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Abstract

Conventional theory says that innovations first diffuse slowly, then at faster paces, and finally at

asymptotically declining rates. Economists and others explain such behavior with a variety of logistic

models. Early models like the contagion model derive their predictive power from reliance on the

history of the variables they are trying to predict. New social learning models improve the dynamics

of diffusion across heterogeneous populations, while other studies propose various modifications.

However, these extensions of the logistic and related models are still too orderly in structure and

outcome. In reality one can expect both order from disorder and disorder from order. The argument

of this paper is that innovations spread more like wild fire than like systematic epidemics. This

analogy is no mere conjecture; some environments are more susceptible to catching fire than others.

Just as the rate of the spread of fire is a function of fuel and other factors, so too is the spread of

innovations, only that in the latter case the fuel is human population. Human population in general

is a necessary fodder for the spread of innovations. The sufficient condition is the quality of the

population which can favor or disfavor the spread of innovations, which explains why there are some

random chances of finding islands untouched by fire surrounded by a sea of fire devastation. 
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1. Introduction

Conventional theory almost always suggests that the spread of innovation follows a logistic

distribution. In the beginning there are few adopters; innovations pick up speed as the number of

adopters increase; and finally the diffusion rate falls subject to capacity constraints. This theory draws

mainly from traditional population growth models interspersed with epidemiological insights.

Gupta, Sharma, and Karisiddappa (1997), for example, examine six conventional diffusion models

using publications data on science and technology. While all six models describe an S-curve

phenomenon, the authors “... observed that [except for the modified exponential-logistic model] the

models were not able to capture the fluctuations in the growth data” (p. 526). Recently H. Peyton

Young (2004, 2005, 2007) has injected life in the modeling process by introducing a novel dimension:

social learning. In this case diffusion rates depend not only on the conventional rates of change of the

Velhurst-Pearl-Reed variety, but also on heterogeneous thresholds associated with payoff matrices

that give incentives for, disincentives against, or even discontinuation of, innovations (cf.,

Rogers,1983). This approach  clearly advances understanding of the spread of innovations and helps

explain the differential spread of innovations across populations or segments within one population.

A troubling aspect of the logistic model of the spread of innovations, with or without social learning,

is that the structural order of the model preordains outcomes. This is rather too artificial a result,

because almost all models of innovations identify four elements of how [and why] innovations spread:
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the innovation itself, the channels through which the innovation is communicated, the time over which

the innovation is communicated, and the social system that surrounds it all (Rogers, 1983).  Although

less quantifiable than the first three elements, the social system has the ability to constrain or promote

both the innovation and the channels of communication, and time. How quickly and successfully

adoption occurs and whether a particular innovation takes-off or not, bears directly on the social

system, and the dynamic nature of the social system suggests that innovations spread more like wild

fire than like systematic contagions, with or without “heterogeneous thresholds”. 

The objective of this note is to model that hypothesis by incorporating into the logistic model the wild

fire analogy. Section 2 describes the conventional logistic model, and its Young extension. The first

subsection of Section 3 shows the applicability of a basic fire spread model to innovation spread

models. The second subsection of the same modifies the logistic model in a manner consistent with

the fire spread model. It turns out that the fire spread component of the model is just a human capital

dimension in the innovation spread model. Section 4 describes the (least squares) estimation of the

modified logistic model, while Section 5 outlines the distributions that are consistent with the logistic

model. Without denying either the relevance of conventional logistic models or the importance of

social learning, the paper concludes that social learning makes the spread of innovations less

predictable. The reason is that innovations spread more like wild fire than like systematic contagions,

with or without “heterogeneous thresholds”, a situation that calls for more realistic modifications of

the logistic model.

2. Background

What is the rate of spread of an innovation X, such as a new technology or product? How and why

do diffusion rates vary across populations and even within one population? Conventional theory

suggests that the spread of innovations follows a logistic model with time as one, if not the key,

determinant. According to this model an innovation appears from some exogenous source. A few

members of a population adopt the innovation. First the innovation catches on slowly, then faster and

faster as more and more people convert to it. In time diminishing returns of a sort set in and the

diffusion rate slows as it approaches its asymptote, leaving behind an S-shaped trace.

Formally: Assume we have a population with a maximum absorptive capacity of K(Z) at any time.

Let these people be potential adopters of an innovation. Out of K(Z), N(Z) people are actual adopters

of an innovation X at any time. These N(Z) people spread X across at least some K(Z). Assume that

each Nth spreader spreads X to 8(Z) individuals, and some of 8(Z) become spreaders themselves.

Over time the total number of spreaders (A(Z)) is

where Z is a multidimensional matrix of variables, including time, t,  that determine the spread of an

innovation. Given (1) the proportion of K(Z) that is not N(Z) is  The number[ ( ) ( )] / ( ).K Z N Z K Z−
of new adopters (A*(Z) is 

(1)
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From (2)  Since   suchdA dN K N K* / / .= − = ⇒Θ Θ2 0 2 dN dZ NK N/ ,= −Θ Θ 2 dN NK N dZ= −[ ]Θ Θ 2

that 

for K =1, " = 1 and  Thus, (3) is a simple contagion version of the conventionalβ = − + =1 1 0/ ( ).N Z

Velhurst-Pearl-Reed logistic model (seeYoung, 2004, 2005, 2007). It assumes that all 8(Z)

individuals who learned about X for N(Z) convert at an instantaneous rate of (. The Bass model on

the other hand generalizes (3) by assuming that conversion rates differ depending upon whether

learning is from a familiar (internal) source or it is from an unfamiliar (external) source. Following

Young let (1 > 0 be the conversion rate when learning is internal and (2 > 0 when learning is from

an external source. Then (3) can be restated as

Young then shows that for N(Z=0), N = 1/(2 and (4) turns into

Eq. (5) = (4) = (3) if (2 = 0 , (1 = ( > 0, K = 1, and " = 1. When (1 = ( = 0, and (1 = (2 >

0,  suggesting that everyone who could learn had learned, but the adoption rateN Z Z( ) exp( ),= − −1 γ
has slowed down a lot, or it is taking place with a significant time lag. At this point Young introduces

“social learning with heterogenous thresholds”, so that the rate of the spread of an innovation  is

subject to some constraints like resistance, friction, and uncertainty. The introduction of thresholds

specifically challenges the fundamental assumption of the simple contagion model “that people adopt

an innovation simply because they heard about its existence” (p.9). Such barriers are lower the higher

the penalty for not converting, or similarly the higher the payoff for converting. Thus, the rate of

spread is either reduced or accelerated by “heterogeneous thresholds”, which is Young’s Equation

(14, p. 13), and can be restated as

(2)

(3)

(4)

(5)



5

Eq. (6) approximates the number of individuals, given today’s payoff, tat can be expected to

overcome their resistance and convert tomorrow. This is a simplification of Young, of course.

3. Innovations spread like wild fire

This section consists of two parts. The first part next below shows the applicability of a basic fire

spread model to innovation spread models. The second subsection modifies the logistic model in a

manner consistent with the fire spread model. 

3.1. Fire versus innovations - an analogy

Young’s formulation shows that N(Z) depends on both the conventional rate ( and some resistance

factor. The formulation is understandable because innovations are human creations, and as such they

depend on human population whose numbers and behaviors are difficult to predict.  While an

innovation may be governed by logistic rules in some stages of its spread, other stages may be

dynamic, perhaps even chaotic. A close view of Young’s and Gupta, Sharma, and Kirisiddappa’s

graphical fits of diffusion models shows that they miss the data in the middle of the S-curve.

Therefore, it is not unreasonable to claim that innovations spread like wild fire. In fact, incorporating

the wild fire phenomenon into the logistic models is like incorporating uncertainty, instead of risk,

in Young’s model. As Robert Frank (2007) explains in Black Swans, uncertain matrices almost always

have relevant, albeit unknown and unpredictable, information content. They are like wildfires.

In its basic form a fire spread model relates physical and behavioral properties of the fire to its

environment, pre-ignition and during the burning process. Although there are many and increasingly

sophisticated models of fire spread, almost all of them are based on Rothermel (1972). The Rothermel

model states the fire spread ( R ) as the energy intensity of the reaction of fire (S), adjusted for

factors that favor or hinder the spread of fire such as wind and slope (R), to fuel (U), i.e.,

Eq.(8) is basically a fire-over-fuel model. The question then becomes: How do we make fire

properties consistent with economic properties of the spread of an innovation?  The answer turns out

surprisingly simple. With respect to innovations R is equivalent to the reaction intensity of a

population to an innovation as described by Rogers (1983).  Since a population’s reaction to an

innovation depends on the expected benefit/cost ratio, R acts like a productivity shifter. It is the

expected intensity of use (X/N), where X is a measure of the innovation output like a product that

embodies an innovation X. As such it reflects socio-economic factors that facilitate or hinder the

(6)

(7)
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adoption and spread of X: culture, politics, religion, and so on (Bulliet, 2002). Just like in the fire

case, the spread of an innovation over a population (fuel) is an energy conservation problem.

3.2. Modified logistic model of the spread of innovations

Taking (7) into account we can adjust (5) such that 

Equivalently,

Hence, N*(Z) ] N(Z) œR= 1. But in the standard model such as (3) K/" is the upper limit and

K/("+$) = N(Z=0). According to (8) the upper limit is RK/("+$) = N(Z=0), and RK/("+$) < K/"
for 0 < R < 1.

Clearly R simply refines N(Z) for quality, and is consistent with T.W. Schultz’s (1981) concept of

“quality population” or human capital (cf. Becker, 1993) . From Jones (1997), among many, human

capital (H(Z)) is

where 0 is the  human capitalization rate (appreciation/depreciation rate), and q include factors such

as years of schooling, literacy rate, or even health indicators like life expectancy. However, although

a reasonable proxy for human capital in production, L(Z) is too narrow a basis for H(Z) in

characterizing the spread of an innovation. Children can spread innovations to other children and to

their own parents. In this case both the past and the present depend on the future instead of the usual

case in which the past determines the future; advertisers and marketing people understand this fact

too well. Those involved in the production of a new technology may not necessarily be its first

adopters. Many scientists and engineers who built the first atomic bomb had in fact opposed its

adoption long before and after it was used against Japan in WWII. Thus, a broader basis of H(Z) is

needed and we call that “quality (as in grade) population” (G(Z)) so that 

(8.1)

(8.2)

(9)
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Hence,

Eq.(11) is better understood in terms of (3) or (4) by which 

4. Estimating an H-modified logistic model of the spread of innovation

Let K* / H(Z)K, and restate (12) as

Then,

Simplification of (13) shows that  Then from (12)

Eq. (13') suggests that 

Plugging  and  into (14) and simplifying leads to − ( ( )) /
** *

N Z K
2 − −γ α( / ( ) )

* **
K N Z

(10)

(11)

(12)

(12')

(13)

(13')

(14)
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Given K* in (14)  and 

But K* /H(Z) K, implying that

Thus, in (12) 

As one useful digression, we can also set H(Z) = " / I, for “I” called “initial conditions” (Masterton-

Gibbons, 1995). Then it becomes clear that

which is just a restatement of (12). Either (12) or (18) is a Markov property of the spread of

innovation. It says that the spread of innovations depend only on the current activity, and not on

history - a “memoryless” process, to use Masterton-Gibbons words.

5. The distribution of the H-modified logistic model of the spread of innovation

Our discussion so far has assumed a logistic distribution without being specific. This is not

maintainable because while N(Z) may follow a logistic distribution, H(Z) may follow a different

distribution such that the product of the two (H(Z)N(Z)), let us call that n(z), may follow yet another

distribution. Assume n(z) is lognormally distributed such that

(15)

(16)

(17)

(18)
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For simplicity set Then

In addition, K* = KH, so that lognormally

Again for 

One reason why Young (ib.) stresses a free-distribution of the F(.) of his model is that a logistic

spread of innovation is similar to the Gompertz (Harris 1992, Thompson, 1998). A Gompertz  is a

model of form

Consequently, the derivative of (21) is

(19)

(19')

(20)

 (20')

(21)

(21')
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The logistic and Gompertz models belong to the family of modified exponential model (Harris, 1992,

Young, 2004, 2005, 2007). For example,  if Y is any raw data, then the following data transformation

shows the relationship between the Gompertz and logistic models, and the association of both to the

modified exponential model (Harris, 1992, Barnerjee, 200x, Koch and Lind, 1971, Gupta, Sharma,

Kirisiddappa, 1997), i.e.,

Eq.(22) implies that 

For H(Z)K / K*, the logistic model in terms of a Gompertz is

Since  one can show that

6.  Functional form of H(Z)

The discussion so far assumes that H(Z) is linear in G(Z) so that 0 is a constant. There is no reason

not to think that H(Z) can be raised to some power, say D. Below are four possible forms:

(22)

(23)

(23')

(23")

(24)
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Unfortunately pursuing these does not add any more to clarity than leaving them unattended.

7. Concluding Remark

Appropriately modified logistic models continue to be useful tools for describing the spread of

innovations. Generally logistic regression techniques such as the Logit technique, are nearly

indispensable in assessing the loglikelihood of some economic event. Where repeated sampling is

possible and learning processes can be modeled, logistic models have few competitors in predicting

probable behaviors of economic variables. Their flexible lognormal distributions give them an

additional benefit that captures varying rates of innovation spreads. Moreover, a logistic model can

be transformed into a Gompertz (Harris, 1992), and into a modified exponential model of which both

are family members.

However, the benefit of flexibility is often purchased with too strong a currency, so to speak, in terms

of the assumption about the tight structure that permits diffusion to proceed first at a slow rate, then

at a fast rate, and eventually at an asymptotically declining rate. Diffusion has no end?

In reality the spread of an innovation is more complex than a simple logistic model predicts. A lot of

institutional constraints and prospects are involved. Characterizing the constraints and prospects are

underlying individual behavioral interactions of many infrastructural and superstructural elements. The

interactions determine the spread of innovations in dynamic, perhaps even chaotic, ways. In this paper

the argument is that innovations spread more like wild fire than like systematic epidemics. This is no

wild analogy; some environments are just more susceptible to catching fire than others. Just as the

rate of the spread of fire is a function of fuel and other factors, so too is the spread of innovation, only

that in the latter case the fuel is human population. Human population is a necessary fodder for the

spread of innovation. The sufficient condition is the quality of the population which can favor or

disfavor the spread of innovation, which explains why there are some random chances of finding

islands untouched by fire surrounded by a sea of fire devastation.

Social learning can speed up or slow down the spread of innovations depending on how the

population perceives Young’s benefit/cost (payoff) matrix. However, social learning makes the spread

of innovations less predictable. This calls for more realistic modifications to the logistic model. The

rest of this papere attempts to do just that. Obviously without its empirical component, a lot remains

to be done.
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