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In this paper I provide new evidence on the implications of treatment effect heterogeneity

for least squares estimation when the effects are inappropriately assumed to be homoge-

nous. I prove that under a set of benchmark assumptions linear regression provides a

consistent estimator of the population average treatment effect on the treated times the

population proportion of the nontreated individuals plus the population average treat-

ment effect on the nontreated times the population proportion of the treated individuals.

Consequently, in many empirical applications the linear regression estimates might not

be close to any of the standard average treatment effects of interest.
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1 Introduction

In his Nobel Lecture, James J. Heckman asserted that “[t]he most important discov-

ery [of microeconometrics] was the evidence on the pervasiveness of heterogeneity and

diversity in economic life” (Heckman 2001, p. 674). A large part of the literature on

programme evaluation seeks, therefore, to explore heterogeneity in the response to treat-

ment. For example, Heckman, Smith, and Clements (1997) and Djebbari and Smith

(2008) develop a framework to study treatment effect heterogeneity using experimental

data. Crump, Hotz, Imbens, and Mitnik (2008) propose and apply two nonparametric

tests of treatment effect heterogeneity under unconfoundedness. Various estimators of

quantile treatment effects (QTEs) have also been proposed (e.g., Abadie, Angrist, and

Imbens 2002; Chernozhukov and Hansen 2005; Firpo 2007; Frölich and Melly 2008) and

applied (e.g., Bitler, Gelbach, and Hoynes 2006, 2008) in recent papers. The empirical

importance of treatment effect heterogeneity has invariably been confirmed.

At the same time, the homogeneous linear regression model is often believed to provide

a good benchmark to study treatment effects, i.e. partial effects for a binary explanatory

variable. A convincing explanation is given in Angrist and Pischke (2009), while many

influential studies (e.g., Neal and Johnson 1996; Fryer and Levitt 2004) explicitly rely

on linear regression to capture the possibly heterogeneous effects for a binary variable.

In this paper my goal is to provide new evidence on the limitations of such an approach

in light of “the pervasiveness of heterogeneity”. In particular, what is the appropriate

interpretation of the least squares estimand in the homogeneous linear model if treatment

effects are actually heterogeneous? In this paper I provide a new answer to this question

by exploiting the link between linear regression and the Oaxaca–Blinder decomposition

(Blinder 1973; Oaxaca 1973) as well as utilizing a recent theoretical result in Elder, God-

deeris, and Haider (2010). I prove that under a set of benchmark assumptions linear

regression provides a consistent estimator of the population average treatment effect on

the treated times the population proportion of the nontreated individuals plus the popu-

lation average treatment effect on the nontreated times the population proportion of the

treated individuals. In other words, under the assumptions of (i) a single control variable
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(ii) whose variance is equal in both subpopulations the linear regression estimand is a

weighted average of both subpopulation-specific average treatment effects; while weights

are equal to the population proportions of both groups, they are inappropriately inter-

changed between them. Consequently, the ability of linear regression to provide a good

benchmark to study treatment effects is heavily data-dependent. Least squares estimation

can be preferred on efficiency grounds if there is little heterogeneity in treatment effects

or both subsamples are of approximately equal size; in the latter case both weights are

more or less equal anyway. However, in other cases linear regression will provide biased

estimates of all the standard average treatment effects of interest, even asymptotically.

Similar research on linear regression and treatment effect heterogeneity has been done

in the past, although very little compared to the growing literature on impact hetero-

geneity. The key result is given in Angrist (1998). It is shown that in a saturated model

the weights underlying linear regression are proportional to the variance of treatment

at each combination of covariate values. This analysis has recently been extended in

Humphreys (2009) by proving that the linear regression estimand is bounded by both

subpopulation-specific average treatment effects whenever treatment assignment proba-

bilities are monotonic in covariate-specific treatment effects.1 My analysis distinguishes

itself by completely relaxing the saturated model restriction. Such models are utilised

in few applied studies (e.g., Angrist 1998; Black, Smith, Berger, and Noel 2003), while

being inapplicable if any of the control variables are continuous. It is also unclear whether

any theoretical analyses of saturated models can be generalised to the standard case of

nonsaturated linear regression.

The remainder of the paper is organised as follows. Section 2 provides the main

theoretical contribution of this study. Section 3 illustrates this proposition with a simple

Monte Carlo experiment, while showing how the OLS weights on subpopulation-specific

average treatment effects are inversely proportional to the sample proportions of both

groups. Section 4 provides a further illustration through a reanalysis of the National

1Other related contributions include Yitzhaki (1996) and Angrist and Krueger (1999) who analyse
the implicit weights on the estimated partial effects for a continuous explanatory variable in least squares
estimation. Recently, Løken, Mogstad, and Wiswall (2012) have analysed the weighting of the partial
effects in OLS, IV, and FE estimation when the estimated model is inappropriately assumed to be linear.
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Supported Work (NSW) data (see, e.g., LaLonde 1986; Dehejia and Wahba 1999; Smith

and Todd 2005). It is shown that good performance of linear regression in replicating the

NSW experimental benchmark in Angrist and Pischke (2009) is a consequence of the large

sample proportion of the nontreated individuals. Section 5 summarises and concludes.

2 Theory

In this section I use the standard potential outcomes framework and standard notation.

Since this framework is now widespread in econometric literature, I do not provide a

detailed description here.2 Consider therefore a population of N individuals, indexed

by i = 1, . . . , N . The potential outcomes are denoted by y1i (the treated outcome) and

y0i (the nontreated outcome), while the realised outcome is denoted by yi. Also denote

group membership (treatment) by di; consequently, di = 1 for the treated individuals and

di = 0 for the nontreated individuals. We also observe Xi, a row vector of covariates (xi

if scalar).

The literature on programme evaluation seeks to identify and estimate treatment

effects for various subpopulations. The individual-specific treatment effect is defined as

τi = y1i − y0i, i.e. the difference between the potential outcomes of a given individual.

These individual-specific treatment effects are averaged and various average treatment

effects are estimated. The population average treatment effect (PATE) is defined as:

τPATE = E[τi] = E[y1i − y0i]. (1)

Similarly, one can define the population average treatment effect on the treated (PATT)

and the population average treatment effect on the nontreated (PATN) as:

τPATT = E[τi | di = 1], (2)

τPATN = E[τi | di = 0]. (3)

2Recent reviews are given in Angrist and Pischke (2009), Blundell and Costa Dias (2009), Imbens
and Wooldridge (2009), and Wooldridge (2010).

3



A major strand in the treatment effects literature, typically referred to as selection on

observables, is based on the so-called unconfoundedness assumption, i.e. it assumes that

treatment is orthogonal to the potential outcomes, conditional on Xi. Under the uncon-

foundedness assumption the standard average treatment effects of interest are typically

estimated using regression methods (see, e.g., Angrist and Pischke 2009), matching on co-

variates (see, e.g., Abadie and Imbens 2006, 2011), and methods based on the propensity

score (see, e.g., Rosenbaum and Rubin 1983; Dehejia and Wahba 1999; Hirano, Imbens,

and Ridder 2003). When the model for outcomes is linear (yi = Xiβ1 + υ1i if di = 1;

yi = Xiβ0 + υ0i if di = 0), the PATT and the PATN can also be estimated using the two

original versions of the Oaxaca–Blinder decomposition (see, e.g., Barsky, Bound, Charles,

and Lupton 2002; Melly 2006; Fortin, Lemieux, and Firpo 2011; Kline 2011). Precisely:

τPATT = E[Xi | di = 1] · (β1 − β0), (4)

τPATN = E[Xi | di = 0] · (β1 − β0). (5)

Now, we can proceed to the main proposition of this paper which will provide a

reinterpretation of the least squares estimand in the homogeneous linear model when

treatment effects are actually heterogeneous. Its proof will utilise the link between linear

regression and the Oaxaca–Blinder decomposition as well as the ability of this decom-

position method to provide consistent estimates of various average treatment effects of

interest.

Proposition. Under the assumption of unconfoundedness the coefficient on a binary

treatment variable in linear least squares regression is a consistent estimator of Pr[di =

0] · τPATT + Pr[di = 1] · τPATN , i.e. the population average treatment effect on the treated

times the population proportion of the nontreated individuals plus the population average

treatment effect on the nontreated times the population proportion of the treated indi-

viduals, provided that there is a single control variable whose variance is equal in both

subpopulations.

Proof. See Elder, Goddeeris, and Haider (2010, Appendix A) for a proof that the coeffi-
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cient on a binary variable in linear least squares regression is computationally equivalent

to the unexplained component from the extension of the Oaxaca–Blinder decomposition

proposed by Cotton (1988), provided that there is a single control variable whose vari-

ance is equal in both subpopulations (also find a simplified version of this proof in the

Appendix). Next, consider the following lemma which is an original contribution of the

present paper.

Lemma. Under the assumption of unconfoundedness the unexplained component from the

extension of the Oaxaca–Blinder decomposition proposed by Cotton (1988) is a consistent

estimator of the population average treatment effect on the treated times the population

proportion of the nontreated individuals plus the population average treatment effect on

the nontreated times the population proportion of the treated individuals.

Proof. The generalised Oaxaca–Blinder decomposition (with the extension proposed by

Cotton 1988 accommodated as a special case) decomposes the difference between average

outcomes in both groups of interest in the following way:

E[yi | di = 1] − E[yi | di = 0] = E[Xi | di = 1]β1 − E[Xi | di = 0]β0

= E[Xi | di = 1]β1 − E[Xi | di = 0]β0

+ E[Xi | di = 1]β∗ − E[Xi | di = 1]β∗

+ E[Xi | di = 0]β∗ − E[Xi | di = 0]β∗

= E[Xi | di = 1] · (β1 − β∗) + E[Xi | di = 0] · (β∗ − β0)

+ (E[Xi | di = 1] − E[Xi | di = 0])β∗, (6)

where the unexplained component is equal to:

τ ∗ = (E[yi | di = 1] − E[yi | di = 0]) − (E[Xi | di = 1] − E[Xi | di = 0])β∗

= E[Xi | di = 1] · (β1 − β∗) + E[Xi | di = 0] · (β∗ − β0). (7)

The extension of the Oaxaca–Blinder decomposition proposed by Cotton (1988) uses
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β∗ = βC = Pr[di = 1] · β1 + Pr[di = 0] · β0. The difference between average outcomes in

both groups of interest can thus be written as:

E[yi | di = 1] − E[yi | di = 0] = E[Xi | di = 1] · (β1 − βC) + E[Xi | di = 0] · (βC − β0)

+ (E[Xi | di = 1] − E[Xi | di = 0])βC

= E[Xi | di = 1] · (β1 − (Pr[di = 1] · β1 + Pr[di = 0] · β0))

+ E[Xi | di = 0] · ((Pr[di = 1] · β1 + Pr[di = 0] · β0) − β0)

+ (E[Xi | di = 1] − E[Xi | di = 0])βC

= Pr[di = 0] · E[Xi | di = 1] · (β1 − β0)

+ Pr[di = 1] · E[Xi | di = 0] · (β1 − β0)

+ (E[Xi | di = 1] − E[Xi | di = 0])βC

= Pr[di = 0] · τPATT + Pr[di = 1] · τPATN

+ (E[Xi | di = 1] − E[Xi | di = 0])βC , (8)

where the unexplained component is equal to:

τC = (E[yi | di = 1] − E[yi | di = 0]) − (E[Xi | di = 1] − E[Xi | di = 0])βC

= Pr[di = 0] · τPATT + Pr[di = 1] · τPATN . (9)

Hence, the lemma is proven. A combination of this lemma with the above-mentioned

result in Elder, Goddeeris, and Haider (2010, Appendix A) proves the proposition of the

present paper.

Q.E.D.

3 Monte Carlo Evidence

In the previous section I proved that under a set of benchmark assumptions linear re-

gression might provide biased estimates of all the standard average treatment effects of
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interest, since it inappropriately interchanges the implicit weights on both subpopulation-

specific average treatment effects. However, linear regression is widely used in empirical

research in many different disciplines and such a pessimistic result might seem counter-

intuitive at first. Therefore, this section is an attempt to provide a simple Monte Carlo

illustration of this proposition.

The data generating process I consider is designed in such a way that the assumptions

of the proposition in Section 2 hold:

yi = α + βxi + τidi + υi, (10)

where α = 25, β = 20, and υi ∼ N [0, 50]. Although the true model in Equation 10 allows

for treatment effect heterogeneity, a homogeneous linear regression model is estimated

and its estimand is denoted as τLR. Clearly, there is a single control variable (xi), but we

also require its variance to be equal in both subpopulations. The joint distribution of xi,

di, and τi is thus presented in Table 1.

The conditional variance of xi as well as all the standard average treatment effects

of interest can be easily calculated using information in Table 1. Precisely, while V[xi |

di = 1] = V[xi | di = 0] = 1.5, E[xi | di = 1] = 2 6= 4 = E[xi | di = 0]. Also

τPATT = E[τi | di = 1] = 110 and τPATN = E[τi | di = 0] = 200. Since Pr[di = 1] = 1/3

and Pr[di = 0] = 2/3, τPATE = E[τi] = 170. Although intuition might suggest that

τLR ≈ τPATE, the proposition in Section 2 provides an assertion that linear least squares

regression is actually based on an inappropriate weighting scheme, i.e. τLR = τPATT ·

Pr[di = 0] + τPATN · Pr[di = 1] = 140. Such a claim is now illustrated with 10,000

replications of this data generating process. The results are presented in Figure 1.

Figure 1 displays the empirical distribution of several linear estimators of various

average treatment effects.3 Four versions of the Oaxaca–Blinder decomposition are used

in the simulation. The two original versions of this decomposition method (Equations

4 and 5) are used to estimate the PATT and the PATN, respectively. These estimators

are denoted by τ̂PATT and τ̂PATN . Moreover, Oaxaca–Blinder estimates of the PATE

3All the applications of the O–B decomposition use the oaxaca command in Stata (Jann 2008).
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Table 1: The Joint Distribution of the Control Variable, the
Treatment Variable, and the Treatment Effect

Number of observations
xi di = 1 di = 0 τi
1 500 150 N [65, 75]
2 200 175 N [110, 75]
3 150 75 N [155, 75]
4 100 725 N [200, 75]
5 50 875 N [245, 75]

1000 2000

Figure 1: Monte Carlo Simulations of Linear Regression and Oaxaca–Blinder Estimators
of Various Average Treatment Effects
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are calculated as τ̂PATE = τ̂PATT · P̂r[di = 1] + τ̂PATN · P̂r[di = 0], while the extension

of the Oaxaca–Blinder decomposition proposed by Cotton (1988) provides the following

estimator: τ̂C = τ̂PATT · P̂r[di = 0] + τ̂PATN · P̂r[di = 1] (see Equation 9). As evident in

Figure 1, the empirical distributions of τ̂PATE, τ̂PATT , and τ̂PATN are centred around the

true values of the corresponding parameters. Similarly, τ̂C is centred around the PATT

times the population proportion of the nontreated individuals plus the PATN times the

population proportion of the treated individuals. At the same time, the theoretical

result in Elder, Goddeeris, and Haider (2010) guarantees that in this setting τ̂C = τ̂LR

by construction. Indeed, this is evident in Figure 1 as well. Consequently, although

τPATE = 170, τPATT = 110, and τPATN = 200, the empirical distribution of τ̂LR is centred

around 140.

An important negative consequence of the weighting scheme in linear regression (as

proven in Section 2) is to attach the greater weight to τ̂PATT (i.e. the linear estimate of

the effect on the treated), the smaller is the sample proportion of the treated individuals.

This problematic property is illustrated in Figure 2 by manipulating the number of the

nontreated individuals in simulated samples.

While the number of the nontreated individuals in simulated samples is manipulated

in Figure 2, both the marginal distribution of xi conditional on di = 0 and the number

of the treated individuals are held constant. What follows, neither τPATT nor τPATN

varies across sample compositions; on the other hand, τPATE does vary and the greater

the sample proportion of the treated individuals, the smaller is τPATE (because τPATN =

200 > 110 = τPATT ). As evident in Figure 2, however, the behaviour of τ̂LR is different.

The greater the sample proportion of the treated individuals, the greater is τ̂LR and the

more distant is its empirical distribution from τPATT , the population average treatment

effect on the treated. Clearly, such a property of linear regression is highly undesirable.
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4 An Application to the NSW Data

In the previous section I provided a simple illustration of the proposition in Section 2.

The linear least squares estimator of average treatment effects, τ̂LR, was shown to be the

more distant from any of the group-specific average treatment effects, the larger is the

sample proportion of the group in question. Yet the data generating process in Section

3 was designed in such a way that the assumptions of the proposition in Section 2 were

satisfied. While these assumptions provide a useful benchmark, they are potentially quite

restrictive. Therefore, in this section I examine empirically whether the proposition in

Section 2 provides a good approximation to the behaviour of τ̂LR when the assumptions

of this proposition do not hold.

In this study I use the well-known National Supported Work (NSW) data, analysed

originally by LaLonde (1986) and subsequently by Heckman and Hotz (1989), Dehejia

and Wahba (1999), Smith and Todd (2005), Angrist and Pischke (2009), Abadie and

Imbens (2011), Kline (2011), and many others.4 My starting point is a recent reanalysis

by Angrist and Pischke (2009) who report that the linear regression estimates of the effect

of the NSW training programme on subsequent earnings of programme participants are

remarkably close to the experimental benchmark and other nonexperimental estimates.

4.1 Whose Effect of the NSW Training Programme Does Linear

Regression Estimate?

In his seminal study of the NSW data, LaLonde (1986) discarded the control group from

the original experimental evaluation of the NSW training programme and created six

nonexperimental control groups using standard U.S. microeconomic datasets, the Current

Population Survey (CPS) and the Panel Study of Income Dynamics (PSID). These control

groups have typically been referred to as CPS-1, CPS-2, CPS-3, PSID-1, PSID-2, and

PSID-3. In a recent study of the NSW data, Angrist and Pischke (2009) restricted

their attention to three control groups in total (the control group from the experiment,

4Since this dataset is described in many other papers (e.g., LaLonde 1986; Smith and Todd 2005), I
do not provide a detailed description here.
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CPS-1, and CPS-3) and used four different specifications for each control group. These

variable selections together with all the available control groups and a wider array of

linear estimators are used in the present paper. The estimates are presented in Table 2.

As evident in Table 2, although intuition might (incorrectly) suggest that τLR ≈

τPATE, τ̂LR is generally far away from τ̂PATE. Clearly, this is consistent with the propo-

sition in Section 2, since neither there is little heterogeneity in the estimated effects of

the NSW training programme (except for the comparison with the original control group

and selected comparisons with PSID-3), nor both subsamples are of approximately equal

size. At the same time, τ̂LR is generally quite close to τ̂PATT and τ̂C . The latter remark is

precisely the conclusion of the proposition in Elder, Goddeeris, and Haider (2010). How-

ever, please note that the assumptions of this proposition are false in the applications

being considered. Such an observation would suggest that the propositions in Section 2

and in Elder, Goddeeris, and Haider (2010) might indeed provide a good approximation

to the behaviour of τ̂LR even when the assumptions of these propositions do not hold. A

further treatment of this observation is given in Figure 3.

Figure 3 displays a scatter plot of τ̂LR and τ̂C , as presented in Table 2. As evident in

Figure 3, the 45◦ line provides a good fit to these data, thus suggesting that even when the

assumptions of the proposition in Section 2 do not hold, the linear least squares regression

does indeed provide an estimator of the PATT times the population proportion of the

nontreated individuals plus the PATN times the population proportion of the treated

individuals. Consequently, since the sample proportion of the nontreated individuals

is very large in most samples (especially CPS-1, CPS-2, and PSID-1), this estimated

effect (τ̂LR) is often very close to τ̂PATT . At the same time, Oaxaca–Blinder estimates of

the PATT replicate the experimental benchmark relatively well (see, e.g., Kline 2011).

What follows, good performance of linear regression in replicating the NSW experimental

benchmark in Angrist and Pischke (2009) is a direct consequence of the large sample

proportion of the nontreated individuals. Were this proportion smaller, τ̂LR would deviate

from τ̂PATT . This corollary of the proposition in Section 2 is illustrated in the next

subsection with a simple simulation-based study of the NSW data.
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Table 2: Linear Regression and Oaxaca–Blinder Estimates of the Effects of the NSW
Training Programme

Control Group Specification1 P̂r[di = 1]
Oaxaca–Blinder

τ̂LRτ̂PATT τ̂PATN τ̂PATE τ̂C

NSW

(1) 0.416 1,786 1,478 1,606 1,658 1,670a

(2) 0.416 1,753 1,746 1,749 1,750 1,750a

(3) 0.416 1,751 1,455 1,578 1,628 1,636a

(4) 0.416 1,785 1,471 1,602 1,654 1,676a

CPS-1

(1) 0.011 -3,417 -6,163 -6,132 -3,449 -3,437a

(2) 0.011 -69 -6,289 -6,218 -140 -78a

(3) 0.011 623 -5,017 -4,952 558 623a

(4) 0.011 796 -4,996 -4,930 730 794a

CPS-2

(1) 0.072 -1,670 -2,770 -2,690 -1,750 -1,697
(2) 0.072 -232 -2,753 -2,571 -415 -263
(3) 0.072 415 -2,186 -1,997 226 362
(4) 0.072 927 -2,141 -1,919 705 813

CPS-3

(1) 0.301 928 22 295 655 771a

(2) 0.301 63 -465 -306 -96 -91a

(3) 0.301 1,280 84 444 920 1,010a

(4) 0.301 1,701 177 636 1,242 1,369a

PSID-1

(1) 0.069 -5,125 -12,728 -12,202 -5,651 -5,613
(2) 0.069 -534 -12,010 -11,216 -1,328 -582
(3) 0.069 507 -11,080 -10,279 -294 456
(4) 0.069 827 -11,057 -10,235 5 795

PSID-2

(1) 0.422 -682 -2,702 -1,849 -1,535 -1,614
(2) 0.422 1,023 -2,547 -1,039 -485 721
(3) 0.422 1,592 -2,141 -564 15 874
(4) 0.422 2,066 -2,028 -299 337 1,360

PSID-3

(1) 0.591 676 1,278 923 1,032 475
(2) 0.591 1,420 1,266 1,357 1,329 1,370
(3) 0.591 832 1,383 1,057 1,158 595
(4) 0.591 1,462 1,481 1,470 1,473 1,107

1 Specification (1) includes demographic controls only, i.e. age, age squared, years of schooling, and
dummies for black, Hispanic, high school dropout, and married. Specification (2) includes 1975 earnings
only. Specification (3) includes demographic controls and 1975 earnings. Specification (4) includes
demographic controls, 1974 earnings, and 1975 earnings.
a Also appears in Angrist and Pischke (2009, p. 89).
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4.2 Further Simulation Evidence

An unbiased estimator of τPATT or τPATN has the same expectation irrespective of the

relative size of both subsamples. However, if a given estimator is unbiased for τPATE, its

expectation changes whenever there is variation in the relative size of the treated group

and the nontreated group. If, say, the number of the nontreated individuals increases and

the number of the treated individuals is held constant, then the expectation of such an

estimator moves toward τPATN . The contrary is true for τ̂LR, as was proven in Section 2

under a set of benchmark assumptions. When the number of the nontreated individuals

increases, τ̂LR moves away from τPATN and toward τPATT .

This undesirable property of linear regression is illustrated in Figure 4 for a situation

in which the benchmark assumptions of Section 2 do not hold. A simulation-based study

of the NSW data is performed with 10,000 replications for each sample size. In each of

these replications, a random sample of size n is drawn from CPS-1 without replacement.

Then, the new sample is merged with the treated group from the experimental evaluation

of the NSW training programme and τ̂LR is calculated using the merged dataset.

As evident in Figure 4, τ̂LR is neither consistently centred around τ̂PATT nor around

τ̂PATN . It also does not change in accordance with τ̂PATE whenever n changes. On the

contrary, when n grows, and hence the relative size of the nontreated group increases,

τ̂LR converges to τ̂PATT . In other words, again, the larger the sample proportion of a

given group (treated or nontreated), the more distant is τ̂LR from the population average

treatment effect on this group. This is indeed explained by the proposition in Section

2, although it should be noted that the rate of convergence in Figure 4 is faster than

expected. For example, while the proposition in Section 2 would suggest that τ̂LR ≈

−4700 for n = 10, the empirical distribution of τ̂LR is centred around approx. −3000.

5 Conclusion

In this paper I have provided new evidence on the implications of treatment effect het-

erogeneity for least squares estimation when the effects are inappropriately assumed to
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be homogenous. Although similar research is available in Angrist (1998) and Humphreys

(2009), my contribution is novel in its complete relaxation of the saturated model re-

striction imposed in previous studies. In this paper I have proven that under a set of

benchmark assumptions linear regression provides a consistent estimator of the popu-

lation average treatment effect on the treated times the population proportion of the

nontreated individuals plus the population average treatment effect on the nontreated

times the population proportion of the treated individuals. Consequently, linear regres-

sion possesses a highly undesirable property in that it attaches the greater weight to the

linear estimate of the population average treatment effect on the treated (nontreated),

the smaller is the sample proportion of the treated (nontreated) individuals.

A general lesson to be drawn from this paper is that the weighting scheme in linear

regression may drive the results in applied studies whenever heterogeneity in the response

to treatment is sufficiently large and both subpopulations of interest are not of approx-

imately equal size. In such a case linear regression will provide inconsistent estimates

of all the standard average treatment effects of interest. In other cases linear regression

might be preferred on efficiency and convenience grounds. However, the empirical im-

portance of treatment effect heterogeneity has been confirmed by many applied studies

(see, e.g., Heckman 2001 for a discussion), thus suggesting that the weighting scheme in

linear regression is indeed a problem of substantial practical interest.

Appendix

This is a simplified version of the proof that the coefficient on a binary variable in linear

least squares regression is computationally equivalent to the unexplained component from

the extension of the Oaxaca–Blinder decomposition proposed by Cotton (1988), provided

that there is a single control variable whose variance is equal in both subpopulations.

The proof is due to Elder, Goddeeris, and Haider (2010, Appendix A). The (true) data

generating process can be specified as:

yi = λ0 + λddi + λxxi + λdxdixi + ǫi, (11)
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for which:

V[xi | di = 1] = V[xi | di = 0] = σ2

d
. (12)

In such a setting, the unexplained component from the extension of the Oaxaca–Blinder

decomposition proposed by Cotton (1988) can be written as:

τC = (E[yi | di = 1] − E[yi | di = 0]) − (E[xi | di = 1] − E[xi | di = 0])βC

=
Cov[di, yi]

V[di]
−

Cov[di, xi]

V[di]

· (Pr[di = 1] ·
Cov[xi, yi | di = 1]

V[xi | di = 1]
+ Pr[di = 0] ·

Cov[xi, yi | di = 0]

V[xi | di = 0]
)

=
Cov[di, yi]

V[di]
−

Cov[di, xi]

V[di]

·
Pr[di = 1] · Cov[xi, yi | di = 1] + Pr[di = 0] · Cov[xi, yi | di = 0]

σ2

d

. (13)

At the same time, the (incorrectly specified) model be can specified as:

yi = α + βddi + βxxi + υi. (14)

Our goal is therefore to prove that βd = τC . We can use d̃i to denote the residual from a

regression of di on xi and proceed with the proof:

βd =
Cov[d̃i, yi]

V[d̃i]

=
Cov[di − xi · Cov[di, xi]/V[xi], yi]

V[d̃i]

=
Cov[di, yi]

V[d̃i]
−

Cov[di, xi]

V[xi]
·

Cov[xi, yi]

V[d̃i]

=
1

V[d̃i]
· (Cov[di, yi] −

Cov[di, xi] · Cov[xi, yi]

V[xi]
)

=
V[xi]

V[di] · V[xi] − Cov[di, xi]2
· (Cov[di, yi] −

Cov[di, xi] · Cov[xi, yi]

V[xi]
)
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=
Cov[di, yi] · V[xi] − Cov[di, xi] · Cov[xi, yi]

V[di] · V[xi] − Cov[di, xi]2

=
Cov[di, yi] · V[xi] − Cov[di, xi]

2 · Cov[di, yi]/V[di]

V[di] · V[xi] − Cov[di, xi]2

−
Cov[di, xi] · Cov[xi, yi] − Cov[di, xi]

2 · Cov[di, yi]/V[di]

V[di] · V[xi] − Cov[di, xi]2

=
Cov[di, yi]

V[di]
−

Cov[di, xi]

V[di]
·

Cov[xi, yi] · V[di] − Cov[di, xi] · Cov[di, yi]

V[di] · V[xi] − Cov[di, xi]2

=
Cov[di, yi]

V[di]
−

Cov[di, xi]

V[di]
·

Cov[xi, yi] − Cov[di, xi] · Cov[di, yi]/V[di]

V[xi] − Cov[di, xi]2/V[di]

=
Cov[di, yi]

V[di]
−

Cov[di, xi]

V[di]

·
Pr[di = 1] · Cov[xi, yi | di = 1] + Pr[di = 0] · Cov[xi, yi | di = 0]

σ2

d

= τC , (15)

where the penultimate equality follows from the decomposition of variance and the de-

composition of covariance:

V[xi] = Pr[di = 1] · V[xi | di = 1] + Pr[di = 0] · V[xi | di = 0]

+ Pr[di = 1] · (E[xi | di = 1] − E[xi])
2 + Pr[di = 0] · (E[xi | di = 0] − E[xi])

2

= σ2

d
+ Pr[di = 1] · (Pr[di = 0] · (E[xi | di = 1] − E[xi | di = 0]))2

+ Pr[di = 0] · (Pr[di = 1] · (E[xi | di = 1] − E[xi | di = 0]))2

= σ2

d
+ (E[xi | di = 1] − E[xi | di = 0])2

· (Pr[di = 1] · Pr[di = 0]2 + Pr[di = 0] · Pr[di = 1]2)

= σ2

d
+ (Cov[di, xi]/V[di])

2 · (V[di] · Pr[di = 0] + V[di] · Pr[di = 1])

= σ2

d
+ Cov[di, xi]

2/V[di] (16)

and

Cov[xi, yi] = Pr[di = 1] · Cov[xi, yi | di = 1] + Pr[di = 0] · Cov[xi, yi | di = 0]
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+ Pr[di = 1] · (E[xi | di = 1] − E[xi]) · (E[yi | di = 1] − E[yi])

+ Pr[di = 0] · (E[xi | di = 0] − E[xi]) · (E[yi | di = 0] − E[yi])

= Pr[di = 1] · Cov[xi, yi | di = 1] + Pr[di = 0] · Cov[xi, yi | di = 0]

+ Pr[di = 1] · Pr[di = 0] · (E[xi | di = 1] − E[xi | di = 0])

· Pr[di = 0] · (E[yi | di = 1] − E[yi | di = 0])

+ Pr[di = 0] · Pr[di = 1] · (E[xi | di = 1] − E[xi | di = 0])

· Pr[di = 1] · (E[yi | di = 1] − E[yi | di = 0])

= Pr[di = 1] · Cov[xi, yi | di = 1] + Pr[di = 0] · Cov[xi, yi | di = 0]

+ (E[xi | di = 1] − E[xi | di = 0]) · (E[yi | di = 1] − E[yi | di = 0])

· (Pr[di = 1] · Pr[di = 0]2 + Pr[di = 0] · Pr[di = 1]2)

= Pr[di = 1] · Cov[xi, yi | di = 1] + Pr[di = 0] · Cov[xi, yi | di = 0]

+ (Cov[di, xi] · Cov[di, yi]/V[di]
2) · (V[di] · Pr[di = 0] + V[di] · Pr[di = 1])

= Pr[di = 1] · Cov[xi, yi | di = 1] + Pr[di = 0] · Cov[xi, yi | di = 0]

+ Cov[di, xi] · Cov[di, yi]/V[di]. (17)
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Figure 2: Monte Carlo Simulations of the Linear Least Squares Regression Under Different
Sample Compositions
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Figure 3: The Relationship Between Linear Regression and Cotton (1988) Estimates of
the Effects of the NSW Training Programme
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Figure 4: The Behaviour of the Linear Least Squares Regression in the Simulated NSW–
CPS-1 Datasets Under Different Sample Compositions
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