃ = (Z ′Z)−1Z ′A(û∗)W, where A(û∗) = I −

û∗(û
′
∗MZ û∗)

−1û′∗MZ . If Z ′Z/n = Op(1) and Z ′W/n = Op(1) along with the exogeneity

of Z , then we have û′∗MZ û∗/(n − m) = û′∗û∗/(n − m) + op(1) and û′∗MZW/(n − m) =

û′∗W/(n − m) + op(1), so that Γ̃ = (Z ′Z)−1Z ′Mû∗W + op(1), where Mû∗ is the projection

matrix onto the orthogonal of the space spanned by the residuals û∗. Hence, Γ̃ is asymptotically

orthogonal to the residual û∗. When identification is strong, Γ̃
p→ Γ under standard regularity con-

ditions, which is always independent with the asymptotic distribution of Z ′ũ/
√
n. However, when

identification is weak, Γ̃ converges to a random variable which is correlated with the asymptotic

distribution of Z ′u/
√
n. The aim of the orthogonalization by W̃ is guarantee asymptotically, the in-

dependence between Z ′ũ/
√
n and Γψ. It is worthwhile noting that the choice of W̃ in (2.7) implies

the following form of the errors ũ in (2.5):

ũ = u+ (W − W̃ )θ = u+MZξθ + σ̂θPZ û∗ where σ̂θ = σ̂uW θ/σ̂
2
u. (2.8)
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We now make the following generic assumptions on the behaviour of model variables.

Assumption 2.2 The errors
{

Ui =
(

ui, υ
′
i, ξ

′
i

)′
: 1 ≤ i ≤ n

}

are i.i.d. across i and n with zero

mean and the same nonsingular covariance matrix Σ given by

Σ =







σ2u σ′V u

σV u ΣV






: (m+ 1)× (m+ 1), where ΣV =







Συ Σ′
ξυ

Σξυ Σξ






,

σV u = (σ′υu, σ
′
ξu)

′, σ2u : 1× 1, συu : my × 1, σξu : mw × 1, Συ : my ×my, Σξυ : mw ×my,

Σξ : mw ×mw, and σ2u − θ′Σξθ > 0. Furthermore, we have E(ZiU
′
i) = 0 for all i = 1, . . . , n.

Assumption 2.2 requires model errors to be homoskedastic. However, it can be adapted to

account for serially correlated errors.

Assumption 2.3 When the sample size n converges to infinity, the following convergence re-

sults hold jointly: (a) 1
n

∑n
i=1 UiU

′
i

p→ Σ, 1
n

∑n
i=1 ZiU

′
i

p→ 0, 1
n

∑n
i=1 ZiZ

′
i

p→ QZ ; and (b)

1√
n

∑n
i=1 (ZiU

′
i , υiui − συu)

d→ Ψ = (ΨZ , ψυu), where ΨZ = (ψZu, ψZυ, ψZξ), vec(Ψ) ∼

N (0 , Ω) , vec(ΨZ) ∼ N (0 , Σ⊗QZ) and ψυu ∼ N
(

0 , σ2uΣυ
)

.

Assumption 2.3-(b) entails that Z is weakly exogenous for (β′, θ′)′, Π, and Γ [see Engle,

Hendry and Richard (1982)]. The normality assumption on the limiting distributions is implied by

Assumption 2.2 and the central limit theorem (CLT).

Assumption 2.4 Under H
p
0, the following two conditions hold: (a) 1

n

∑n
i=1 υiξ

′
i = Op(n

−ν) for

some ν > 1/2; and (b) 1
n

∑n
i=1Wiû∗i = Op(n

− 1

2 ), where {û∗i : 1 ≤ i ≤ n} are the residuals

from the OLS regression in (2.7).

It is worth noting that Assumption 2.4 needs not to be satisfied under the alternative. As-

sumption 2.4-(a) along with Assumptions 2.2-2.3 entail that 1
n

∑n
i=1 υiξ

′
i

p→ E(υiξ
′
i) → 0 and

nνE(υiξ
′
i) = Op(1), as n→ ∞ for some ν > 1/2. This means that the covariance matrix, ΣV , of

the reduced-form errors (υ, ξ) is asymptotically diagonal under H
p
0. This assumption is particularly

satisfied under H
p
0 if υ and ξ are uncorrelated (Συξ = 0) or more generally if Συξ = Σ̄υξ/n

ν for

some ν > 1/2, where Σ̄υξ is a my × mw constant matrix. Furthermore, note that we also have

1√
n

∑n
i=1 υiξ

′
i = n

1

2
−νnν 1

n

∑n
i=1 υiξ

′
i = op(1).Op(1) = op(1), since ν > 1/2. The condition that
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1
n

∑n
i=1Wiû∗i = Op(n

− 1

2 ) in Assumption 2.4-(b) implies that the correlation between the resid-

uals from the OLS regression in (2.7) and W converge to zero in probability, as the sample size n

increases. It follows that û′∗W/
√
n = Op(1). Remark that û′∗W/n

p→ 0 does not implies that the

covariance between the structural error u and W (here σξu) converges to zero. However, it implies

a restriction of the form σuξ = −θ′Σξ involving σξu, Σξ and θ. Clearly, u and W may still be

asymptotically correlated even if û′∗W/n
p→ 0 3.

In this paper, we consider two main setups related to the identification of model parameters: (i)

ΠYW = [Π, Γ] is fixed with rank(ΠY W ) = m; and (ii)ΠYW = 1√
n
[Π0, Γ0], where Π0 and Γ0

are constant l×my and l×mw matrices (possibly zero). The setup for (i) implies that (β′, θ′)′ is

identified, hence the instruments Z are strong. However, our results can be extended to cases where

(β′, θ′)′ is partially identified [i.e., ΠY W is fixed with 0 ≤ rank(ΠY W ) < m], upon rotating

model variables in an appropriate way [See for example, Choi and Phillips (1992), Doko Tchatoka

and Dufour (2011), and Doko Tchatoka (2011)]. (ii) is Staiger and Stock (1997) local-to-zero weak

instruments asymptotic. The parameter that controls the strength of the instruments approaches zero

at rate 1/
√
n as the sample size n increases.

We can now prove the following lemma on the asymptotic behaviour of Z ′û∗/n, Z
′ũ/n,

W̃ ′ũ/n, and Y ′ũ/n.

Lemma 2.5 Suppose Assumptions 2.2-2.4 hold and let συu = 0. Then we have:

Z ′ũ/n, W̃ ′ũ/n, Z ′û∗/n, Y
′ũ/n

p→ 0, irrespective of whether the instrument are strong or weak.

Lemma 2.5 shows clearly that W̃ is asymptotically uncorrelated with ũ in (2.5) and further, that

H
p
0 is asymptotically invariant by the transformation (2.7).

We now consider the following transformed model:

y⊥ = Y ⊥β + ũ⊥, Y ⊥ = Z⊥Π+ υ⊥ (2.9)

where the superscript “⊥” means residual from projection onto the space spanned by the columns

of W̃ . As W̃ is asymptotically uncorrelated with ũ under H
p
0 by Lemma 2.5, Z⊥ is asymptotically

a valid instrument for Y ⊥. Furthermore, by exploiting (2.8), we can easily show that Y ⊥′
ũ⊥/n

p→

συu + Συξθ. If Assumption 2.4 and H
p
0 are satisfied, we have Συξ = 0 and συu = 0 so that

3Under Assumptions 2.2-2.4, we have p lim→∞

(

W ′û∗

n

)

= σ∗
ξu = σξu +Σξθ. Hence, σ∗

ξu = 0 ⇔ σuξ = −θ′Σξ

so that the remark follows.
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Y ⊥′
ũ⊥/n

p→ 0, which means that H
p
0 can be assessed by testing whether Y ⊥ is uncorrelated with

ũ⊥ in (2.9).

If β is identified4 in (2.9), both the OLS estimator (namely β̂LS) and IV estimator (β̂IV ) of β are

consistent under H
p
0, and β̂LS is efficient. Hence, the magnitude of the vector of contrasts is small in

that case [β̂LS−β̂IV = op(1)]. However, when H
p
0 is not satisfied (σuυ 6= 0 ), β̂IV is still consistent

but β̂LS is not, so that β̂LS − β̂IV = Op(1). Therefore, in the same spirit as Durbin (1954), Wu

(1973), and Hausman (1978), we can build the test statistics for assessing H
p
0 on β̂LS − β̂IV , upon

scaling by appropriate factors to guarantee the usual asymptotic χ2-distributions.

More interestingly, Lemma 2.6 shows that (Z⊥′
ũ⊥/

√
n, υ⊥

′
ũ⊥/

√
n) is asymptotically inde-

pendent of
√
n(Γ̃ − Γ), whether identification is strong or weak. So, the (possible) simultaneity

driving W and u has been eliminated by the transformation (2.7), as required.

Lemma 2.6 Suppose Assumptions 2.2-2.4 hold and let συu = 0. Then we

have (Z⊥′
ũ⊥/

√
n, υ⊥

′
ũ⊥/

√
n)

d→ (ψZ⊥ũ, ψυ⊥ũ) where: (i) (ψZ⊥ũ, ψυ⊥ũ) ∼

N
[

0, σ2udiag(QZ⊥ , Συ)
]

, with QZ⊥ = Q
1/2
Z M

Q
1/2
Z Γ

Q
1/2
Z , rank(ΠY W ) = m; and

(ii) (ψZ⊥ũ, ψυ⊥ũ) ∼
∫

R
l×mw N

[

0, σ2udiag(Q
1/2
Z M

Q
1/2
Z Γ(x2)

Q
1/2
Z , Συ)

]

pdf(x2)dx2 when

ΠYW = 1√
n
[Π0, Γ0], Γ(x2) = Γ0 + Q−1

Z x2 and pdf(x2) is the probability density function of

ψZξ evaluated at x2.

Three remarks are in order.

1. The results indicate that Z⊥′
ũ⊥/

√
n is asymptotically uncorrelated with υ⊥

′
ũ⊥/

√
n and

υ⊥
′
ũ⊥/

√
n

d→ ψυu ∼ N
[

0, σ2uΣυ
]

, whether identification is strong or not. Consequently,

weak identification does not affect the asymptotic behaviour of υ⊥
′
ũ⊥/

√
n but the asymp-

totic behaviour of Z⊥′
ũ⊥/

√
n relies strongly on instrument quality.

2. When identification is strong [rank(ΠY W ) = m], Γ̃
p→ Γ which is a constant l × mw full

rank matrix. Hence, (Z⊥′
ũ⊥/

√
n, υ⊥

′
ũ⊥/

√
n) is asymptotically Gaussian, as expected [see

Lemma 2.6-(i)]. However, when identification is weak (weak instruments), Γ̃
d→ Γ(ψZξ) =

Γ0 +Q−1
Z ψZξ which is a non-degenerated random process with probability one. As a result,

the asymptotic distribution of (Z⊥′
ũ⊥/

√
n, υ⊥

′
ũ⊥/

√
n) is a mixture of Gaussian processes

4It is well known that IV methods produce inconsistent estimates when identification is weak, see for example, Dufour

(2003), Stock et al. (2002), Stock and Wright (2000), Bekker (1994), Choi and Phillips (1992), Nelson and Startz (1990a,

1990b), Phillips (1989).
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with zero mean, as showed Lemma 2.6-(ii). Note that mixture is in the marginal distribution

of ψZ⊥ũ, because ψυ⊥ũ is independent of both Γ(ψZξ) and ψZ⊥ũ when Assumptions 2.2-2.4

and H
p
0 hold.

3. When identification is weak, the independence between (ψZ⊥ũ, ψυ⊥ũ) and Γ(ψZξ) is crucial

to establish the validity of the tests that are proposed in the next section for assessing H
p
0.

3. Test statistics and their asymptotic behaviour

We propose four alternative statistics to assess H
p
0, namely

D
p
j = κj(β̂LS − β̂IV )

′Σ̂−1
j (β̂LS − β̂IV ), j = 1, 2, 3, 4 (3.1)

where κ1 = (n− 2my)/my, κi = n, for j = 2, 3, 4, and

β̂LS = (Y ⊥′

Y ⊥)−1Y ⊥′

y, β̂IV = (Y ′PZ⊥Y )−1Y ′PZ⊥y,

Σ̂1 = σ̃22∆̂, ∆̂ = Ω̂−1
IV − Ω̂−1

LS , Σ̂2 = σ̃2Ω̂−1
IV − σ̂2Ω̂−1

LS , Σ̂3 = σ̃2∆̂, Σ̂4 = σ̂2∆̂,

Ω̂IV = Y ′PZ⊥Y/n, Ω̂LS = Y ⊥′

Y ⊥/n, σ̃2 = (y − Y β̂IV )
′MW̃ (y − Y β̂IV )/n,

σ̂2 = (y − Y β̂LS)
′MW̃ (y − Y β̂LS)/n, σ̃

2
2 = σ̂2 − (β̂LS − β̂IV )

′∆̂−1(β̂LS − β̂IV ).

The above expressions of β̂LS , β̂IV and Ω̂IV are derived from the identities Y ⊥′

y⊥ = Y ⊥′

y,

PZ⊥Y ⊥ = PZ⊥Y and PZ⊥y⊥ = PZ⊥y. The statistics in (3.1) differ only through the variance

estimators of the errors ũ⊥ in (2.9) and the scaling factors κj, j = 1, 2, 3, 4. σ̂2 and σ̃2 are the

usual OLS-and IV-based estimators of the errors (without correction for degrees of freedom), while

σ̃22 can be interpreted as an alternative IV-based scaling factor. The use of different estimators of the

variance of the errors that leads to four versions of the test is important to discriminate between the

OLS-and IV-based residuals, especially when identification is weak. When identification is weak,

the OLS estimator often outperforms [in terms of minimum mean squared errors (MSE)] the IV

estimator [see Kiviet and Niemczyk (2007) and Doko Tchatoka and Dufour (2011)]. The statistic

D
p
1 is an analogue to Wu (1973) T2-statistic and can be interpreted as a usual F -test5 of γ = 0 in

5Further details on the regression interpretation of Durbin-Wu-Hausman tests can be found in Doko Tchatoka and

Dufour (2011) and Davidson and Mackinnon (1993, sec. 8.7).
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the extended regression

y⊥ = Y ⊥β + υ̂⊥γ + e (3.2)

where v̂⊥ = MZ⊥Y ⊥, e = PZ⊥υ⊥γ + ε, and ε is independent of υ⊥. The statistics D
p
j

(j = 2, 3, 4) are analogues to alternative Hausman (1978) type-statistics considered in Staiger

and Stock (1997)6. The subscript “p” in the notation of the statistics, as well as the null hypothesis,

refers to partial exogeneity. The corresponding tests reject H
p
0 when the test statistic is “large”. Sec-

tion 3.1 investigates the size and power properties of the tests when identification is strong (strong

instruments).

3.1. Test behaviour with strong instruments

Before investigating the properties (size and power) of the tests, we shall first examine the behaviour

of the vector of contrasts β̂LS − β̃IV . Lemma 3.1 present the results under both the null hypothesis

(συu = 0) and the alternative hypothesis (συu 6= 0 is fixed).

Lemma 3.1 Suppose Assumptions 2.2-2.4 hold and rank(ΠY W ) = m. Then we have:

(i) β̂LS − β̃IV
p→ 0,

√
n(β̂LS − β̃IV )

d→ N
[

0, σ2u(Σ̃
−1
π −Σ−1

π )
]

when συu = 0;

(ii) β̂LS − β̃IV
p→ Σ−1

π συu,
√
n(β̂LS − β̃IV )

d→ ∞ when συu 6= 0;

where Σπ = Σ̃π +Συ, Σ̃π = Π′QZ⊥Π, QZ⊥ is defined in Lemma 2.6-(i).

Lemma 3.1-(i) states the consistency to zero and the
√
n-consistency of the vector of con-

trasts β̂LS − β̃IV when H
p
0 holds and identification is strong. As expected, the limiting distribution

of
√
n(β̂LS − β̃IV ) is Gaussian with zero mean and constant positive definite covariance matrix

σ2u(Σ̃
−1
π −Σ−1

π ). Under the alternative hypothesis (συu 6= 0 is fixed, i.e., does not depend on the

sample size7), β̂LS − β̃IV
p→ Σ−1

π συu 6= 0 so that
√
n(β̂LS − β̃IV ) explodes, as showed Lemma

3.1-(ii). We can now characterize the asymptotic distributions of the statistics under both the null

hypothesis (level) and the alternative hypothesis (power). Theorem 3.2 presents the results.

6See also Guggenberger (2010) and Hahn et al. (2010).
7Throughout this paper, our analysis is based on alternative hypotheses of the form H

p
1

: συu 6= 0 where συu

is a my × 1 constant vector. However, it is easy to show that under local-to-zero alternative hypotheses of the form

H
p
1c : συu = c/

√
n where c 6= 0 is constant,

√
n(β̂LS − β̃IV ) converges to a Gaussian process with nonzero mean

when identification is strong. As a result, all tests in (3.1) exhibit power against local-to-zero alternatives, though they

are no longer consistent.
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Theorem 3.2 Suppose Assumptions 2.2-2.4 are satisfied and rank(ΠY W ) = m. Then we have:

(a) D
p
1

d→ 1
my
χ2(my), D

p
j

d→ χ2(my) ∀ j = 2, 3, 4, when συu = 0; and (b) D
p
j

d→ +∞

∀ j = 1, 2, 3, 4, when συu 6= 0.

Theorem 3.2-(a) shows that all Dp statistics are asymptotically pivotal when identification is

strong. Hence, the corresponding tests are asymptotically valid (level is controlled). Theorem 3.2-

(b) indicates that test consistency holds, thus confirming the previous results in Lemma 3.1-(ii).

The Monte Carlo experiment shows that: (1) level is still controlled for moderate samples [see

Figure 1 for n = 100], and (2) test consistency may still hold in a wide range of cases where the

overall identification breaks down, provided partial identification is satisfied [i.e., ΠY W is fixed and

0 < rank(ΠY W ) < m]. So, the above results extend to partial identification of model parameters.

More generally, it can be shown that the necessary and sufficient condition for consistency is that

ΠΣ−1
υ σuυ 6= 0. We now study the behaviour of the tests under Staiger and Stock’s (1997) local-

to-zero weak instrument asymptotic.

3.2. Test behaviour with weak instruments

In this section, we assume that model parameters are weakly identified, i.e., ΠY W = 1√
n
[Π0, Γ0],

where Π0 and Γ0 are constant matrices (possibly zero). As in the previous section, we first examine

the behaviour of the vector of contrast β̂LS − β̃IV . Lemma 3.3 presents the results under both the

null hypothesis and the alternative hypothesis.

Lemma 3.3 Suppose Assumptions 2.2-2.4 hold and ΠYW = 1√
n
[Π0, Γ0]. Then, we have:

(i) β̂LS − β̃IV
d→
∫

R
l×mw

∫

R
l×my N

[

0, σ2uΨ
−1
Zυ

]

pdf(x1, x2)dx1dx2 when συu = 0;

(ii) β̂LS − β̃IV
d→
∫

R
l×mw

∫

R
l×my N

[

µ, σ2uΨ
−1
Zυ

]

pdf(x1, x2)dx1dx2 when συu 6= 0

where µ ≡ µ(x1, x2) = Ψ−1
Zυ(x1, x2)(Π0 + Q−1

Z x1)
′Q

1/2
Z M

Q
1/2
Z Γ(x2)

Q
1/2
Z Π0ρυu, ΨZυ ≡

ΨZυ(x1, x2) = (Π0+Q
−1
Z x1)

′Q
1/2
Z M

Q
1/2
Z Γ(x2)

Q
1/2
Z (Π0+Q

−1
Z x1), pdf(x1, x2) is the joint prob-

ability density function of (ψZυ, ψZξ), and Γ(x2) = Γ0 +Q−1
Z x2.

In contrast of Lemma 3.1, observe now that β̂LS − β̃IV converges to a non degenerated random

variable, Ψ̃β, under H
p
0. Though β̂LS is still consistent under H

p
0 despite the lack of identification,

β̂IV is not. The lack of identification then implies that β̂LS − β̂IV = Op(1) under H
p
0. Because
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M
Q

1/2
Z Γ(ψZξ)

Q
−1/2
Z ψZu, is independent of Q

1/2
Z Γ(ψZξ) and ψZυ under H

p
0, the conditional limit-

ing distribution of β̂LS−β̃IV , given (ψZυ, ψZξ), is Gaussian with zero mean. So, its unconditional

null limiting distribution is a mixture of Gaussian processes with zero mean. Under the alternative

hypothesis (συu 6= 0), the conditional limiting distribution of β̂LS − β̃IV , given (ψZυ, ψZξ), is

Gaussian with nonzero mean so that its unconditional limiting distribution is a mixture of Gaussian

processes with nonzero mean.

Let φ0(x1, x2) = [1 + ‖σ−1
u Σ

1/2
υ N

(

0, σ2uΨ
−1
Zυ(x1, x2)

)

‖2]−1 ≤ 1 and φ(x1, x2) = [1 +

‖σ−1
u Σ

1/2
υ N

(

µ(x1, x2)− ρυu, σ
2
uΨ

−1
Zυ(x1, x2)

)

‖2]−1 ≤ 1. Theorem 3.4 characterizes the asymp-

totic distributions of Dp statistics when instruments are local-to-zero.

Theorem 3.4 Suppose Assumptions 2.2-2.4 are satisfied and ΠYW = 1√
n
[Π0, Γ0]. (a) If συu =

0, then we have:

D
p
1

d→ 1

my
χ2(my), D

p
4

d→ χ2(my),

D
p
j

d→ χ2(my)

∫

R
l×mw

∫

R
l×my

φ0(x1, x2)pdf(x1, x2)dx1dx2 ≤ χ2(my)

for j = 2, 3. (b) If συu 6= 0, then we have:

D
p
1

d→ 1

my

∫

R
l×mw

∫

R
l×my

χ2(my; ‖σ−1
u Ψ

1/2
Zυ µ‖2)pdf(x1, x2)dx1dx2,

D
p
4

d→
∫

R
l×mw

∫

R
l×my

χ2(my; ‖σ−1
u Ψ

1/2
Zυ µ‖2)pdf(x1, x2)dx1dx2,

D
p
j

d→
∫

R
l×mw

∫

R
l×my

φ(x1, x2)χ
2(my; ‖σ−1

u Ψ
1/2
Zυ µ‖2)pdf(x1, x2)dx1dx2

≤
∫

R
l×mw

∫

R
l×my

χ2(my; ‖σ−1
u Ψ

1/2
Zυ µ‖2)pdf(x1, x2)dx1dx2

for j = 2, 3, where ΨZυ ≡ ΨZυ(x1, x2) and µ ≡ µ(x1, x2) are defined in Lemma 3.3.

Firstly, we note that under H
p
0 (συu = 0), D

p
1 and D

p
4 are still asymptotically pivotal despite

identification issues. Hence, these tests have correct size with weak instruments. However, D
p
2 and

D
p
3 are boundedly asymptotically pivotal. The upper bound of their limiting distribution correspond

to their asymptotic distribution when identification is strong. So, the usually χ2 critical values are

still applicable to these tests, even though doing so leads to conservative procedures. Clearly, all

proposed Dp-tests can be described as identification-robust. Secondly, when συu 6= 0, D
p
1 and D

p
4
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converge to a mixtures of noncentral χ2 distributions, while D
p
2 and D

p
3 are asymptotically bounded

by a mixture of noncentral χ2 distributions. Hence the tests D
p
1 and D

p
4 are more powerful than D

p
2

and D
p
3 . Moreover, as ΨZυ(x1, x2) > 0 with probability one and µ(x1, x2) 6= 0 with probability

one when Π0ρυu 6= 0, hence the non centrality parameter in the asymptotic distribution of the

statistics is positive with probability one when Π0ρυu 6= 0. This suggests that all tests may still

exhibit when identification is weak. This is conform with the necessary and sufficient condition for

test consistency which was that Πρυu 6= 0 when Π is fixed (does not depend on the sample size

as it the case here). However, if Π0ρυu = 0, the limiting distribution of all statistics is the same

under the null hypothesis and the alternative hypothesis. As a result, the power of the tests cannot

exceed their nominal level in that case. This is particularly the case when Π0 = 0 (complete non

identification of β). An interesting observation also is that even if the parameter of the regressor

which exogeneity is not being tested in the structural is completely unidentified (Γ0 = 0), the tests

may still have power as long as Π0ρυu 6= 0 [see Panels (B)&(C) in Figure 1]. In the other side, if

Π0ρυu 6= 0, the power of all tests is low even when θ is identified or close so [as an illustration of

this, see Panel (D) in Figure 1]. We now study in Section 3.3, the behaviour of the tests in a Monte

Carlo experiment.

3.3. Size and power comparison

We consider the following data generating process (DGP):

y = Y1β1 + Y2β2 +Wθ + u ,

(Y1, Y2,W ) = Z (Π1,Π2,Γ) + (υ1, υ2, ξ) , (3.3)

where Y = [Y1 , Y2] is a n × 2 matrix of regressors of interest. W (here a n × 1 vector)8 is the

endogenous variable which exogeneity is not being tested. Z contains l instruments each generated

i.i.d N(0, 1) and is kept fix within experiment. So, Π1, Π2 and Γ are l-dimensional vectors.

The errors (u, υ1, υ2, ξ) are generated such that:

ui = (1 + ρ2υ1 + ρ2υ2 + ρ2ξ)
−1/2(ε1i + ρυ1ε2i + ρυ2ε3i + ρξε4i),

υ1i = (1 + ρ2υ1)
−1/2(ρυ1ε1i + ε2i), υ2i = (1 + ρ2υ2)

−1/2(ρυ2ε1i + ε3i),

8Note that the results are qualitatively the same when W contains more than one regressor.
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ξi = (1 + ρ2ξ)
−1/2(ρξε1i + ε4i), (ε1i, ε2i, ε3i, ε4i)

′ i.i.d∼ N (0, I4) (3.4)

for all i = 1, . . . , n, −1 ≤ ρυ1 ≤ 1, ρυ2 = ρυ1/
√
3, and ρξ is kept at ρξ = 0.8. From this

parametrization, the partial null exogeneity of Y is then expressed as H
p
0 : ρυ1 = 0. As seen from

(3.4), ξ is not correlated with (υ1, υ2) under H
p
0, but is under the alternative hypothesis. To extend

the model to cases where ξ is locally correlated with (υ1, υ2), as required Assumption 2.4, we

weakened the non correlation assumption between ξ and (υ1, υ2). The results for this setup are

presented in Figure 5 of Appendix B. They indicate that the tests are still valid even for moderate

correlation between ξ and (υ1, υ2).

The values of β1, β2 and θ are set at 2, −3 and 1/2, respectively. Π1, Π2 and Γ are chosen

as: Π1 = τ1Π01, Π2 = τ2Π02, Γ = τΓ0, where [Π01, Π02, Γ0] is obtained by taking the

first three columns of the identity matrix of dimension l. To account for strong, partial and weak

identification of model parameters, we consider six panels for the values of τ1, τ2 and τ as follows:

(A) τ1 = τ2 = τ = 5, i.e. β1, β2 and θ are identified; (B) τ1 = τ2 = 5, τ = 0, so, β1

and β2 are identified but θ is not (partial identification); (C) τ1 = 5, τ2 = τ = 0.1√
n
, i.e. β1 is

identified but β2 and θ are weakly identified; (D) τ1 = τ 2 = 0.1√
n
, τ = 5, hence θ is identified

but β1 and β2 are weakly identified; (E) τ1 = τ2 = 0.5√
n
, τ = 1√

n
, i.e., all model parameters

are weakly identified; and finally (F) τ1 = τ2 = 0, τ = 1√
n

: β1 and β2 are completely non

identified (irrelevant instruments), and θ is weakly identified. The number of instruments l belong

to {3, 10, 20} . Since we have m = 3 endogenous regressors in (3.3), l = 3 corresponds to the

usual “just-identified” setup, while l > 3 corresponds to the “overidentification”. The simulations

are run with sample sizes 100 and 300, while the number of replications is N = 10, 000. In all

cases, the nominal level is set at 5%.

Figures 1- 2 presents the power curves of the tests for n = 100, while Figures 3-4 in Appendix

B is for n = 300. The results are qualitatively the same in terms of level control in both cases.

However, the power improves substantially when n = 300, as expected. First, we observe that all

tests have correct level whether identification is strong, partial or weak. Furthermore, D
p
1 and D

p
4

have approximately a good level even when IVs are weak [for example, see Figure 2 below and

Figure 4 in Appendix B where identification is weak]. However, the same figures show clearly that

D
p
2 and D

p
3 are overly conservative. In the same vain, all tests have similar power when identification

is strong strong (see Panel (A) in Figure 1& 3), but D
p
1 and D

p
4 exhibit more power than D

p
2 and
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D
p
3 when identification is partial or weak. In addition, the results confirm that the tests have power

when the parameter of the regressors which exogeneity is tested (here β) is identified (for example,

see Panel (B)& (C) in Figure 1). But power is low when β is weakly identified, even when θ is

strongly identified (see Panel (D) Figure 1). Overall, the recommendation is to use the tests D
p
1 and

D
p
4 which outperform the others in all possible configurations of model identification.
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Figure 1. Size and power at nominal level 5% when identification is strong or partial, n = 100

Strong identification: Panel A
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Figure 2. Size and power at nominal level 5% when identification is weak, n = 100

Partial identification of θ and complete weak identification of all parameters: Panels D, E and F
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4. Empirical illustration

We consider the return to education model from Card (1995) in Example 2.1. The first-stage speci-

fications for educ and (exper, exper2) are given by

educi = Z ′Π+ Z ′
1iδ1 + υi, (experi, exper

2
i ) = Z ′

iΓ+ Z ′
1iδ1 + ξi, i = 1, . . . , n (4.1)

where Z1 and Z are the same as in (2.4). In Example 2.1, we found that DWH-tests rejected the

joint exogeneity of (educ, exper, exper2), but we do not know if some regressors are exogenous.

In this application, we want to test the exogeneity of educ and (exper, exper2) separately. So,

two null hypotheses are considered: (i) H
p
0 : cov(υi, ui) = 0 for all i (partial exogeneity of

educ) and (ii) H
p
0 : cov(ξi, ui) = 0 for all i [partial exogeneity of (exper, exper2)], where u

is the structural error term in (2.4). Note that in the setup for (i), ξ may be correlated with u [i.e.

(exper, exper2) may be endogenous], while in those for (ii), υ may be correlated with u (i.e.

educ may be endogenous).

Table 1 reports the outcomes of the DWH-tests and the Dp tests proposed in this paper. The

DWH-tests are run under the assumption that the regressors not being tested are exogenous, while

the Dp tests do not require this questionable restriction. It is important to observe that because exper

is generated as exper = qge − 6 − educ, we have cov(experi, ui) = −cov(educi, ui), as age

is exogenous. So, any valid procedure that rejects the partial exogeneity of educ should also reject

those of exper. This is not however the case for the DWH-tests, as they all fail to rejected the partial

exogeneity of (exper, exper2). This result is not surprising because educ is likely endogenous

and DWH procedures do not account for that when testing the exogeneity of (exper, exper2).

The outcomes of the Dp tests indicate strong evidence against the exogeneity of both educ and

(exper, exper2) as showed Table 1. Overall, these results underscore: (1) how the use of DWH

tests to assess partial exogeneity hypotheses may be misleading, and (2) the relevance of using Dp

tests when checking for partial exogeneity.
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Table 1. Testing for partial exogeneity of educ and (exper, exper2)

DWH-tests of the exogeneity of educ by keeping (exper, exper2) exogenous

Statistics Sample value p-value decision

T2 36.62 0.000 reject

H1 18.41 0.000 reject

H2 18.58 0.000 reject

H3 36.08 0.000 reject

DWH-tests of the exogeneity of (exper, exper2) by keeping educ exogenous

Statistics Sample value p-value decision

T2 1.44 0.236 do not reject

H1 2.87 0.238 do not reject

H2 2.89 0.236 do not reject

H3 2.89 0.235 do not reject

Dp-tests of the exogeneity of educ

Statistics Sample value p-value decision

D
p
1 27.52 0.000 reject

D
p
2 9.86 0.002 reject

D
p
3 9.91 0.002 reject

D
p
4 27.23 0.000 reject

Dp-tests of the exogeneity of (exper, exper2)

Statistics Sample value p-value decision

D
p
1 99.05 0.000 reject

D
p
2 151.51 0.000 reject

D
p
3 170.94 0.000 reject

D
p
4 181.38 0.000 reject
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5. Conclusion

In this paper, we propose alternative tests for assessing partial exogeneity in a linear IV regression.

The tests are easy to implement as they only require OLS and IV regressions. We provide an

analysis of their asymptotic behaviour (level and power) which shows that all tests are valid (level

is controlled) whether model parameters are identified or not. So, the proposed tests robust to weak

instruments. Moreover, our analysis indicates that test consistency may still hold over a wide range

of cases where the overall identification fails, provided partial identification is satisfied. However,

all tests have low power when model parameters are completely not identified.

A Monte Carlo experiment confirms our theoretical results. We illustrate our theoretical finding

through the workhorse example of returns to education from Card (1995). Our results clearly indi-

cate that standard exogeneity tests of the type proposed by Durbin (1954), Wu (1973, 1974), and

Hausman (1978) are not appropriate to assess partial exogeneity hypotheses, as they are valid only

when the regressors not being tested are exogenous. For example, we find these tests fail to rejected

the exogeneity of experience variables in this model if education is assumed exogenous. In contrast,

all proposed tests in this paper find strong evidence against the exogeneity of both education and ex-

perience variables, separately. Overall, this application underscores the relevance of using Dp-tests

when checking for partial exogeneity.
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APPENDIX

A. Proofs

PROOF OF LEMMA 2.5 Assume that rank(ΠYW ) = m. First, write ũ and û∗ as:

ũ = u+ (W − W̃ )θ = u+MZξθ + σ̂θPZ û∗, û∗ =MX̄u∗ =MX̄u+MX̄MZξθ (A.1)

where X̄ = [Y, W̄ ] and σ̂θ = σ̂uξθ/σ̂
2
u. Hence, we have Z ′ũ/n = Z ′u/n + σ̂θZ

′û∗/n and Z ′û∗/n =

Z ′MX̄u/n + Z ′MX̄MZξθ/n. When Assumptions 2.2-2.4 are satisfied and if further H0 holds, then

X̄ ′u/n
p→ (σ′

υu, 0)
′ = 0 and

X̄ ′X̄/n
p→ QX̄ =





Π′QZΠ+Συ Π′QZΓ

Γ′QZΠ Γ′QZΓ



 > 0, Z ′X̄/n
p→ QZX̄ =

(

QZΠ QZΓ

)

.

This then implies that Z ′MX̄u/n = Z ′u/n− (Z ′X̄/n)(X̄ ′X̄/n)−1(X̄ ′u/n)
p→ 0. Since υ′ξ/n

p→ 0 from

Assumption 2.4-(a), we also getZ ′MX̄MZξθ/n
p→ 0 so thatZ ′û∗/n = Z ′MX̄u/n+Z

′MX̄MZξθ/n
p→ 0.

So, we have σ̂uξ = û′∗W/(n − m) − (û′∗Z/n)(Z
′Z/n)−1(ZW/(n − m)) = û′∗W/(n − m) + op(1)

p→

σ∗
uξ = σuξ + θ′Σξ and σ̂2

u
p→ σ∗2

u = σ2
u + σuξθ. From Assumption 2.4-(b), we have σuξ = −θ′Σξ so that

σ∗
uξ = 0 and σ∗2

u = σ2
u − θ′Σξθ > 0 (by Assumption 2.2). Hence, we have σ̂θ = σ̂uξθ/σ̂

2
u

p→ σθ = 0 and

Z ′ũ/n = Z ′u/n + σ̂θZ
′û∗/n

p→ 0. We shall now show that W̃ ′ũ/n
p→ 0 and Y ′ũ/n

p→ 0. Observe first

that W̃ ′ũ/n = Γ̃′Z ′ũ/n. Since Γ̃
p→ Γ, and from (??) Z ′ũ/n

p→ 0, we have W̃ ′ũ/n
p→ 0. By the same

way, we get Y ′ũ/n = Y ′(u +MZξθ + σ̂θPZ û∗)/n
p→ συu. As συu = 0 under Assumption H0, it is clear

that Y ′ũ/n
p→ 0. The proof is similar for weak values of ΠYW , i.e., ΠYW = 1√

n
[Π0, Γ0].

PROOF OF LEMMA 2.6 Firstly, from Lemma 2.6, we have ũ = u +MZξθ + σ̂θPZ û∗ = u +MZξθ +

PZPû∗
Wθ + op(1), where Pû∗

= û∗(û
′
∗û∗)

−1û′∗ is the projection matrix in the space spanned by the

residuals û∗. So, we can write Z⊥′

ũ⊥/
√
n and υ⊥

′

ũ⊥/
√
n as:

Z⊥′

ũ⊥/
√
n = Z⊥′

u⊥/
√
n+ Z⊥′

MZξθ/
√
n+ Z⊥′

PZPû∗
Wθ/

√
n (A.2)

υ⊥
′

ũ⊥/
√
n = υ⊥

′

u⊥/
√
n+ υ⊥

′

MZξθ/
√
n+ υ⊥

′

PZPû∗
Wθ/

√
n. (A.3)

Observe that Z⊥′

MZ = Z ′MZ = 0 and υ⊥
′

MZξθ/
√
n = op(1) when Assumption 2.4-(a) holds, hence
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(A.2)-(A.3) become:

Z⊥′

ũ⊥/
√
n = Z⊥′

u⊥/
√
n+ Z⊥′

PZPû∗
Wθ/

√
n (A.4)

υ⊥
′

ũ⊥/
√
n = υ⊥

′

u⊥/
√
n+ υ⊥

′

PZPû∗
Wθ/

√
n+ op(1). (A.5)

As Z ′û∗/n = op(1), υ
⊥′

Z/n = op(1) and û′∗W/
√
n = Op(1), we have υ⊥

′

PZPû∗
Wθ/

√
n =

(υ⊥
′

Z/n)(Z ′Z/n)−1)(Z ′û∗/n)(û
′
∗û∗/n)

−1(û′∗W/
√
n) = 0p(1). Moreover, since Γ̃

p→ Γ (with Γ = 0

when ΠYW = 1√
n
[Π0, Γ0] ), we have υ′W̃/n = (υ′Z/n)Γ̃

p→ 0 so that υ⊥
′

u⊥/
√
n = υ′u/

√
n −

(υ′W̃/n)(W̃ ′W̃/n)−1Γ̃(Z ′/
√
n) = υ′u/

√
n + op(1). By the same way, we get Z⊥′

PZPû∗
Wθ/

√
n =

(Z⊥′

Z/n)(Z ′Z/n)−1)(Z ′û′∗/n)(û
′
∗û∗/n)

−1(û′∗Wθ/
√
n) = op(1) so that we can express (A.4)-(A.5) as:





Z⊥′

ũ⊥/
√
n

υ⊥
′

ũ⊥/
√
n



 =





A1n 0

0 Imy









Z ′u/
√
n

υ′u/
√
n



+ op(1) (A.6)

where A1n = Il − (Z ′Z/n)Γ̃(Γ̃′(Z ′Z/n)Γ̃)−1Γ̃′ and





Z ′u/
√
n

υ′u/
√
n





d→





ψZu

ψυu



 ∼

N



0, σ2
u





QZ 0

0 Συ







 by Assumption 2.3. We shall now distinguish two cases: (1) rank(ΠYW ) = m,

and (2) ΠYW = 1√
n
[Π0, Γ0].

(1) Suppose first that rank(ΠYW ) = m. Then, A1n
p→ A1 = Il − QZΓ(Γ

′QZΓ)
−1Γ′ =

Q
1/2
Z M

Q
1/2
Z Γ

Q
−1/2
Z and from (A.6) we have





Z⊥′

ũ⊥/
√
n

υ⊥
′

ũ⊥/
√
n





d→





ψZ⊥ũ

ψυ⊥ũ



 =





Q
1/2
Z M

Q
1/2
Z Γ

Q
−1/2
Z 0

0 Imy









ψZu

ψυu





∼ N



0, σ2
u





QZ⊥ 0

0 Συ







 , QZ⊥ = Q
1/2
Z M

Q
1/2
Z Γ

Q
1/2
Z .

(2) Suppose now that ΠYW = 1√
n
[Π0, Γ0] and write

√
nΓ̃ = Γ0 + (Z ′Z/n)−1(Z ′ξ/

√
n) −

σ̂θ(Z
′Z/n)−1(Z ′û∗/

√
n). From the proof in Lemma 2.5, we have σ̂θ = σ̂uξθ/σ̂

2
u

p→ σθ = 0. From

Assumption 2.3, we also have (Z ′Z/n)−1(Z ′ξ/
√
n)

d→ Q−1
Z ψZξ. We now focus on Z ′û∗/

√
n. Let us

decomposeMX̄ as MX̄ =MW̄ − PMW̄ Y and write Z ′û∗/
√
n as:

Z ′û∗/
√
n = Z ′MX̄u∗/

√
n = Z ′MW̄u∗/

√
n− (Z ′MW̄Y/n)(Y

′MW̄Y/n)
−1(Y ′MW̄u∗/

√
n)

= [Il − (Z ′MW̄Y/n)(Y
′MW̄Y/n)

−1Π′]Z ′MW̄u∗/
√
n+

(Z ′MW̄Y/n)(Y
′MW̄Y/n)

−1υ′u∗/
√
n. (A.7)
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Since Z ′MW̄u∗/
√
n = [Il − (Z ′Z/n)Γ̂(Γ̂′(Z ′Z/n)Γ̂)−1Γ̂′]Z ′u∗/

√
n = [Il −

(Z ′Z/n)Γ̂(Γ̂′(Z ′Z/n)Γ̂)−1Γ̂′]Z ′u/
√
n and υ′u∗/

√
n = υ′u/

√
n + υ′MZξθ/

√
n = υ′u/

√
n + op(1)

[because υ′MZξθ/
√
n = op(1) under H0 ], we can express (A.7) as:

Z ′û∗/
√
n = A2nZ

′u/
√
n+A3nυ

′u/
√
n+ op(1) (A.8)

where A2n = [Il − (Z ′MW̄Y/n)(Y
′MW̄Y/n)

−1Π′][Il − (Z ′Z/n)Γ̂(Γ̂′(Z ′Z/n)Γ̂)−1Γ̂′] and A3n =

(Z ′MW̄Y/n)(Y
′MW̄Y/n)

−1. As ΠYW = 1√
n
[Π0, Γ0], we find: Z ′MW̄Y/n

p→ 0 Y ′MW̄Y/n
p→

Συ, A2n
p→ A2 = Q

1/2
Z M

Q
1/2
Z Γξ

Q
−1/2
Z where Γξ = Γ0 + Q−1

Z ψZξ, and A3n
p→ 0. Hence,

we get and Z ′û∗/
√
n

d→ Q
1/2
Z M

Q
1/2
Z Γξ

Q
−1/2
Z ψZu and

√
nΓ̃

d→ Γ(ψZξ) = Q
−1/2
Z (Q

1/2
Z Γξ −

σθMQ
1/2
Z Γξ

Q
−1/2
Z ψZu) ≡ Γξ (since σθ = 0). Moreover, we have A1n

d→ A1 = Il −

QZΓ(ψZξ)(Γ(ψZξ)
′QZΓ(ψZξ))

−1Γ(ψZξ)
′ = Q

1/2
Z M

Q
1/2
Z Γ(ψZξ)

Q
−1/2
Z and (A.6) then implies that





Z⊥′

ũ⊥/
√
n

υ⊥
′

ũ⊥/
√
n





d→





ψZ⊥ũ

ψυ⊥ũ



 =





Q
1/2
Z M

Q
1/2
Z Γ(ψZξ)

Q
−1/2
Z 0

0 Imy









ψZu

ψυu



 . (A.9)

Because ψZ⊥ũ = Q
1/2
Z M

Q
1/2
Z Γ(ψZξ)

Q
−1/2
Z ψZu, it is clear thatQ

−1/2
Z ψZ⊥ũ is independent ofQ

1/2
Z Γ(ψZξ).

Since QZ is fixed, ψZ⊥ũ is also independent of Q
1/2
Z Γ(ψZξ). So, conditionally on Q

1/2
Z Γ(ψZξ) =

Q
1/2
Z Γ(x2), (A.9) implies that





ψZ⊥ũ

ψυ⊥ũ



 |
Q

1/2
Z Γ(x2)

∼ N
[

0, σ2
udiag(Q

1/2
Z M

Q
1/2
Z Γ(x2)

Q
1/2
Z , Συ)

]

. (A.10)

By integrating (A.10) with respect to all possible realization of ψZξ, the result follows.

PROOF OF LEMMA 3.1 (i) Assume first that συu = 0. We have

β̂LS − β̃IV = (Y ⊥′

Y ⊥/n)−1Y ⊥′

ũ⊥/n− (Y ⊥′

PZ⊥Y ⊥/n)−1Y ⊥′

PZ⊥ ũ⊥/n,

√
n(β̂LS − β̃IV ) = (Y ⊥′

Y ⊥/n)−1Y ⊥′

ũ⊥/
√
n− (Y ⊥′

PZ⊥Y ⊥/n)−1Y ⊥′

PZ⊥ ũ⊥/
√
n,

Y ⊥′

Y ⊥/n = Y ′Y/n− (Y ′Z/n)
√
nΓ̃[

√
nΓ̃′(Z ′Z/n)

√
nΓ̃]−1

√
nΓ̃′(Z ′Y/n),

Y ⊥′

PZ⊥Y ⊥/n = (Y ′MW̃Z/n)(Z
′MW̃Z/n)

−1(Z ′MW̃Y/n),

Y ⊥′

ũ⊥/n = Y ′ũ/n− (Y ′W̃/n)(W̃ ′W̃/n)−1(W̃ ′ũ/n),

Y ⊥′

PZ⊥ ũ⊥/n = (Y ′MW̃Z/n)(Z
′MW̃Z/n)

−1(Z ′MW̃ ũ/n).
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From Lemmas 2.5-2.6, it easy to see that Y ⊥′

Y ⊥/n
p→ Σπ = Π′QZ⊥Π + Συ, Y

⊥′

PZ⊥Y ⊥/n
p→

Σ̃π = Π′QZ⊥Π, Y ⊥′

ũ⊥/n = Π′Z⊥′

ũ⊥/n + υ⊥
′

ũ⊥/n
p→ 0, and Y ⊥′

PZ⊥ ũ⊥/n = Π′Z⊥′

ũ⊥/n +

υ⊥
′

PZ⊥ ũ⊥/n
p→ 0. So, we find β̂LS − β̃IV

p→ 0. Moreover, from results in by Lemma 2.6, we have

Y ⊥′

ũ⊥/
√
n = Π′Z⊥′

ũ⊥/
√
n + υ⊥

′

ũ⊥/
√
n

d→ Π′ψZ⊥ũ + ψυ⊥ũ = Π′QZ⊥Q−1
Z ψZu + ψυu, and

Y ⊥′

PZ⊥ ũ⊥/
√
n = Π′Z⊥′

ũ⊥/
√
n + υ⊥

′

PZ⊥ ũ⊥/
√
n

d→ Π′ψZ⊥ũ = Π′QZ⊥Q−1
Z ψZu. So, from Lemma

2.6-(i), we get
√
n(β̂LS − β̃IV )

d→ Ψβ where

Ψβ = Σ−1
π (Π′QZ⊥Q−1

Z ψZu + ψυu)− Σ̃−1
π Π′QZ⊥Q−1

Z ψZu ∼ N
[

0, σ2
u(Σ̃

−1
π −Σ−1

π )
]

.

(ii) Suppose now that συu 6= 0. It is easy to see from the above proof that Y ⊥′

PZ⊥ ũ⊥/n
p→ 0,

Y ⊥′

ũ⊥/n
p→ συu 6= 0 so that we obtain β̂LS − β̃IV

p→ Σ−1
π συu 6= 0. This then entails that

√
n(β̂LS − β̃IV )

p→ ∞.

PROOF OF THEOREM 3.2 Let συu = 0 and recall that

D
p
j = κj(β̂LS − β̂IV )

′Σ̂−1
j (β̂LS − β̂IV ) (A.11)

where Σ̂j and κj , j = 1, 2, 3, 4 are defined in (3.1). By noting that all σ̂2, σ̃
2, σ̃2

2
p→ σ2

u and by Lemma

3.1-(i), we have κj(β̂LS − β̂IV )
d→ Ψβ ∼ N

[

0, σ2
u(Σ̃

−1
π −Σ−1

π )
]

for j = 2, 3, 4;
√
κ1(β̂LS − β̂IV )

d→
1√
my
Ψβ ∼ 1√

my
N

[

0, σ2
u(Σ̃

−1
π −Σ−1

π )
]

, we have D
p
1

d→ 1
myσ2

u
Ψ ′
β(Σ̃

−1
π − Σ−1

π )−1Ψβ ∼ 1
my
χ2(my),

D
p
j

d→ 1
σ2
u
Ψ ′
β(Σ̃

−1
π −Σ−1

π )−1Ψβ ∼ χ2(my) for all j = 2, 3, 4.

If συu 6= 0, we have D
p
j

d→ +∞, for all j = 1, 2, 3, 4, by applying directly results in Lemma 3.1-(ii).

PROOF OF LEMMA 3.3 (i) Assume first that συu = 0 and express β̂LS − β̃IV as:

β̂LS − β̃IV = (Y ⊥′

Y ⊥/n)−1(Y ⊥′

ũ⊥/n)− (Y ⊥′

PZ⊥Y ⊥)−1Y ⊥′

PZ⊥ ũ⊥. (A.12)

Since ΠYW = 1√
n
[Π0, Γ0], it is easy to see that Y ⊥′

Y ⊥/n
p→ Συ and Y ⊥′

ũ⊥/n
p→ 0, so that the first

term in the right hand sight of (A.12) is op(1). Hence, β̂LS − β̃IV = −(Y ⊥′

PZ⊥Y ⊥)−1Y ⊥′

PZ⊥ ũ⊥ +

op(1). Now, write Y ′PZ⊥Y = (Y ⊥′

Z⊥/
√
n)(Z⊥′

Z⊥/n)−1(Z⊥′

Y ⊥/
√
n) and Y ⊥′

PZ⊥ ũ⊥ =

(Y ⊥′

Z⊥/
√
n)(Z⊥′

Z⊥/n)−1(Z⊥′

ũ⊥/
√
n). By observing that we now have: Z⊥′

Z⊥/n
p→

Q
1/2
Z M

Q
1/2
Z Γ(ψZξ)

Q
1/2
Z , Z⊥′

Y ⊥/
√
n

d→ Q
1/2
Z M

Q
1/2
Z Γ(ψZξ)

Q
1/2
Z Π0 + Q

1/2
Z M

Q
1/2
Z Γ(ψZξ)

Q
−1/2
Z ψZυ =

(Q
1/2
Z M

Q
1/2
Z Γ(ψZξ)

Q
1/2
Z )(Π0 +Q−1

Z ψZυ), and Z⊥′

ũ⊥/
√
n

d→ Q
1/2
Z M

Q
1/2
Z Γ(ψZξ)

Q
−1/2
Z ψZu ( by Lemma

26



2.6), it follows that Y ′PZ⊥Y
d→ ΨZυ = (Π0 + Q−1

Z ψZυ)
′Q

1/2
Z M

Q
1/2
Z Γ(ψZξ)

Q
1/2
Z (Π0 + Q−1

Z ψZυ) and

Y ⊥′

PZ⊥ ũ⊥
d→ (Π0 +Q−1

Z ψZυ)
′Q

1/2
Z M

Q
1/2
Z Γ(ψZξ)

Q
−1/2
Z ψZu. Thus we get

β̂LS − β̃IV
d→ Ψ̃β = −Ψ−1

Zυ(Π0 +Q−1
Z ψZυ)

′Q
1/2
Z M

Q
1/2
Z Γ(ψZξ)

Q
−1/2
Z ψZu. (A.13)

Because M
Q

1/2
Z Γ(ψZξ)

Q
−1/2
Z ψZu is independent of Q

1/2
Z Γ(ψZξ) and ψZu is also independent of ψZυ un-

der H
p
0, with a little manipulation (and using results in Lemma 2.6-(ii)), we find that conditionally on

(ψZυ , ψZξ) = (x1, x2),

Ψ̃β |
ψZυ=x1,ψZξ=Q

1/2
Z Γ(x2)

∼ N
[

0, σ2
uΨ

−1
Zυ(x1, x2)

]

(A.14)

where ΨZυ(x1, x2) = (Π0 + Q−1
Z x1)

′Q
1/2
Z M

Q
1/2
Z Γ(x2)

Q
1/2
Z (Π0 + Q−1

Z x1). By taking the integral with

respect to all possible realizations (ψZυ, ψZξ) = (x1, x2), the result follows.

(ii) Suppose now that συu 6= 0. The proof is similar to those in (i). Firstly, note that we now have

Y ⊥′

ũ⊥/n
p→ συu and the other limits in (i) do not change. So, we have

β̂LS − β̃IV
d→ Σ−1

υ συu + Ψ̃β . (A.15)

Now, observe that M
Q

1/2
Z Γ(ψZξ)

Q
−1/2
Z ψZu is still independent of Q

1/2
Z Γ(ψZξ). However, ψZu and ψZυ

are correlated. Since (ψZu, ψZυ, ψZξ) is Gaussian by Assumption 2.3-(b), we have E(ψZu |ψZυ, ψZξ

) = E(ψZu |ψZυ
) = ψZυρυu where ρυu = Σ−1

υ συu. As a result, we have E(ρυu +

Ψ̃β |ψZυ, ψZξ
) = ρυu − Ψ−1

Zυ(Π0 + Q−1
Z ψZυ)

′Q
1/2
Z M

Q
1/2
Z Γ(ψZξ)

Q
−1/2
Z ψZυρυu = Ψ−1

Zυ(Π0 +

Q−1
Z ψZυ)

′Q
1/2
Z M

Q
1/2
Z Γ(ψZξ)

Q
1/2
Z Π0ρυu ≡ µ. So, we get

ρυu + Ψ̃β |
ψZυ=x1,ψZξ=Q

1/2
Z Γ(x2)

∼ N
[

µ(x1, x2), σ
2
uΨ

−1
Zυ(x1, x2)

]

(A.16)

where µ(x1, x2) = Ψ−1
Zυ(x1, x2)(Π0 + Q−1

Z x1)
′Q

1/2
Z M

Q
1/2
Z Γ(x2)

Q
1/2
Z Π0ρυu. By integrating (A.16) with

respect to all possible realizations of (ψZυ, ψZξ), the result follows.

PROOF OF THEOREM 3.4 Note first that we still have σ̂2, σ̂2
2
p→ σ2

u when ΠYW = 1√
n
[Π0, Γ0], whether

συu = 0 or not. Moreover, we can write σ̃2 as:

σ̃2 = (y − Y β̂2SLS)
′MW̃ (y − Y β̂2SLS)/n

= [y − Y β̂LS − Y (β̂2SLS − β̂LS)]
′MW̃ [y − Y β̂LS − Y (β̂2SLS − β̂LS)]/n

= σ̂2 − 2(y − Y β̂LS)
′Y ⊥(β̂2SLS − β̂LS)/n+ (β̂2SLS − β̂LS)

′(Y ⊥′

Y ⊥/n)(β̂2SLS − β̂LS)

27



= σ̂2 + (β̂2SLS − β̂LS)
′(Y ⊥′

Y ⊥/n)(β̂2SLS − β̂LS) (A.17)

where the last equality holds because (y− Y β̂LS)
′Y ⊥ = 0. So, it follows from Lemma 3.3 that σ̃2 d→ σ̄2

u =

σ2
u + Ψ̃′

βΣυΨ̃β = σ2
u(1 + σ−2

u Ψ̃′
βΣυΨ̃β) ≥ σ2

u, where Ψ̃β is defined by (A.13).

Suppose that συu = 0. From Lemma 3.3-(i), we have β̂LS − β̃IV
d→ Ψ̃β so that

D
p
1

d→ 1

myσ2
u

Ψ̃′
βΨZυΨ̃β , D

p
4

d→ 1

σ2
u

Ψ̃′
βΨZυΨ̃β , (A.18)

D
p
j

d→ σ2
zυ

σ2
u

Ψ̃′
βΨZυΨ̃β , j = 2, 3; σ2

zυ = (1 + σ−2
u Ψ̃′

βΣυΨ̃β)
−1 ≤ 1. (A.19)

Because M
Q

1/2
Z Γ(ψZξ)

Q
−1/2
Z ψZu is independent of Q

1/2
Z Γ(ψZξ) and ψZu is also independent of

ψZυ under H
p
0, From (A.14) we have Ψ̃β |

ψZυ=x1,ψZξ=Q
1/2
Z Γ(x2)

∼ N
[

0, σ2
uΨ

−1
Zυ(x1, x2)

]

so that

1
σ2
u
Ψ̃′
βΨZυΨ̃β |

ψZυ=x1,ψZξ=Q
1/2
Z Γ(x2)

∼ χ2(my). Hence, we have D
p
1 |

ψZυ=x1,ψZξ=Q
1/2
Z Γ(x2)

d→
1
my
χ2(my), D

p
4 |

ψZυ=x1,ψZξ=Q
1/2
Z Γ(x2)

d→ χ2(my), and D
p
2 , D

p
3 |

ψZυ=x1,ψZξ=Q
1/2
Z Γ(x2)

d→

σ2
zυ(x1, x2)χ

2(my). As the conditional asymptotic distribution of D
p
1 and D

p
4 does not depend

on (x1, x2), we have D
p
1

d→ 1
my
χ2(my), D

p
4

d→ χ2(my), unconditionally. However, the con-

ditional asymptotic distribution of D
p
2 and D

p
3 depends on (x1, x2) through σ2

zυ , the uncondi-

tional distribution is obtained by integrating with respect to possible values of (x1, x2); where

σ2
zυ |x1, x2

∼ φ0(x1, x2) = [1 + σ−2
u N

(

0, σ2
uΨ

−1
Zυ(x1, x2)

)′
ΣυN

(

0, σ2
uΨ

−1
Zυ(x1, x2)

)

]−1 =

[1 + ‖σ−1
u Σ

1/2
υ N

(

0, σ2
uΨ

−1
Zυ(x1, x2)

)

‖2]−1. So, part (a) and (b) of Theorem 3.4 follow.

Suppose that συu 6= 0. From Lemma 3.3-(ii), we have β̂LS − β̃IV
d→ ρυu + Ψ̃β so that

D
p
1

d→ 1

myσ2
u

(ρυu + Ψ̃β)
′ΨZυ(ρυu + Ψ̃β), D

p
4

d→ 1

σ2
u

(ρυu + Ψ̃β)
′ΨZυ(ρυu + Ψ̃β),

D
p
j

d→ σ2
zυ

σ2
u

(ρυu + Ψ̃β)
′ΨZυ(ρυu + Ψ̃β), j = 2, 3. (A.20)

Furthermore, we can see from (A.16) that σ2
zυ|x1, x2

∼ φ(x1, x2) =

[1 + ‖σ−1
u Σ

1/2
υ N

(

µ(x1, x2)− ρυu, σ
2
uΨ

−1
Zυ(x1, x2)

)

‖2]−1 and D
p
1 |x1,x2

d→
1
my
χ2(my ; ‖σ−1

u Ψ
1/2
Zυ µ(x1, x2)‖2), D

p
4 |x1,x2

d→ χ2(my ; ‖σ−1
u Ψ

1/2
Zυ µ(x1, x2)‖2) and D

p
2 , D

p
3 |x1,x2

d→

φ(x1, x2)χ
2(my ; ‖σ−1

u Ψ
1/2
Zυ µ(x1, x2)‖2). Part (c) and (d) of Theorem 3.4 follow by integrating with

respect (ψZυ , ψZξ).

B. Additional simulation results
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Figure 3. Size and power at nominal level 5% when identification is strong or partial, n = 300

Strong and partial identification: Panels A and C
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Figure 4. Size and power at nominal level 5% when identification is weak, n = 300

Partial identification of θ : Panels E and F
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Figure 5. Size and power at nominal level 5% when the reduced form errors are correlated under the null hypothesis
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