
Munich Personal RePEc Archive

Does multimarket contact facilitate tacit

collusion? inference on conduct

parameters in the airline industry

Ciliberto, Federico and Williams, Jonathan

University of Virginia, University of Georgia

16 June 2012

Online at https://mpra.ub.uni-muenchen.de/39515/

MPRA Paper No. 39515, posted 18 Jun 2012 02:53 UTC



Does Multimarket Contact Facilitate Tacit Collusion?
Inference on Conduct Parameters in the Airline

Industry.�

Federico Cilibertoy

University of Virginia

Jonathan W. Williamsz

University of Georgia

June 2012

Abstract

We provide empirical evidence to support the hypothesis that multimarket con-
tact facilitates tacit collusion in the US airline industry using two complementary
approaches. First, we show that the more extensive is the overlap in the markets that
the two �rms serve, i) the more �rms internalize the e¤ect of their pricing decisions on
the pro�t of their competitors by reducing the discrepancy in their prices, and ii) the
greater the rigidity of prices over time.
Next, we develop a �exible model of oligopolistic behavior, where conduct para-

meters are modeled as functions of multimarket contact. We �nd i) carriers with
little multimarket contact do not cooperate in setting fares, while we cannot reject the
hypothesis that carriers serving many markets simultaneously sustain almost perfect
coordination; ii) cross-price elasticities play a crucial role in determining the impact of
multimarket contact on collusive behavior and equilibrium fares; iii) marginal changes
in multimarket contact matter only at low or moderate levels of contact; iv) assuming
that �rms behave as Bertrand-Nash competitors leads to biased estimates of marginal
costs.
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1 Introduction

Detecting tacit collusion is a central theme of research in empirical industrial organization

(Jacquemin and Slade [1989], Porter [2005], Harrington [2008]). In most instances, tacit

collusion leads oligopolistic �rms to monopolize a market, leading to reduced and ine¢cient

equilibrium output, higher prices, and lower consumer welfare.1 Not surprisingly, then,

detecting collusion is a fundamental objective of antitrust agencies in both Europe and the

United States. In the US, collusion is prohibited under the Sherman Act.2

Identifying collusive behavior poses di¢cult econometric challenges. If we see all �rms

charging the same price, is it because they are colluding and charging the monopoly price,

or are they competing aggressively against each other while facing similar costs? If one �rm

raises its prices and its competitors respond by raising their prices as well, can we conclude

that �rms in this market are colluding? Or should we be worried about conscious parallelism,

whereby it may be rational to follow the anticompetitive lead of one�s rival if the �rm believes

that the rival has better information about market conditions (Porter and Zona [2008])?3 To

our knowledge the antitrust agencies have only succeded in proving collusion with the help of

law enforcement agencies. For example, in the case of lysine price-�xing conspiracy (White

[2001]), the intervention of the FBI was required to prove (explicit) collusive behavior. The

objective of our paper is to introduce a diagnostic test of collusive behavior when a potential

facilitator of collusion (e.g. multimarket contact) can be identi�ed. Analogously to previous

tests of collusion, hard evidence is still crucial to de�nitely prove collusive behavior.

1A notable exception, Fershtman and Pakes [2000] show that collusive pricing can lead to increased entry
and welfare-improving product variety.

2Under Section 1 of the Sherman Act, any cartel or cartel-like behavior is �per se� illegal. Other practices,
where, for example, �rms might appear to be tacitly colluding, are examined under a rule of reason analysis.
Probably the most famous instance when the antitrust agencies were able to detect collusion is the lysine
price-�xing conspiracy. As reported by White [2001], in October 1996 the Archer Daniels Midland Company
(ADM) pleaded guilty to criminal price �xing with respect to sales of lysine and agreed to pay a $70 million
�ne.

3More generally, the identi�cation problem that we face when trying to detect collusion is conceptually the
same as the one that Manski [1993] called the �re�ection� problem. Firms might be charging the same prices
because of exogenous (contextual) e¤ects; for example, they o¤er similar products, or because of correlated
e¤ects, for example, they face similar (unobservable to the econometrician) marginal costs, or because they
do actually collude (endogenous e¤ects).
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Previous work has identi�ed collusive behavior by using variation in costs (Rosse [1970],

Panzar and Rosse [1987], Baker and Bresnahan [1988]),4 rotations of demand (Bresnahan

[1982], Lau [1982]), taxes (Ashenfelter and Sullivan [1987]), conduct regimes (Porter [1983]),

and product entry and exit (Bresnahan [1987], Nevo [2001]).5 Here, we propose a di¤erent

identi�cation strategy.

We identify collusive behavior by using variation in multimarket contact across airline

markets. Multimarket contact is de�ned as the number of markets in which �rms encounter

each other.6 In Bernheim and Whinston�s [1990] words, multimarket contact serves to pool

the incentive constraints from all the markets served by the two �rms. That is, the more

extensive is the overlap in the markets that the two �rms serve, the larger are the bene�ts

of collusion and the costs from deviating from a collusive agreement.7

We quantify multimarket contact using the measure �rst introduced by Evans and Kes-

sides [1994] (EK, from here on). Multimarket contact between any pair of airline carriers is

equal to the total number of markets that two airlines serve concomitantly. For example, if

American and Delta serve 200 markets in common, then this variable is equal to 200 for the

American-Delta pair.

We begin our empirical analysis with a reduced form analysis that replicates and extends

EK. We study the correlation between the average multimarket contact among �rms in a

market and their prices. The main identi�cation concern is whether average multimarket

contact is exogenous.8 Bernheim and Whinston [1990] think of multimarket contact as

an �external factor�; however, unobservable heterogeneity likely determines both prices,

4See Weyl [2009] for a discussion on the identi�cation of conduct parameters using variation in costs. See
Salvo [2010] for a recent work that uses conduct parameters to identify market power under the threat of
entry.

5There is also an important literature on detecting collusion in auctions, which presents its own econo-
metric challenges. See Hendricks and Porter [1989] for more on that literature.

6The de�nition of multi-market contact is attributed to Corwin Edwards; see Bernheim and Whinston
[1990].

7If, for example, two �rms interact in many markets, then they know that if they deviate from collusive
behavior in one market, they will be punished by the other �rms in all the markets where they interact.

8This is a well-recognized problem in the empirical literature on multimarket contact. Waldfogel and
Wulf [2006] use the enactment of the Telecommunication Act of 1996 to identify the e¤ect of multimarket
contact.
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entry, and exit decisions (Ciliberto, Murry, and Tamer [2012]) and, consequently, average

multimarket contact. We instrument for the average multimarket contact variable using a

unique and original dataset on the number of gates controlled by each airline at airports in

the US (Ciliberto and Williams [2010] and Williams [2012]). The validity of the instrument

rests on the fact that the number of gates an airline controls at an airport is naturally

correlated with the decision to serve a market by that airline but is not easily adjusted due

to the nature of airport-airline leasing agreements.

In our reduced-form analysis, we generally con�rm the �ndings of EK. EK�s main conclu-

sion was that the positive relationship between multi-market contact and prices was consis-

tent with the hypothesis that airlines with a high degree of multi-market contact refrain from

initiating aggressive pricing actions in any given market to avoid intense price competition

in all the other routes they serve concomitantly. We also �nd that multimarket contact is as-

sociated with higher equilibrium fares using both a �xed-e¤ects and instrumental-variables

approach. We also �nd that the relationship between multimarket contact and prices is

stronger when we use the instrumental variable approach, con�rming that average multi-

market contact is endogenous.

Next, in the spirit of Harrington [2008], we provide two screening tests of the null hy-

pothesis that pair-speci�c multimarket contact facilitates implicit collusive behavior among

airlines. These tests are based on the theoretical work of Werden and Froeb [1994] and Athey,

Bagwell, and Sanchirico [2004]. The test based on Werden and Froeb [2004] examines dif-

ferences in the prices charged by �rms in a market with di¤erentiated products, and exploits

the notion that colluding �rms internalize the e¤ect of their pricing decisions on the pro�t

of their competitors. The test based on Athey, Bagwell, and Sanchirico [2004] examines the

variation in the prices that two �rms charge over time in a market. It exploits the notion

that rigid prices can arise to facilitate the enforcement of a collusive agreement. Neither of

the two tests leads to the rejection of the hypothesis that an increase in multimarket contact

is associated with a collusive behavior.

Finally, in the structural analysis we estimate a �exible model of oligopolistic behavior,
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where conduct parameters are modeled as functions of pair-speci�c multimarket contact. Our

modeling strategy implements an idea �rst proposed by Nevo [1998], who o¤ers a constructive

synthesis of the two main methodological ways to identify collusion.9 The �rst line of research

(for example, Panzar and Rosse [1987], Bresnahan [1982], Ashenfelter and Sullivan [1987],

and Porter [1983]) identi�es collusive behavior by estimating conduct parameters, which

reveals whether �rms compete on prices or on quantities, or whether they collude.10 The

second line of research, which started with Bresnahan [1987], estimates di¤erent behavioral

models and compares how these models �t the observed data (Gasmi, La¤ont, and Vuong

[1992], Nevo [2001]). We take some ingredients from the �rst line of research (the conduct

parameters) and nest them into the modeling framework proposed by the second line of

research. The main identi�cation concern in the structural analysis is the usual one, with

prices and quantities determined simultaneously. We use the same exogenous variation in

the number of gates that airlines control at airports to instrument for prices and market

shares.

We �nd that carriers with little multimarket contact (e.g. Delta and Alaska served 35

markets concurrently in the second quarter of 2007) do not cooperate in setting fares. Car-

riers with a signi�cant amount of multimarket contact (e.g. Delta and US Air served 1150

markets concurrently in the second quarter of 2007) can sustain near-perfect cooperation in

setting fares. Thus, for very high levels of multimarket contact, where �rms are already

perfectly coordinating on prices, there is very little impact from an increase in multimar-

ket contact. However, for low or moderate levels of contact, there is a signi�cant increase

in fares. We also �nd that the standard assumption that �rms behave as Bertrand-Nash

competitors leads to marginal cost estimates 40 percent higher than when we use a more

�exible behavioral model that allows �rms to behave di¤erently depending on the extent of

multimarket contact. Finally, we demonstrate the important role that cross-price elasticities

play in determining the impact of multimarket contact on equilibrium fares. If two goods

9This type of approach that looks for identifying potential facilitators of collusion in the industry has also
been recently advocated by Berry and Haile [2010].
10See Bresnahan [1987] for a superb review of the early empirical work in industrial organization.
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are close substitutes, then cooperation in setting fares will result in a larger change from the

competitive outcome than in cases where two goods are not such close substitutes.

Our paper is related to previous research that studies the impact of multimarket contact on

the strategic decisions of �rms (Feinberg [1985], Jans and Rosenbaum [1997], Singal [1996],

Parker and Roller [1997], Fernandez and Marin [1998], Busse [2000], Waldfogel and Wulf

[2006], Bilotkach [2010], and Miller [2010]). However, our work di¤ers from these earlier

works in four dimensions. First, we treat average multimarket contact as endogenous and use

an instrumental-variable approach to control for its endogeneity. Previous solutions to the

endogeneity of average multimarket contact included �xed-e¤ects approaches (e.g. EK) and

exploiting regulatory changes to identify a causal relationship (Waldfogel andWulf [2006] and

Parker and Roller [1997]). Second, we take a step forward in the reduced form analysis and

carry out two simple and intuitive screening tests to investigate the relationship between pair-

speci�c multimarket contact and collusive behavior. While a test analogous to the one based

on the rigidity of prices has been used before (e.g. Abrantes-Metz, Froeb, Geweke, Taylor

[2006]), the test that uses the relationship between collusive behavior and discrepancy in

prices is, to our knowledge, a novel contribution. Third, we propose a structural model nested

in the mainstream empirical industrial organization literature that directly links pair-speci�c

multimarket contact to the degree of coordination in �rms� decisions. The extant literature

has only been able to link multimarket contact to market outcomes, such as prices, providing

less information about the degree of coordination that di¤erent levels of multimarket contact

can support. Finally, we clearly discuss the mechanics by which multimarket contact matters

through its links with cross-price elasticities. This is economically important to understand

because it allows one to identify markets or industries where collusive behavior will result in

signi�cantly higher prices and lower welfare.

The paper is organized as follows. The data are described in Section 2. Section 3 presents

the reduced-form analysis and results. Our structural econometric approach is discussed in

Section 4 and the results in Section 4.4. Section 5 concludes and discusses possible extensions

of our research.
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2 Data

We use data from four main sources.11 Data from the Airline Origin and Destination Survey

(DB1B) database, a 10% sample of all domestic itineraries, provide information on the fare

paid, connections made en route to the passenger�s �nal destination, and information on the

ticketing and operating carriers. Information on the population of each Metropolitan Sta-

tistical Area (MSA) is collected from the Bureau of Economic Analysis. From a survey that

Williams [2012] conducted jointly with the Airports Council International - North Amer-

ica (ACI-NA), North America�s largest airport-trade organization, we use information from

2007 to construct measures of carrier-speci�c speci�c access to boarding gates. Our last

data source is the 1995 American Travel Survey that we use to construct an airport-speci�c

index measuring the proportion of business passengers.

2.1 Market De�nition

Like EK, we de�ne a market as a unidirectional trip between two airports in a particular

quarter regardless of the number of connections a passenger made in route to his or her

�nal destination. To exclude seasonal markets, we consider markets in which at least 250

passengers were transported in at least one quarter from 2006 to 2008, dropping any markets

where fewer than 100 passengers were served in any quarter from 2006 to 2008. We also

restrict our sample to airports for which we have information on access to boarding gates.

Our �nal sample contains 268,119 observations at the product-carrier-market level.

In what follows, markets are indexed by m = 1; :::;M . There are 6; 366 markets. Year-

quarter combinations are denoted by t = 1; :::T . We use data from 2006 to 2008, so

T = 12. The subindex j = 1; :::; Jmt denotes a product j in market m at time t. A

product is de�ned by the carrier (e.g. American) and the type of service, either nonstop

or connecting. The total number of carriers in the dataset is 17 and includes American

(AA), Alaska (AS), JetBlue (B6), Continental (CO), Delta (DL), Frontier (F9), ATA (TZ),

11Data on the consumer price index were accessed through the Bureau of Labor Statistics� website at
http://www.bls.gov/cpi/#tables
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Allegiant (G4), Spirit (NK), Northwest (NW), Sun Country (SY), AirTran (FL), USA3000

(U5), United (UA), USAir (US), Southwest (WN), Midwest (YX). The unit of observation

is then denoted by a combination, jmt, which indicates a product j (e.g. nonstop service

by American), in market m (e.g. Chicago O�Hare to Fort Lauderdale), at time t (e.g. the

second quarter of 2007).

2.2 Multimarket Contact

We construct a measure of pair-speci�c multimarket contact from the DB1B data. Let

mmctkh denote the number of markets that two distinct carriers, k and h, concomitantly

serve in time period t. For example, in the �rst quarter of 2007, American and Delta

concomitantly served 855 markets so both mmctAADL and mmc
t
DLAA equal 855. For each

quarter we construct a matrix of these pair-speci�c variables. Table 1 shows the matrix,

mmct, for the 17 carriers in our sample in the �rst quarter of 2007.

For each quarter, we then use the mmct matrix to calculate the same market-speci�c

average of multimarket contact as EK,12

AvgContactmt =
1�

Fmt(Fmt�1)
2

�
FX

k=1

FX

h=k+1

1 [k and h active]mt �mmc
t
kh. (1)

The indicator, 1[k and h active]mt, is equal to 1 if carriers k and h are both in market m

at time t, Fmt is the number of incumbent �rms in market m at time t, and F is the total

number of airlines (17). Thus, AvgContactmt is equal to the average of mmc
t
kh across the

�rms actively serving market m at time t. This variable is summarized in Table 2.

12Notice that this measure is not �rm speci�c. In work not shown here we have run our reduced-form
regressions considering the following average:

AvgContactjmt =
1

(Fmt � 1)

FX

k 6=h

1 [k and h active]mt �mmc
t
kh:

The results are nearly identical.
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2.3 Fares

We use the DB1B data to calculate average fares at the product-carrier-market level, where

a product is either nonstop or connecting service. Like EK and consistent with the unidi-

rectional nature of our market de�nition above, we treat roundtrip tickets as two one-way

tickets and divide the fare by two. We also drop exceedingly high and low fares (greater

than $2500 and less than $25) which are likely the result of key-punch errors. Similar to

Berry [1992], we drop carriers which do not represent a competitive presence in each market

by transporting fewer than 100 passengers in a quarter. This corresponds to dropping those

carriers transporting fewer than 10 passengers in the DB1B�s sample of itineraries. Fares

are then de�ated using the consumer price index to 2009 dollars. From this sample, we con-

struct the product-carrier-market speci�c average fare, Farejmt.
13 The unweighted average

of Farejmt, across all carriers and markets from 2006 to 2008, is around $223.

2.4 Limited Access to Airport Facilities

The market-speci�c measure of multimarket contact, AvgContactmt, is likely endogenous

because unobservable heterogeneity can alter the pricing, entry, and exit decisions of a �rm

(Ciliberto, Murry, and Tamer [2012]). In particular, variation in AvgContactmt across mar-

kets at a point in time comes from di¤erences in the set of �rms operating in the market

since, at a point in time, the contact for any two carriers (mmctkh) is �xed. Variation

in AvgContactmt over time within a market comes from changes over time in the set of

�rms operating in a market as well as potentially changes over time in the degree of over-

lap between a given pair of �rms (mmctkh). Since variation in market structure (iden-

tity of carriers operating in a market) directly determines the market-speci�c measure of

contact, AvgContactmt, and is also likely correlated with unobservables that a¤ect prices,

cross-sectional variation cannot be used to infer a causal relationship between fares and

multimarket contact. Similarly, a �xed-e¤ects approach that exploits variation over time

within a market in AvgContactmt will not be appropriate if market-speci�c time-varying

13All results and conclusions are robust to using the median fare instead of the average.
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unobservables drive variation in both fares and market structure. In these situations, as

Griliches and Mairesse [1995] suggest, �xed-e¤ects will perform poorly and the researcher

should search for an instrument-variables solution.

To address the endogeneity of AvgContactmt, as well as that of prices and quantities, we

use data on carriers-speci�c access to boarding gates at each airport to construct instru-

mental variables. These detailed data on carrier-airport leasing agreements were collected

as part of a survey conducted jointly with the ACI-NA (Williams [2012]). Williams [2012]

contacted executives at the top 200 airports in terms of enplanements in 2007, and 107 of

them provided complete information on historical and present gate usage as well as speci�c

terms of subleasing agreements. Williams [2012] observed that the response pattern was

random based on follow-up calls, ruling out selection bias in the airports which chose to

respond to the survey. From the survey, we use information on the total number of gates at

the airport, the number leased to each carrier on a preferential or exclusive basis, and the

number reserved for common use by the airport authority in 2007.

For the 17 carriers in our sample, we calculate the mean of the percentage of gates leased on

an exclusive or preferential basis by each carrier at the two market endpoints. This variable

(e.g. AA_avgm for American) is summarized for each carrier in Table 2. From these

variables, we generate 4 additional instruments that vary by carrier within a market. More

precisely, we use a carrier�s own gates (OwnGatesjm) and the level of potential competition

a carrier faces from all other carriers (CompGatesjm), just low-cost carriers (LccGatesjm),

and Southwest (WNGatesjm). The instruments are calculated as the sum, by carrier-type

(legacy, low-cost, Southwest), of the average fraction of gates leased at the market endpoints

by each type of a carrier�s competitors.14

The validity of the instruments depends on the gate leases not being correlated with - or

anticipating - market and �rm unobservables. Since there may be some persistence in these

unobservables, if the leases were signed in 2005 or 2006 they could be correlated with factors

14Legacy carriers include AA, CO, DL, NW, UA, and US. The remaining carriers, other than Southwest,
are classi�ed as low-cost.
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that a¤ect prices in the years of the sample. However, the Government Accounting O¢ce,

GAO [1990], reports that 22 percent of the gates at the 66 largest airports were for 3 � 10

years� duration; 25 percent were for 11 � 20 years� duration; and 41 percent were for more

than 20 years� duration (GAO (1990)). Our communications with the ACI-NA suggest this

pattern was not substantially di¤erent during our sample period. Thus, it seems unlikely

that a transient demand or cost shock that may alter pricing decisions would substantially

alter carriers� sunk investments in gates. In addition, Ciliberto and Williams [2010] note

that airlines cannot terminate leases unilaterally. For example, American Airlines sought to

terminate gate leasing agreements with Dallas Love, but the airport declined and American

had to pay until 2011, when the lease expired.15

The validity of the instruments also depends on whether the existence of a secondary

market for access to gates would allow entry decisions to be more responsive to (time-varying)

market level unobservables. This is extremely unlikely since numerous airlines (Southwest,

America West, etc.) have reported costs of subleasing gates that are many times what they

would face if they leased the gates directly from the airports (Ciliberto and Williams [2010],

GAO (1989, 1990)). At those airports that impose limits on sublease fees, it�s also natural

that gates would be unresponsive to changing market conditions since carriers� incentives to

sublease gates to competitors are diminished further.

2.5 Control Variables

Carriers can o¤er both nonstop and connecting service.16 Thus, for each product o¤ered

by a carrier in a market, we generate a dummy variable, Nonstopjmt, that is equal to 1 if

the service o¤ered by a carrier is nonstop. Table 2 shows that approximately 17% of the

observations in our dataset correspond to nonstop services o¤ered by a carrier. A second

source of di¤erentiation among carriers is related to the size of the carrier�s network at an

15See the February 28, 2005, Letter from Mr. Gwyn, Director of Aviation, City of Dallas, to Ms. Lang,
Deputy Director of Airport Planning and Programming, Federal Aviation Administration.
16Even if carriers may �o¤er� both types of services, one of the two types is either exceedingly inconvenient

or prohibitively costly to both the carrier and consumer. Thus, we usually see either nonstop or connecting
service but not both in the DB1B sample.
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airport; see Brueckner, Dyer, and Spiller [1992]. In particular, carriers serving a larger

number of destinations out of an airport have more attractive frequent �yer programs and

other services at the airport (number of ticket counters, customer service desks, lounges, etc.).

To capture this idea, we compute the percentage of all markets served out of an airport that

are served by an airline in the DB1B data and call this variable NetworkSizejmt. To control

for potential price di¤erences in one-way and round-trip tickets we construct the variable

Roundtripjmt, which measures the fraction of round-trip tickets over the total number of

tickets sold by a carrier in a market.

Particular aspects of a market also a¤ect the demand for air travel. One important

element of demand is the number of consumers in a market. Like Berry, Carnall, and

Spiller [2006] (BCS, from here on) and Berry and Jia [2010], we follow the industry standard

and de�ne the size of a market, MktSizemt, as the geometric mean of the population at

the market endpoints. Another important determinant of consumers� travel decisions is

the nonstop distance between the endpoints of a market, Distancem. One may expect

in shorter markets, travel as a whole is more attractive since less time is spent reaching

one�s destination. Yet, the availability and attractiveness of substitutes to air-travel vary

signi�cantly depending on the distance between the market endpoints. Since the relationship

between Distancem and the demand for air-travel may have some nonlinearities due to these

countervailing e¤ects, we include bothDistancem and its square directly in consumers� utility

function in our structural analysis. We also construct a variable, Extramilesjmt, to measure

the indirectness of a carrier�s service. More precisely, Extramilesjmt is the average distance

�own by consumers choosing a product relative to the nonstop distance in the market.

Next, we construct an indicator, Hub jm, which is equal to one if one of the two endpoints

of market m is a hub airport of carrier j.17 The variable Hubjm captures whether �ying

on the hub airline is more attractive than �ying on any other airlines, Borenstein [1989]. It

17The hub airports are Chicago O�Hare (American and United), Dallas/Fort Worth (American), Denver
(United), Phoenix (USAir), Philadelphia (USAir), Charlotte (USAir), Minneapolis (Northwest, then Delta),
Detroit (Northwest, then Delta), Atlanta (Delta), Cincinnati (Delta), Newark (Continental), Houston (Con-
tinental).
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also captures potential cost advantages. To control for economies of density, we calculate

NumMktjmt as the number of markets served by a carrier out of the origin airport associated

with market m.

Finally, we use the index of Borenstein [2010] to measure the share of commercial airline

travel to and from cities that is for business purposes. The index is constructed using data

from the 1995 American Travel Survey, a survey of long-distance domestic transportation,

which includes 113,842 person-trips on domestic commercial airlines. As Borenstein [2010]

explains, the actual airports used for each trip are not reported, but the location of the

origin, such as the metropolitan area and the state is reported. If the origin airport of the

unidirectional market, m, is in an MSA, then BusIndexm is the business travel index of that

MSA. In the few cases where an airport is not located in an MSA, then BusIndexm is equal

to the index of the state where the airport is located. The main limitations of the variable

BusIndexm are that it slightly outdated and that it measures the fraction of travel that is

for business purpose among those individuals who chose to travel. For this reason we use

this index only to test the robustness of our main results rather than to derive them.

3 Reduced-Form Analysis

3.1 Replicating Evans and Kessides [1994]

In our reduced-form analysis, we �rst replicate the work of EK using our sample of data. EK

test the hypothesis that multimarket contact facilitates collusion by running the following

regression:

ln(pjmt) = AvgContactmt � �EK + Controlsjmt�Controls + "jmt (2)

where j indexes products, m markets, and t time. The dependent variable is the natural

logarithm of the average price for product j. The main variable of interest is AvgContactmt,

whose coe¢cient �EK is expected to be positive. In addition to the controls discussed in

Section 2.5, all speci�cations include carrier and year-quarter �xed e¤ects. In four of the six

speci�cations we also include market �xed e¤ects. We present the results of these regressions
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in Table 3.

Column 1 of Table 3 replicates the main market-�xed-e¤ects regression in EK. We

include data for only the 1,000 largest routes, with the ranking constructed after aggregating

the number of passengers in each market over all periods. To make the results of our paper

directly comparable to those in EK, the variables mmctkh and AvgContactmt are constructed

with the data from these 1,000 markets. The mean of AvgContactmt is equal to 0:21 in this

small sample. This number is very similar to 0:18, the mean value of the AvgContactmt

in EK. Following EK, we include a measure of market share, MktSharejmt, the number

of passengers transported by a carrier in a market over the total number of passengers

transported in that market, as well as the Her�ndhal-Hirschman Index of passengers,HHImt,

a measure of market concentration.

We �nd that the coe¢cient of multimarket contact is equal to 0:246. This number should

be compared to 0:398, the number reported in Column 3 of Table III in EK. To understand

whether the di¤erence between these two numbers is economically meaningful, we can multi-

ply each number by 0:128, which is the change in AvgContactmt that EK �nd when moving

from the route in their sample with the twenty-�fth percentile in contact to a route with

the seventy-�fth percentile. Using our estimates, we �nd that such a change in multimarket

contact corresponds to a change of 3 percent in fares, compared to 5 percent in EK. The

results for the control variables, when precisely estimated, are also comparable with those

in EK.

Column 2 of Table 3 presents another regression in the spirit of EK. We again include

data for only the 1,000 largest routes. The only di¤erence between Columns 1 and 2

concerns the control variables. Column 2 excludes HHImt and MktSharejmt, which are

endogenous, and includes a dummy variable, Hubjm, which is exogenous. The result for

the variable of interest, AvgContactmt, is nearly identical. The coe¢cient of AvgContactmt

is equal to 0:291, which implies that a 0:128 change in AvgContactmt would result in an

increase in prices of 4 percent.

Column 3 of Table 3 considers the full sample of markets. The variables mmctkl and
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AvgContactmt are constructed using the full sample of markets. The striking result now is

that AvgContactmt has a negative e¤ect on prices. A crucial limitation of AvgContactmt

is that it is not well de�ned for monopoly markets, for which the denominator 1
Fmt(Fmt�1)

is

zero. In these cases, we follow EK and set the variable AvgContactmt equal to zero. The

problem with this solution is that, ceteris paribus, prices are higher in monopoly markets

than in oligopoly markets. Yet we expect prices to increase with multimarket contact. The

online appendix discusses this in more detail.

In Column 4 we run the same regressions using only non-monopoly markets. The coe¢-

cient of AvgContactmt is now positive and statistically signi�cant. Its e¤ect is smaller than

the one we estimated in Column 3. Here, the change of 0:128 in AvgContactmt implies

an increase in prices of less than 1 percent against the change of 4 percent we estimated in

Column 2.

Column 5 of Table 3 presents the results from the instrumental variable regressions

with market-speci�c random e¤ects. The instrumental variables are discussed in Section

(2.4). We consider the full sample of markets, including monopoly markets. We estimate

the coe¢cient of AvgContactmt equal to 0:539. This means that the change of 0:128 in

AvgContactmt would imply, approximately, an increase in prices of 6:5 percent. This e¤ect

is similar to those from the estimates in Columns 1 and 2. Column 6 is the same

speci�cation as Column 5 but does not include monopoly markets. The results are similar

to those in Column 5. The marginal e¤ect is now estimated equal to 8:5 percent. At

the bottom of Table 3, in Columns 5 and 6, we present the results of an F test of the

joint signi�cance of our instruments. In both cases, the null is rejected at the 1% level of

signi�cance. The intuition behind the success of our instruments is their ability to explain

cross-sectional variation in market structure, the indicators 1[k and h active]mt in Equation

1, which determines the observed level of AvgContactmt. The online Appendix discusses the

results of the �rst stage in more detail.

In Column 7 we add the variable BusIndexmt to control for the possibility that the pos-

itive correlation of prices across airlines with high multimarket contact might be a function
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of the di¤erential type of demand that carriers face. In particular legacy carriers (with high

contact among one another) might concentrate in markets with a larger fraction of business

passengers, driving up AvgContactmt, in those markets where one would naturally expect

higher fares. We �nd our results to be largely unchanged with the inclusion of BusIndexmt.

3.2 Screening for Collusion

Overall, our results in the previous section are largely consistent with those of EK: an increase

in multimarket contact is associated with higher fares. However, we cannot conclude that

multimarket contact actually facilitates collusive behavior that signi�cantly raises fares, as

there are other plausible explanations, such as unobserved correlation in costs or demand

shocks among �rms with high multimarket contact.

Next, as a �rst step to assess collusive behavior in the US airline industry, we conduct two

screening tests for collusive behavior among airlines that serve many markets concomitantly.

These tests are motivated by the theoretical insights of Werden and Froeb [1994] and Athey,

Bagwell, and Sanchirico [2004].

3.2.1 Cross-Price Elasticities

Werden and Froeb [2004] make the following key observation: two �rms that start colluding

(in their analysis, they would merge) increase the price of the product with the smaller share

by a greater absolute amount than they increase the price for the product with the larger

share. A price increase causes the �rm to lose sales. However, as Werden and Froeb [2004]

point out using a logit model of demand, the �rm would rather lose sales from the product

with a smaller share than from the product with the larger share, since consumers no longer

purchasing the smaller-share product will disproportionately substitute towards the larger-

share product. This crucial insight exploits the dependence of colluding carriers� pricing

strategies on the cross-price elasticities among their products, which is the same insight that

we will use to interpret the results from the structural analysis.

Under the null hypothesis that an increase in multimarket contact leads to more collusive
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behavior, one can then infer that an increase in multimarket contact will lead to a smaller

absolute di¤erence in the prices of two colluding �rms. We can then develop a very simple

screening test of collusion, which is based on the following regression:

log (jphtm � pktmj) = �diff � log
�
mmcthk

�
+ �hktm;

where jphtm � pktmj is the absolute value of the di¤erence in prices of two products, h and k,

in market m at time t. We can then test the hypothesis that multimarket contact leads to

more collusive behavior, by simply testing whether �diff < 0 holds. Notice that the unit of

observation is a pair of carriers in a market. Thus, using our original dataset, we construct

a dataset where each �rm is paired with each of its competitors. For each pair we use the

multimarket contact variable that we constructed, mmcthk. It is important to note that our

measure of multimarket contact in these regressions, mmcthk, is the contact between the pair

of carriers across all markets. Thus, in contrast to when AvgContactmt is used, we do not

face the problem of an endogenous market structure that requires an instrumental variable

approach. Our results are presented in Columns 1 through 3 of Table 4.

Column 1 shows the results when we regress the logarithm of the di¤erence in prices on

the logarithm of multimarket and we include both carrier �xed e¤ects and year-quarter �xed

e¤ects. The carrier �xed e¤ects capture the heterogeneity in the prices that carriers charge,

while the year-quarter �xed e¤ects capture any seasonal changes in the di¤erence in prices.

We estimate �diff equal to �0:109 and statistically signi�cant. This estimates implies that

a 10 percent increase in multimarket contact is associated with a 1:2 percent decrease in the

di¤erence in prices.

The results with the inclusion of the BusIndexm variable, to control for heterogeneity

in the fraction of business travelers across markets, are presented in Column 2. This

is to address the concern that a negative correlation between the discrepancy in fares and

multimarket contact is just a function of the di¤erential type of demand that carriers face.

We estimate �diff equal to �0:107, which is essentially the same number as in Column

1. Finally, in Column 3 we include market �xed e¤ects to control for market-speci�c
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unobservables that may both drive price dispersion in the market and are correlated with

multimarket contact. We estimate �diff to be statistically signi�cant and equal to -0:094,

which is again essentially the same result as in Column 1.

Collectively, the results in Columns 1 through 3 of Table 4 show a negative relationship

between pair-speci�c multimarket contact and the discrepancy in the prices of the �rms, sup-

porting the hypothesis that the positive correlation between fares and multimarket contact

is a result of collusion.

3.2.2 Price Rigidity

Athey, Bagwell, and Sanchirico [2004] show that for a wide range of settings, the optimal

collusive pricing behavior is characterized by a rigid price. The basic intuition, �rst put

forward by Carlton [1989], is that collusive �rms do not adjust their prices after shocks in

costs or demand because they do not want to disturb existing oligopolistic discipline. In the

words of Athey, Bagwell, and Sanchirico [2004], such price rigidity is the extreme solution

to the trade-o¤ between the e¢ciency bene�ts of reallocating shares after privately observed

cost shocks, and the informational costs that colluding �rms face to determine whether any

of the competitors has cut prices.

Using this insight we develop our second screening test for collusion using the following

regression:

log

�
�hkm
�hkm

�
= �std � log

�
mmcthk

�
+ �hktm;

where �hkm and �hkm are constructed from the average of the fares of carriers h an k, in

market m. Speci�cally, we calculate the weighted average of the fares for a pair of carriers,

h and k, in each period, t, in market m. The weights used in each period to calculate

the average are the number of passengers for carriers, h and k, respectively. �hkm is the

standard deviation of this pair-speci�c average fare in market m over time, while �hkm is the

mean over time. The dependent variable, �hkm
�hkm

, is then the coe¢cient of variation for the

pair-speci�c average over time, in market m.18 If multimarket contact is associated with

18We follow Abrantes-Metz, Froeb, Geweke, and Taylor [2006] in using the coe¢cient of variation since
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collusive regimes that balance e¢ciency and monitoring costs by charging rigid prices, then

we would expect �std < 0.

Our results are presented in Columns 4 and 5 of Table 4. Column 4 includes carrier

�xed e¤ects to control for the heterogeneity in the dispersion in the prices that airlines charge.

For example, legacy carriers are likely to price discriminate more than low-cost carriers do.

Column 5 also includes the variable BusIndexm to control for the fact that price dispersion,

maybe related to price discrimination, might be di¤erent in markets with a large fraction

of business travelers. The results in Columns 4 and 5 are nearly identical: a 10 percent

increase in multimarket contact decreases the coe¢cient of variation by 1 percent, and the

estimates are also statistically signi�cant. Thus, we cannot reject the null hypothesis that

an increase pair-speci�c multimarket contact leads to more rigid prices, which is consistent

with collusive behavior on the part of the airlines.

4 Multimarket Contact and Collusion

In this section, we provide a structural analysis of the relationship between multimarket

contact and collusion in the airline industry.19 With the additional structure and careful

controls for determinants of demand and costs, we can unpack the reduced-form and identify

the relationship between multimarket contact and the actual degree of cooperation, in setting

fares as well as identify those markets where the cooperation has the greatest impact on fares.

In particular, we can more clearly demonstrate the important role that cross-price elasticities

play in both identifying collusion and determining the impact of collusion on fares.

4.1 Demand

Our basic demand model is most similar to BCS and Berry and Jia [2010]. We allow for 2

consumer types, r = f1; 2g. For product j in market t in market m, the utility of consumer

markets with higher average fares may also have a higher standard deviation. Our results are very similar
if we instead use the standard deviation.
19This stage of our analysis corresponds to what Harrington [2008] refers to as the veri�cation process.
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i of type r, is given by

urijtm = xjtm�r + pjtm�r + �jtm + �(�)itm + "ijtm

where xmjt is a vector of product characteristics, pjtm is the price, (�r; �r) are the taste

parameters for a consumer of type r, and �mjt are product characteristics unobserved to

the econometrician. The term, �(�)itm + "ijtm, is the error structure required to generate

nested logit choice probabilities for each consumer type. The parameter, � 2 [0; 1], governs

substitution patterns between the two nests, airline travel and the outside good (not traveling

or another form of transportation).20 The mean utility of the outside good is normalized to

zero since only di¤erences in utility, not levels, are identi�ed.

The proportion of consumers of type r, in market m, choosing to purchase a product from

the air travel nest in market t is then

D�
mrt

1 +D�
mrt

(3)

where

Drmt =
JmtX

k=1

e(xjmt�r+pjmt�r+�jmt)=�.

The probability of a consumer of type r choosing product j, conditional on purchasing a

product from the air travel nest, is

e(xjmt�r+pjmt�r+�jmt)=�

Drmt

(4)

Together, Equations 3 and 4 imply that product j�s market share, after aggregating across

consumer types, is

sjmt(xmt;pmt; �mt;�r;�r; �) =
2X

r=1

�rm
e(xjmt�r+pjmt�r+�jmt)=�

Drmt

D�
rmt

1 +D�
rmt

(5)

where �rm is the proportion of consumers of type r in the full population in market m.

We propose two alternative approaches to deal with the fact that �mr is not observed,

and both are based on the following speci�cation:

20See Goldberg (1995) and Verboven (1996) for models of demand with multiple nests.
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�mr =
exp (�0 + �1BusIndexm)

1 + exp (�0 + �1BusIndexm)
.

First, we estimate it as a parameter of the model as in BCS and Berry and Jia [2010],

such that �rm will be constant across markets (�rm = �r 8m). We implement this by setting

�1 = 0. Second, we use the variable BusIndexm directly as our measure of the proportion of

business travelers, thereby assuming that the proportion of passengers that actually decide

to travel is equal to the proportion of business passengers in the population. We implement

this second approach by estimating �1. Using the two approaches is important to show that

our results are not sensitive to BCS�s assumption that the fraction of business travelers is

constant across markets.

To control for persistent variation in consumers� tastes across carriers and time, we add

carrier and year-quarter �xed e¤ects (djt) such that

��jmt = �jmt � djt 

Following Berry [1994] and Berry, Levinsohn, and Pakes [1995], we exploit a set of moment

conditions formed by interacting the structural error term, ��, with a set of instruments

to recover estimates of d. We use a variation of the Berry, Levinsohn, and Pakes [1995]

contraction mapping, due to BCS, to invert Equation 5 and solve for the value of the un-

observables that matches the model�s predicted shares to observed market shares for each

product, conditional on d = f�; �; �; �;  g. Observed market shares are calculated as

the number of passengers transported by a carrier in a market divided by MktSizemt. To

estimate these parameters, we form the sample counterpart of the moment condition

gd = E
�
��jt(d) jzjt )

�
= 0

where zt is a vector of instruments. We treat price as an endogenous regressor and use the

average percentage of gates leased by each of the carriers (not just those present in market j

at time t) at the market�s endpoints as instruments, the same instrumental variables that we

used in the reduced-form analysis to control for the endogeneity of the average multimarket

contact.
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4.2 The Bertrand-Nash Pricing Game

We maintain that airlines compete on prices and o¤er di¤erentiated products.21 We start

by assuming that observed equilibrium prices are generated from play of a Bertrand-Nash

pricing game (Bresnahan [1987]). The Bertrand-Nash pricing assumption generates the

following supply relationship for any product j belonging to the set of products, l = 1; :::; F ktm,

produced by �rm k, in a market m, at time t,

sjt +
X

l2Fkt

(plt �mclt)
@slt
@pjt

= 0;

where mclt is the marginal cost of product l.

For each market, this set of Jtm equations implies price-cost margins for each product.

Using matrix notation, this set of �rst-order conditions for market m can be rewritten as

stm �
tm(ptm�mctm) = 0 (6)

where each element of 
 can be decomposed into the product of two components, 
jlmt =

�jlmt�jlmt. The �rst component is the own or cross-price derivatives of demand, �jlmt =

@sltm=@pjtm, while the second component is an indicator of product ownership. More pre-

cisely, if products j and l belong to the same �rm, then �jlmt equals 1 while �jlmt equals

0 otherwise. With the exception of Nevo [2001], the literature has assumed that � is a

diagonal matrix (block-diagonal in the case of multi-product �rms), strictly ruling out any

coordination between �rms in setting prices. In the next section, Section 4.3, we discuss how

our model departs from the literature regarding the assumptions made on �rm behavior.

4.3 Multimarket Contact and Conduct Parameters

As pointed out by Nevo [1998, 2001], the standard assumptions on the structure of � rules

out a continuum of pricing outcomes between the competitive Bertrand-Nash (� is diagonal

21In assuming that airlines compete in prices and o¤er di¤erentiated products, we follow a well-established
literature on airline competition; see Reiss and Spiller [1989], Berry [1990], BCS [2006], Peters [2006], Berry
and Jia [2010]).
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or block-diagonal in the case of multi-product �rms) and the fully-collusive outcome (� is

a matrix of ones). In the case of homogenous products, Bresnahan [1982] and Lau [1982]

provide intuitive and technical, respectively, discussions of how "rotations of demand" can be

used to distinguish between di¤erent models of oligopolistic competition or identify conduct

parameters. Recent work, see Berry and Haile [2010], formally demonstrates how to extend

the intuition of Bresnahan [1981, 1982] to di¤erentiated product markets. Berry and Haile

[2010] show that changes in the "market environment" can be used to distinguish between

competing models, including variation in the number, product characteristics, and costs of

competitors.

In the context of the airline industry, one such shifter of the "market environment" is

the degree of pair-speci�c multimarket contact between carriers. In particular, higher levels

of multimarket contact between competitors facilitates collusion. To capture this idea,

we depart from the literature and de�ne �jlmt as a function of multimarket contact. In

particular, if product j is owned by carrier k and product l is owned by carrier h, then

�jlmt equals f(mmc
t
kh). This function, determining the amount of coordination between

carriers k and h in setting fares, is bound between zero and one and dependent on the level

of multimarket contact between the two carriers, mmctkh, the fk; hg element of the contact

matrix in period t. Thus, the conduct parameters tell us whether price-setting �rms compete

or collude. If the conduct parameters are estimated to be equal to zero, we can conclude

that �rms do not cooperate in setting fares. If the conduct parameters are estimated to be

equal to 1, we can conclude that �rms collude.22

The interpretation of these conduct parameters is most easily seen by examining the �rst-

order conditions in the case with two �rms. In this case, the �rst-order conditions are

22This type of modeling is admittedly less ambitious than the one proposed by the earlier work on the
estimation of conduct parameters (e.g. Brander and Zhang [1990, 1993]). In earlier work, conduct para-
meters informed the researcher both on the choice variable of the �rms (whether �rms compete on prices
or quantities) and whether the �rms collude or compete. Our approach, while less ambitious, is still very
e¤ective and simple to generalize to any industry where there is a market-speci�c exogenous variable that
may facilitate collusion.
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(market and time subscripts are omitted for simplicity)

�
s1
s2

�
+

"
@s1
@p1

f (mmc12) �
@s2
@p1

f (mmc21) �
@s1
@p2

@s2
@p2

#�
p1 �mc1
p2 �mc2

�
= 0:

The �rst-order condition of �rm 1 is then

s1 +
@s1
@p1

(p1 �mc1)

| {z }
Bertrand FOC

+ f (mmc12) �
@s2
@p1

(p2 �mc2)

| {z }
Cooperative E¤ect

= 0: (7)

The additional cooperative term is what di¤erentiates our model and makes clear how mul-

timarket contact impacts equilibrium pricing behavior through cross-price elasticities.

The impact of this additional term depends on two factors. First, the size of f (mmc12)

determines the degree to which �rms cooperate in setting fares. In particular, values of

f (mmc12) ranging from zero to one result in equilibrium pricing behavior ranging from the

competitive Bertrand-Nash outcome to a fully collusive outcome, respectively. Second,

the degree to which cooperation increases prices depends on the cross-price derivatives of

demand, @s2
@p1

and @s1
@p2
. This is intuitive: if the products that �rms o¤er are close substitutes

(@s2
@p1

and @s1
@p2

are relatively large), then cooperation will result in fares signi�cantly higher

than the competitive Bertrand-Nash outcome.

Our goal is to utilize these �rst-order conditions to estimate both the conduct parameters

and the marginal cost functions of each �rm. The set of �rst-order conditions for each

market, Equation 6, can be inverted as

ptm �

�1
tmstm �mctm = 0 (8)

where we specify the marginal cost for product j in market t as

mcjtm = wjtm� + djt + !jtm

The wjt vector includes NumMkt and its square, Distance and its square, Extramiles and

its square, and djt, a set of carrier and year-quarter dummies. The error term, !jtm, is the

portion of marginal cost unobserved to the econometrician.
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We specify the conduct parameters as

f(mmctkh) =
exp(�1 + �2mmc

t
kh)

1 + exp(�1 + �2mmc
t
kh)

(9)

which restricts f(mmctkh) between zero and one. As a robustness check, we also estimate a

�exible alternative speci�cation for the conduct parameters,

f(mmctkh) = max
�
0;min

�
1; �1 + �2mmc

t
kh

	�
: (10)

In both speci�cations, we then use Equation 8 to form the sample counterpart of the

moment condition,

gs = E [!jtm(d; s) jzjtm )] = 0;

where s are the conduct and marginal cost parameters and zjtm is the same vector of

instruments used in the demand moments.

Following Berry, Levinsohn, and Pakes [1995], we estimate  = fd; sg by minimizing

Q() = G()0W�1G()

where G() is the stacked set of moments, (gd; gs), and W is a consistent estimate of the

e¢cient weighting matrix.23

4.4 Results

The structural estimates are reported in Tables 5 and 6. Columns 1 and 2 of Table

5 present the estimates of demand and marginal costs when we assume �rms compete as

Bertrand-Nash competitors and fully cooperate in setting fares, respectively. Table 6

presents the estimates of the conduct parameters, along with the corresponding estimates of

demand and marginal cost. Column 1 of Table 6 presents the results with the introduction

of the conduct parameters while maintaining the assumption that the proportion of business

travelers is constant across markets, �mr = �r and �1 = 0, as in BCS [2006] and Berry and

Jia [2010]. Columns 2 and 3 of Table 6 relax this assumption by letting �1 free and

estimating it from the data.

23Due to the highly nonlinear nature of the objective function and potential for local minima, we use a
stochastic optimization algorithm (simulated annealing) to �nd a global minimum. In calculating standard
errors, we allow for demand and cost errors to be correlated within a market.
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4.4.1 Bertrand-Nash Competition

Column 1 of Table 5 presents the estimates from the model when we assume �rms price as

Bertrand-Nash competitors.24 The demand estimates in the top panel are largely consistent

with the previous studies of the industry (BCS [2006] and Berry and Jia [2010]).

First, as one would expect, consumers dislike higher fares, ceteris paribus. We �nd the

coe¢cients of price to be equal to �1:333 for the �rst type and equal to �0:119 for the

second type. Not only are these two coe¢cient estimates signi�cantly di¤erent statistically,

but their magnitudes are also quite di¤erent. We can think of the �rst type as the tourist

type, who is very sensitive to prices, while the second type can be thought of as the business-

traveler type, who is much less sensitive to prices. The mean own-price elasticity across

all markets and products for the tourist type is equal to �6:260, while only �0:559 for the

business-traveler type. The mean own-price elasticity across all markets, products, and

types is �4:320, a number consistent with previous work.25

The coe¢cient estimate of �0 = �0:566 implies �rm = 0:362, or there are 36 percent of

business travelers in the markets in our dataset. Notice that this number is lower than the

average value of BusIndexm in Table 2, which is consistent with the observation we made

earlier that the index constructed by Borenstein [2010] overestimates the fraction of business

travelers because it is computed only among those who choose to travel and not over the

whole population.

Next, we can look at the decision to �y rather than use other means of transportation

or simply not traveling at all. This decision is captured by the coe¢cient estimates of the

type-speci�c constants and by the nesting parameter �. The nesting parameter is greater

than 0:5 in every speci�cation, suggesting much of the substitution by consumers between

24We also estimated a nested-logit model of demand with one consumer type. The qualitative implications
are very similar, suggesting that the speci�c model of demand is not driving the results.
25Our demand is estimated to be slightly more elastic than the estimates of Berry and Jia [2010]. This

di¤erence is likely driven by how products are de�ned. Berry and Jia [2010] identify each unique fare
observed in the data as a di¤erent product. Since we do not know whether the unique fares observed in
the data are in fact a result of variation in unobserved product characteristics or part of an intertemporal
pricing strategy of the �rm, we chose to aggregate all fares for a carrier in a quarter into one of two groups,
nonstop and connecting service.
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products occurs within the air-travel nest, rather than to the outside option. This means

that passengers are more likely to substitute between carriers when prices change rather

than deciding not to �y at all. We �nd that the estimated constant for the tourist type is

equal to �5:567 and for the business-traveler type is equal to �7:65. This means that the

business types are less likely to travel, but when traveling they are less price sensitive.

The results for the other variables are as expected. Both tourist and business travelers

prefer nonstop �ights and dislike longer connections. Travelers prefer �ying with carriers

o¤ering a larger network out of the originating airport, which is consistent with previous

work; see BCS [2006] and Berry and Jia [2010]. The positive coe¢cient on Distance and

negative coe¢cient on Distance2 show that consumers �nd air travel more attractive in

markets with longer nonstop distances; however, this e¤ect is diminishing as the nonstop

distance becomes larger and the outside option becomes more attractive.

On the cost side, we �nd that the marginal cost of serving a passenger is increasing,

although at a decreasing rate, in the nonstop distance between the market endpoints. We

also �nd that connecting service is more expensive than nonstop service. Finally, we �nd

that there are economies of density in the number of markets served out of an airport as

the costs �rst increase and then decrease in the number of markets served out of an airport.

The median of marginal cost across all markets is $106:2.26

4.4.2 Collusion

Next, we estimate the model under the assumption that �rms fully cooperate in setting fares.

In his study of the 1955 price war in the American automobile industry, Bresnahan [1987]

shows that one can get dramatically di¤erent coe¢cient estimates under di¤erent behavioral

assumptions. In this section we set out to test how sensitive the parameter estimates are to

the assumed behavioral model.

Column 2 of Table 5 shows the results under the assumption that �rms fully cooperate

26This is at the high end of the range of estimates in Berry and Jia (2010), who de�ne costs for roundtrip
service while we de�ne trips for one-way service. Thus, when comparing the estimates, one should normalize
the estimates of Berry and Jia (2010) by dividing by two.
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in setting fares. First, we �nd that the price coe¢cients are now equal to �1:315 for the

tourist traveler against the value of �1:333 that we had estimated in Column 1. We �nd

that the estimated coe¢cient of price for the business traveler is now equal to �0:165, about

40% larger than in Column 1. The coe¢cient estimate of �0 is quite similar to the one in

Column 1, and it implies that �rm = 0:32:

The estimates of the cost coe¢cients are also quite di¤erent in Columns 1 and 2. The

constant term is less than half as big (0:379 against 0:926). Cost is still increasing at a

decreasing rate in the nonstop market distance, while we now �nd that connecting service

is less expensive than nonstop service. This is not a particularly surprising result since

longer connections through major hubs often involve larger planes that have a lower cost per

passenger.

These di¤erences in the estimated coe¢cients, along with the assumption that �rms co-

operate in setting fares, lead to signi�cantly di¤erent estimates of the marginal cost, whose

median is now estimated to be equal to 61:3 dollars, only 57% of the estimate in Column

1. This is clearly a major di¤erence, which we investigate further below.

4.4.3 A Model with Conduct Parameters

Column 1 of Table 6 presents the estimates of the model where we allow the degree of

price coordination to depend on the level of multimarket contact between each carrier in a

market. That is, we now look at a model that allows the �rms to behave di¤erently with

di¤erent competitors. Firm A might be colluding with �rm B but not with a �rm C.

We start again from the demand estimates. We immediately observe that the coe¢cient

estimates in Column 1 of Table 6 are rather di¤erent from Column 1 (Bertrand-Nash

behavior) andColumn 2 (collusive behavior) of Table 5. For example, the price coe¢cients

for the �rst type of consumer, the tourist type, are equal to �1:162 in Column 1 of Table

6, while the price coe¢cient for the business travelers is equal to �0:139 in Column 1 of

Table 6. These compare to �1:333 and �0:119 (�1:315 and �0:165) when Bertrand-Nash

(collusive) pricing behavior is assumed.
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Now consider the fraction of business travelers. This fraction is equal to 34:0 percent in

Column 1 of Table 5 and to 32:7 percent in Column 1 of Table 6, but it is equal to

36:2 percent in Column 2 of Table 5 So, again the estimated parameter �rm is in between

those in Column 1 and Column 2.

The cost estimates in Column 1 of Table 6 are between those in Columns 1 and 2

of Table 5. The median of marginal cost is now equal to $74:6, compared to the estimate

of $106:2 in Column 1 and $61:3 in Column 2 of Table 5. This suggests that strict

assumptions regarding �rm behavior, �rms behaving as Bertrand-Nash competitors or as a

fully-collusive cartel, lead to biased estimates of marginal cost. The marginal costs are lower

than in Column 1 of of Table 5 because the presence of the conduct parameters, �1 and

�2; allows for an alternative to high marginal costs as an explanation for the high fares we

observe in some markets, Equation 7.

Columns 2 and 3 of Table 6 present the results from two robustness checks on the

results from Column 1 of Table 6. In particular, Columns 2 and 3 relax the assumption

that the proportion of business travelers is constant across markets, �mr = �r, for two

di¤erent speci�cations of the conduct parameters. Relaxing this assumption by allowing

the proportion of business travelers to depend on BusIndexm, we �nd very similar results

for the two alternative speci�cations of the conduct parameters, Equations 9 (Column 2 of

Table 6) and 10 (Column 3 of Table 6).

The marginal cost estimates in Columns 2 and 3 of Table 6 are nearly identical to

those in Column 1. In addition, the implications, discussed immediately below, regarding

collusion and multimarket contact of the estimated conduct parameters are nearly identical

to those of Column 1.

Consider now the estimates for �1 and �2 which shift the conduct parameters. Due to the

similarity of the results, we focus onColumn 1 of Table 6. We estimate �1 equal to �3:167

and �2 equal to 5:785. Figure 1 plots the conduct parameters. From Figure 1 it is clear

that carriers with little multimarket contact do not cooperate in setting fares. Carriers with

a signi�cant amount of multimarket contact can sustain near-perfect cooperation in setting
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fares.

Table 7 provides a one-to-one mapping from multimarket contact matrix in Table 1 to

the level of cooperation carriers can sustain in setting fares. In particular, Table 7 presents

f(mmc) evaluated at each element of Table 1. As an example, consider the interaction

between American and Delta. Table 1 shows that in the �rst quarter of 1997 the two �rms

overlapped in 855 markets. InTable 7, we �nd that the conduct parameter is equal to 0:856,

which is essentially saying that American and Delta collude in fares in markets that they

concomitantly serve. Consider, instead, the interaction between American and JetBlue.

From Table 1 we know that they overlap in 84 markets. Table 7 shows that the conduct

parameter is equal to 0:064, which implies that they do not cooperate in setting fares.

The results suggest that legacy carriers cooperate with one another to a large degree in

setting fares. However, there is very little cooperation between most low-cost carriers and

legacy carriers. This �nding is largely consistent with that of Ciliberto and Tamer [2009],

who show that there is heterogeneity in the competitive e¤ects of airline �rms and that an

additional low-cost competitor has a more signi�cant impact on the level of competition

in a market than an additional legacy competitor. There is one notable exception. In

recent years, AirTran has rapidly expanded its network out of Delta�s Atlanta-Harts�eld

hub. Our results suggest these two carriers can now maintain some level (f(mmc) = 0:369)

of cooperation in setting fares. Remarkably, Delta and AirTran are currently the target of a

civil class-action lawsuit alleging cooperation in introducing and maintaining additional fees

on checked bags.27

One feature of our framework is that the conduct parameters are not exactly equal to

0 and 1, which are the values that correspond, respectively, to the cases of Nash-Bertrand

competition and collusion. However, Figure 2 shows the distribution of the estimated

conduct parameters is bimodal, except for a peak at 0:6. Consider �rst the case of the

parameters that are close to 0 and 1. We interpret the fact that they are not exactly equal

27The case is Avery v. Delta Air Lines Inc., AirTran Holdings Inc. 09cv1391, U.S. District Court, Northern
District of Georgia (Atlanta).
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to 0 or 1 as the result of random sampling and possible model speci�cation. Next, we can

ask what explains the peak at 0:6. The conduct parameters close to 0:6 describe the strategic

interaction between USAir and Northwest, USAir and American, USAir and Continental,

and United and Continental. Our interpretation is that the interaction of these pairs is

less frequent than the interaction between other legacy pairs, which might suggest that their

strategic behavior might be driven by other, more local, factors. For example, USAir and

Northwest might be colluding at some airports where they concumitantly provide many

markets, but they do not collude in the other markets.

There are two interesting extensions that could address in more detail the �ndings in

Figure 2. First, we could allow the conduct parameter to take two values, 0 and 1, and

assume the outcome in any particular market is drawn from a binomial distribution where

the probability of each value depends on the level of multimarket contact. However, we feel

that this approach would impose more structure than is needed for the empirical analysis

presented in this paper. Second, we have assumed that the relevant level of multimarket

contact is at the national level, which follows EK and previous work. However, one might

think that the level of strategic interaction where multimarket contact plays a role is at the

airport level. We leave this extension to future work.

The structural model predicts that di¤erent levels of multimarket contact between carriers

imply di¤erent levels of cooperation in setting fares. However, coordination in setting fares

does not necessarily translate to fares signi�cantly di¤erent from those that would be realized

from a competitive Bertrand-Nash pricing game. To examine the impact of multimarket

contact on fares, we perform an exercise similar to the one used in the reduced-form analysis.

In particular, we increase the average multimarket contact in a market by 0:128, increasing

each carrier�s contact with every other carrier by 0:128, and look at the resulting percentage

change in fares. These results are presented in the top half of Figure 3. The bottom half

of Figure 3 plots the mean change in fares across all markets for increases in multimarket

contact of 0:128, 0:256, and 0:384, respectively.

In both parts of Figure 3, the initial level of average multimarket contact in the market is
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on the horizontal axis, and the resulting percentage change in the average fare in the market

on the vertical axis. The results in the top half of Figure 3 are exactly as one would expect

given the shape of Figure 1. For very high levels of multimarket contact in which �rms

are already perfectly coordinating on prices, there is very little impact from an increase in

multimarket contact. However, for low or moderate levels of contact, there is a signi�cant

increase in fares, ranging from 1% to 6%. For these moderate levels of contact, there is also

a great deal of dispersion in the change in fares resulting from the increase in multimarket

contact. This dispersion can largely be explained by examining Equation 7, which shows

the important role that cross-price elasticities play in determining the size of the change

in fares. The results in the bottom half of Figure 3 are also intuitive; larger increases in

multimarket contact result in larger increases in fares, except at very high levels of contact

where �rms are already perfectly coordinating.

As mentioned above, the impact on fares of a marginal increase in multimarket contact

depends on the cross-price elasticity of demand. To see why, recall that the cooperative

e¤ect is measured by f (mmc12)�
@s2
@p1
(p2 �mc2). Figure 4 plots the mean percentage change

in fares resulting from the same 0:128 increase in average multimarket contact for di¤erent

cross-price elasticities. More precisely, we use the average cross-price elasticity across all

products in the market. The �gure shows that in markets where cross-price elasticities are

high, the increase in fares resulting from an increase in multimarket contact is larger. For

moderate levels of multimarket contact, the mean percentage change in fares increases from

2% to 5% depending on the cross-price elasticities in the market. For very high levels of

initial multimarket contact, regardless of the cross-price elasticity, there is almost no change

in fares since �rms are already fully colluding.

5 Conclusion

In this paper, we build on Nevo [1998] to develop a new test to identify collusive behavior in

the US airline industry. In particular, we nest conduct parameters into a standard oligopoly

model where �rms compete on prices and o¤er di¤erentiated products. We identify the
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conduct parameters using variation in multimarket contact across local airline markets. We

�nd that carriers with little multimarket contact (e.g. Alaska and Delta) do not cooperate in

setting fares, while we cannot reject the hypothesis that carriers with a signi�cant amount of

multimarket contact (e.g. US Air and Delta) can sustain near-perfect cooperation in setting

fares. We also �nd that cross-price elasticities play a crucial role in determining the impact

of multimarket contact on collusive behavior and equilibrium fares.

Our methodology can be applied to any other industry where data from a cross-section of

markets are available and where �rms encounter each other in many of these markets. More

generally, our methodology can be applied to any industry where there is some exogenous

shifter of the conduct parameters, such as regulatory changes (Waldfogel and Wulf [2006]

and Parker and Roller [1997]) or lawsuits (Miller [2010]). The key step is to express the

conduct parameters as functions of these exogenous shifters and nest these functions within

a standard empirical oligopoly model.

One interesting extension of this paper would be a merger analysis that accounts for the

impact of multimarket contact. Our results suggest that mergers between large airlines do

not necessarily lead to higher prices. To see why, notice that an increase in multimarket

contact between legacy carriers results in almost no change in fares, while the same change

in multimarket contact between low-cost carriers and legacy carriers will result in large

increases in fares. Thus, recently completed mergers (Delta and Northwest and Continental

and United) between legacy carriers should have little consequence for market power while

potentially introducing signi�cant cost e¢ciencies.28

Our analysis is restrictive in a number of aspects, which constitute themes for future

research. First, we have assumed that the functional form that relates conduct parameters to

multimarket contact is the same for all carrier pairs. On one hand this simpli�es the analysis

considerably and still allows for heterogeneity in the conduct parameters. On the other hand,

there might be fundamental di¤erences across di¤erent pairs. Second, our model is static,

and one might be interested in gaining insight into how �rms sustain tacit collusion.29 This

28See Brueckner and Spiller [1994] for a discussion of economies of density.
29For a discussion of the importance of accounting for dynamics when estimating demand, see Hendel and
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would require that we model the strategic interaction between �rms as a dynamic game,

which is clearly beyond the scope of this paper.

Nevo [2006].
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AA AS B6 CO DL F9 FL G4 NK NW SY TZ U5 UA US WN YX

AA � 22 84 683 855 116 273 7 11 686 11 29 5 819 579 339 119

AS 22 � 3 13 35 10 3 0 0 18 0 1 0 50 30 9 2

B6 84 3 � 96 132 2 57 0 7 83 0 0 4 124 125 41 2

CO 683 13 96 � 733 88 244 4 12 555 5 24 7 572 559 314 86

DL 855 35 132 733 � 115 455 5 20 907 7 28 10 1008 1150 385 114

F9 116 10 2 88 115 � 41 0 3 87 5 8 0 140 115 72 18

FL 273 3 57 244 455 41 � 0 13 306 4 17 5 290 388 106 54

G4 7 0 0 4 5 0 0 � 0 5 3 0 0 11 5 0 1

NK 11 0 7 12 20 3 13 0 � 13 0 1 1 14 20 6 1

NW 686 18 83 555 907 87 306 5 13 � 14 27 7 871 612 282 169

SY 11 0 0 5 7 5 4 3 0 14 � 0 0 13 7 0 3

TZ 29 1 0 24 28 8 17 0 1 27 0 � 0 29 24 28 13

U5 5 0 4 7 10 0 5 0 1 7 0 0 � 5 10 6 0

UA 819 50 124 572 1008 140 290 11 14 871 13 29 5 � 847 329 159

US 579 30 125 559 1150 115 388 5 20 612 7 24 10 847 � 327 74

WN 339 9 41 314 385 72 106 0 6 282 0 28 6 329 327 � 39

YX 119 2 2 86 114 18 54 1 1 169 3 13 0 159 74 39 �

Table 1:  Number of Common Markets in 2007‐Q1



Variable  Source Description Observations Mean Median  Std. Dev.

Fare DB1B Carrier‐Market‐Specific Average Fare 268119 222.692 213.472 66.502

Nonstop DB1B Indicator of Nonstop Service 268119 0.173 0.000 0.379

NetworkSize DB1B
Percentage of All Routes Served by Carrier at Originating 

Airport
268119 0.443 0.470 0.174

NumMkt DB1B
Number of Markets Served by Carrier at Originating 

Airport (1000s) 268119 0.130 0.139 0.050

ExtraMiles DB1B
Average Distance Flown Between Market Endpoints 

(equals Distance for Nonstop Service)
268119 1258.628 1121.000 625.219

AvgContact DB1B
Average Market Contact from mmc Matrix (divided by 

1,000)
268119 0.630 0.621 0.265

MktShare DB1B Market‐Carrier Share of Passengers 268119 0.274 0.168 0.286

HHI DB1B Market‐Carrier Share of Passengers 268119 0.453 0.404 0.214

Roundtrip DB1B Proportion of Roundtrip Passengers 268119 0.827 0.853 0.130

Hub Author  Indicator for Hub Endpoint 268119 0.104 0.000 0.306

Distance DB1B Nonstop Distance Between Market Endpoints 268119 1105.694 969.000 596.201

MktSize BEA Geometric Mean of Population at Market Endpoints 268119 2409758 1789943 1993143

BusIndex ATS Survey Fraction of Business Travelers 268119 0.408 0.411 0.096

AA_avg Survey AA Mean % Gates at Market Endpoints 268119 0.097 0.072 0.084

CO_avg Survey CO Mean % Gates at Market Endpoints 268119 0.067 0.050 0.075

DL_avg Survey DL Mean % Gates at Market Endpoints 268119 0.103 0.084 0.082

NW_avg Survey NW Mean % Gates at Market Endpoints 268119 0.085 0.051 0.107

UA_avg Survey UA Mean % Gates at Market Endpoints 268119 0.087 0.058 0.081

US_avg Survey US Mean % Gates at Market Endpoints 268119 0.126 0.099 0.112

WN_avg Survey WN Mean % Gates at Market Endpoints 268119 0.075 0.056 0.075

AS_avg Survey AS Mean % Gates at Market Endpoints 268119 0.006 0.000 0.018

B6_avg Survey B6 Mean % Gates at Market Endpoints 268119 0.014 0.000 0.018

F9_avg Survey F9 Mean % Gates at Market Endpoints 268119 0.012 0.000 0.026

FL_avg Survey FL Mean % Gates at Market Endpoints 268119 0.023 0.015 0.027

TZ_avg Survey TZ Mean % Gates at Market Endpoints 268119 0.000 0.000 0.001

G4_avg Survey G4 Mean % Gates at Market Endpoints 268119 0.006 0.000 0.019

YX_avg Survey YX Mean % Gates at Market Endpoints 268119 0.014 0.000 0.042

NK_avg Survey NK Mean % Gates at Market Endpoints 268119 0.002 0.000 0.006

U5_avg Survey U5 Mean % Gates at Market Endpoints 268119 0.001 0.000 0.003

OwnGates Survey Carrier's Own Mean % Gates at Market Endpoints 268119 0.129 0.093 0.129

CompGates Survey
Total Mean % of Gates at Market Endpoints Held by All 

Potential  Competitors
268119 0.587 0.616 0.587

LccGates Survey
Total Mean % of Gates at Market Endpoints Held by 

Potential  Lcc Competitors
268119 0.072 0.063 0.072

WNGates Survey
Mean % of Gates at Market Endpoints Held by WN, 0 if 

Carrier is WN
268119 0.064 0.048 0.070

Table 2:  Variable Description and Summary Statistics

Carrier‐Market‐Specific Variables

Market‐Specific Variables



(1) (2) (3) (4) (5) (6) (7)

Average_MMC 0.246*** 0.291*** ‐0.017*** 0.054*** 0.539*** 0.667*** 0.663***

(0.030) (0.029) (0.002) (0.004) (0.009) (0.016) (0.016)

Hub 0.208*** 0.190*** 0.191*** 0.177*** 0.194*** 0.194***

(0.002) (0.001) (0.001) (0.002) (0.002) (0.002)

NetworkSize 0.630*** 0.314*** 0.224*** 0.226*** 0.501*** 0.207*** 0.208***

(0.013) (0.013) (0.005) (0.006) (0.007) (0.006) (0.006)

Nonstop ‐0.054*** ‐0.065*** ‐0.032*** ‐0.032*** ‐0.053*** ‐0.033*** ‐0.033***

(0.002) (0.002) (0.001) (0.001) (0.001) (0.001) (0.001)

RoundTrip ‐0.548*** ‐0.576*** ‐0.533*** ‐0.539*** ‐0.444*** ‐0.548*** ‐0.548***

(0.006) (0.006) (0.003) (0.003) (0.004) (0.004) (0.004)

HHI 0.014

(0.011)

MktShare 0.063***

(0.005)

Log(Distance) ‐1.265*** ‐0.438*** ‐0.430***

(0.024) (0.058) (0.058)

Log
2
(Distance) 0.106*** 0.049*** 0.048***

(0.002) (0.004) (0.004)

BusinessIndex ‐0.029

(0.021)

Market Fixed Effects Yes Yes Yes Yes No No No

IV No No No No Yes Yes Yes

Excluding Monopolies No No No Yes No Yes Yes

R
2

0.167 0.223 0.143 0.171 0.241 0.350

Observations 85,920 85,920 268,119 252,284 268,119 252,284 252,284

Standard errors in parentheses: *** p<0.01, ** p<0.05, * p<0.10
Note: Year‐Quarter Dummies, Carrier Dummies included in all regressions. Their coefficient estimates, as well as the 
constant estimate, are omitted for sake of brevity.

Table 3: Prices and Multimarket Contact

 All Markets Top 1000 Markets

Χ2   Test Static for joint 
significance of IV

15,314.27*** 5,418.90***



(1) (2) (3) (4) (5)

MMC ‐0.109*** ‐0.107*** ‐0.094*** ‐0.095*** ‐0.095***

(0.010) (0.010) (0.010) (0.017) (0.017)

Log(Distance) ‐2.268*** ‐2.306*** 0.122 0.103

(0.075) (0.075) (0.107) (0.107)

Log
2
(Distance) 0.174*** 0.177*** ‐0.012 ‐0.011

(0.005) (0.005) (0.008) (0.008)

BusinessIndex 0.243*** 0.116***

(0.020) (0.028)

Market Fixed Effects No No Yes No No

R
2

0.024 0.025 0.012 0.026 0.026

Observations 414,382 414,382 414,382 49,535 49,535

Standard errors in parentheses: *** p<0.01, ** p<0.05, * p<0.10
Note: Year‐Quarter Dummies, Carrier Dummies included in all regressions. Their coefficient estimates, as well as the 
constant estimate, are omitted for sake of brevity.

Table 4: Screening Tests on the Relationship between Multimarket Contact and Collusion

Differences in Prices Rigidity of Prices



Demand estimate std. error estimate std. error

Price1 ‐1.333*** (0.007) ‐1.315*** (0.004)

Price2 ‐0.119*** (0.003) ‐0.165*** (0.001)

κ0 ‐0.662*** (0.065) ‐0.723*** (0.034)

Constant1 ‐5.567*** (0.023) ‐5.957*** (0.012)

Constant2 ‐7.65*** (0.042) ‐7.196*** (0.023)

Nonstop1 1.087*** (0.006) 1.103*** (0.006)

Nonstop2 0.954*** (0.006) 1.065*** (0.006)

λ   0.625*** (0.001) 0.622*** (0.002)

Network Size 0.683*** (0.015) 0.578*** (0.015)

Distance 2.223*** (0.026) 2.097*** (0.026)

Distance
2 ‐0.523*** (0.01) ‐0.511*** (0.01)

Extra‐miles ‐1.309*** (0.024) ‐1.173*** (0.023)

Extra‐miles
2

0.211*** (0.008) 0.182*** (0.008)

Cost

Constant 0.926*** (0.009) 0.379*** (0.005)

NumMkt ‐0.926*** (0.108) 0.344*** (0.056)

NumMkt
2

0.432 (0.37) ‐1.523*** (0.192)

Distance 0.184*** (0.011) 0.24*** (0.005)

Distance
2 ‐0.008*** (0.004) ‐0.055*** (0.002)

Extra‐miles 0.157*** (0.011) ‐0.104*** (0.005)

Extra‐miles
2 ‐0.052*** (0.004) 0.009*** (0.002)

Model Fit

Median Marginal Cost 1.062 0.613

Median Elasticity ‐4.320 ‐4.413

Median Elasticity ‐ Type1 ‐6.260 ‐6.181

Median Elasticity ‐ Type2 ‐0.559 ‐0.769

Function Value 34766.038 34217.886

Standard errors in parentheses: *** p<0.01, ** p<0.05, * p<0.10

BCS ‐ No Collusion BCS ‐ Full Collusion

Note: Year‐Quarter Dummies, Carrier Dummies included in all regressions. Their coefficient estimates, as well as 
the constant estimate, are omitted for sake of brevity.

Table 5: BCS Estimation

(1) (2)



Demand estimate std. error estimate std. error estimate std. error

Price1 ‐1.162*** (0.006) ‐1.394*** (0.005) ‐1.334*** (0.005)

Price2 ‐0.139*** (0.002) ‐0.18*** (0.002) ‐0.187*** (0.002)

κ0 ‐0.566*** (0.044) ‐0.939*** (0.14) ‐1.248*** (0.155)

κ1 0.542*** (0.007) 0.553*** (0.008)

Constant1 ‐5.954*** (0.017) ‐5.794*** (0.049) ‐5.902*** (0.044)

Constant2 ‐7.514*** (0.028) ‐7.423*** (0.094) ‐7.068*** (0.113)

Nonstop1 1.14*** (0.006) 1.13*** (0.006) 1.119*** (0.006)

Nonstop2 1.03*** (0.006) 1.049*** (0.006) 1.056*** (0.006)

λ   0.601*** (0.002) 0.627*** (0.002) 0.620*** (0.002)

Network Size 0.525*** (0.015) 0.704*** (0.015) 0.637*** (0.015)

Distance 1.997*** (0.026) 2.045*** (0.026) 2.136*** (0.026)

Distance
2 ‐0.497*** (0.01) ‐0.504*** (0.01) ‐0.516*** (0.01)

Extramiles ‐1.039*** (0.023) ‐0.999*** (0.023) ‐1.2*** (0.023)

Extramiles
2

0.163*** (0.008) 0.153*** (0.008) 0.194*** (0.008)

Cost

Constant 0.541*** (0.006) 0.57*** (0.005) 0.453*** (0.006)

NumMkt ‐0.531*** (0.072) 0.036*** (0.061) 0.255*** (0.065)

NumMkt
2

1.795*** (0.244) 0.232*** (0.206) 0.411** (0.219)

Distance 0.249*** (0.007) 0.282*** (0.006) 0.264*** (0.007)

Distance
2 ‐0.039*** (0.003) ‐0.059*** (0.002) ‐0.059*** (0.002)

Extramiles 0.077*** (0.007) ‐0.001 (0.006) 0.069*** (0.006)

Extramiles
2 ‐0.017*** (0.002) 0.004*** (0.002) ‐0.003*** (0.002)

Contact

Constant ‐3.167*** (0.058) ‐2.44*** (0.047) ‐2.571*** (0.027)

MMC 5.785*** (0.085) 6.584*** (0.09) 6.337*** (0.055)

Model Fit

Median Marginal Cost 0.746 0.780 0.766

Median Elasticity ‐3.519 ‐4.574 ‐4.353

Median Elasticity ‐ Type1 ‐5.166 ‐6.578 ‐6.191

Median Elasticity ‐ Type2 ‐0.618 ‐0.849 ‐0.868

Function Value 33900.977 33508.811 33708.790

Standard errors in parentheses: *** p<0.01, ** p<0.05, * p<0.10
Note: Year‐Quarter Dummies, Carrier Dummies included in all regressions. Their coefficient estimates, as well as the constant estimate, 
are omitted for sake of brevity.

Table 6:  BCS Estimation with Conduct Parameters

(2)

BCS ‐ exp CV ‐ BusIndex

(3)

BCS ‐ linear CV‐ BusIndex

(1)

BCS ‐ exp CV



AA AS B6 CO DL F9 FL G4 NK NW SY TZ U5 UA US WN YX

AA � 0.046 0.064 0.687 0.856 0.076 0.170 0.042 0.043 0.690 0.043 0.047 0.042 0.828 0.546 0.230 0.077

AS 0.046 � 0.041 0.043 0.049 0.043 0.041 0.040 0.040 0.045 0.040 0.041 0.040 0.053 0.048 0.042 0.041

B6 0.064 0.041 � 0.068 0.083 0.041 0.055 0.040 0.042 0.064 0.040 0.040 0.041 0.079 0.080 0.051 0.041

CO 0.687 0.043 0.068 � 0.745 0.066 0.147 0.041 0.043 0.511 0.042 0.046 0.042 0.535 0.517 0.206 0.065

DL 0.856 0.049 0.083 0.745 � 0.076 0.369 0.042 0.045 0.889 0.042 0.047 0.043 0.935 0.970 0.281 0.075

F9 0.076 0.043 0.041 0.066 0.076 � 0.051 0.040 0.041 0.065 0.042 0.042 0.040 0.087 0.076 0.060 0.045

FL 0.170 0.041 0.055 0.147 0.369 0.051 � 0.040 0.043 0.198 0.041 0.044 0.042 0.184 0.284 0.072 0.054

G4 0.042 0.040 0.040 0.041 0.042 0.040 0.040 � 0.040 0.042 0.041 0.040 0.040 0.043 0.042 0.040 0.041

NK 0.043 0.040 0.042 0.043 0.045 0.041 0.043 0.040 � 0.043 0.040 0.041 0.041 0.044 0.045 0.042 0.041

NW 0.690 0.045 0.064 0.511 0.889 0.065 0.198 0.042 0.043 � 0.044 0.047 0.042 0.867 0.592 0.177 0.101

SY 0.043 0.040 0.040 0.042 0.042 0.042 0.041 0.041 0.040 0.044 � 0.040 0.040 0.043 0.042 0.040 0.041

TZ 0.047 0.041 0.040 0.046 0.047 0.042 0.044 0.040 0.041 0.047 0.040 � 0.040 0.047 0.046 0.047 0.043

U5 0.042 0.040 0.041 0.042 0.043 0.040 0.042 0.040 0.041 0.042 0.040 0.040 � 0.042 0.043 0.042 0.040

UA 0.828 0.053 0.079 0.535 0.935 0.087 0.184 0.043 0.044 0.867 0.043 0.047 0.042 � 0.850 0.220 0.096

US 0.546 0.048 0.080 0.517 0.970 0.076 0.284 0.042 0.045 0.592 0.042 0.046 0.043 0.850 � 0.218 0.061

WN 0.230 0.042 0.051 0.206 0.281 0.060 0.072 0.040 0.042 0.177 0.040 0.047 0.042 0.220 0.218 � 0.050

YX 0.077 0.041 0.041 0.065 0.075 0.045 0.054 0.041 0.041 0.101 0.041 0.043 0.040 0.096 0.061 0.050 �

Table 7:  Price Coordination in 2007‐Q1
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