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Abstract

In many realistic group decision making problems where a “representative”
collective output must be produced, it is relevant to measure how much
consensus this solution conveys to the group. Many aspects influence the
final decision in group decision making problems. Two key issues are the
experts’ individual opinions and the methodology followed to compute such
a final decision (aggregation operators, voting systems, etc.). In this paper
we consider situations where each member of a population decides upon
approving or not approving each of a set of options. The experts express
their opinions in a dichotomous way, e.g., because they intend to use approval
voting. In order to measure the consensus or cohesiveness that the expression
of the individual preferences conveys we propose the concept of approval
consensus measure (ACM), which does not refer to any priors of the agents
like preferences or other decision-making processes. Then we give axiomatic
characterizations of two generic classes of ACMs.

Key words: Approval voting, Consensus measures, Tanimoto similarity
index

JEL classification: D70.

1. Introduction

Social Choice and Decision Making Theories try to give answers to many
daily real situations. The study, analysis, testing, ... of the way that individ-
ual preferences are aggregated in order to obtain a “representative” collective
choice is an important research area. In particular, the measurement of the
degree of agreement in a group has attracted growing attention although
its study is often complex and controversial (because it involves the treat-
ment of individual opinions, aggregation procedures or voting rules, and it
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is conditional on the context, etc) a handicap that is common to virtually
all branches of the Social Sciences. Both aspects have been the subject of a
joint treatment in [1] and [2].

In this paper we focus on the study of the degree of cohesiveness in a
group decision making context when agents express their opinions in a di-
chotomous way, e.g. because they intend to apply approval voting (AV) in
order to reach a collective decision. We have become interested in this con-
text because it adapts to many real-world situations. Since the publication
of Brams and Fishburn [3, 4], many organizations and scientific societies use
AV, to wit, the Mathematical Association of America (MMA), the Amer-
ican Mathematical Society (AMS), the Institute for Operational Research
and Management Sciences (INFORMS), the American Statistical Associa-
tion (ASA), the Institute of Electrical and Electronic Engineers (IEEE), and
other smaller societies such as the Society for Judgment and Decision Making,
the Society for Social Choice and Welfare, etc. (see [5]). Moreover, many
successful theoretical and empirical works on AV have studied this voting
system from various points of view (see [6], [7], [8], [9], [10], [11], [12], [13],
among others). The conclusion that ‘the Approval Voting method is more
likely to lead to a consensus vote than polarizing the electorate’ (Alós-Ferrer
and Granić [13, p. 173]) makes dichotomous assessments worth investigating
in relation with the measurement of cohesiveness in a society.

Based on the theoretical and practical importance of this case, in our
approach to the measurement of the cohesiveness experts have dichotomous
opinions over the set of alternatives: they have to classify them as “accept-
able” or “non-acceptable”. This is in line with an earlier contribution by
Erdamar et al. [14], the main difference being that here we do not make ref-
erence to any priors of the agents (like preferences or other decision-making
processes). Following the approach initiated in Bosch [15], we propose and
characterize some classes of measures of the consensus or cohesiveness that
such expression of the individual preferences conveys. We generically refer
to them as approval consensus measures (ACMs).

We first give an axiomatic characterization of s-Simple ACMs (that mea-
sure the probability that a randomly chosen contraction of the set of candi-
dates to a subset with s elements produces unanimity). We then reproduce
the analysis for a modification of that class of ACMs, that intends to lessen
the influence of irrelevant alternatives (i.e., those whom nobody approves of).
To that propose we draw inspiration from the Tanimoto similarity index (see
[16] and [17]) in order to define and characterize s-Simple Tanimoto ACMs.
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This similarity index and others have been applied in different fields, espe-
cially in Biogenetics (see [18], [19] and [20], for instance). As a result, this
variation of the s-Simple ACMs verifies an independence of irrelevant alter-
natives property, which supposes a distinctive feature of s-Simple Tanimoto
ACMs.

The paper is structured as follows. Section 1 is devoted to introduce
basic terminology, as well as our proposal of measurement of consensus, the
approval consensus measure. In Section 3 and Section 4 we set forth the char-
acterization and properties of two families of approval consensus measures,
s-Simple and s-Simple Tanimoto ACMs, respectively. Next, in Section 5 we
present an illustrative example. Finally, in Section 6 we give some concluding
remarks.

2. Notation and definitions

Let X = {x1, ..., xk} be the finite set of k options, alternatives or candi-
dates. It is assumed that X contains al least two alternatives, i.e., that the
cardinality of X is greater or equal than 2, |X| > 2. Abusing notation, on
occasions we refer to option xs as option s for convenience. A population of
agents or experts is a finite subset N = {1, 2, ..., N} of natural numbers.

We consider that each expert can vote for or approve of as many options,
alternatives or candidates as he/she wishes, thus showing extreme and di-
chotomous opinions. In order to formalize these assessments we can take
three alternative positions.

1. Let P(X) be the set of all subsets of X . For any expert i ∈ N,
let Bi ∈ P(X) be the set of alternatives that he/she approves of. We
write P = P(X)N for the set of all the assessments on X , i.e., an element
B1× . . .×BN ∈ P captures the sets of alternatives that the respective agents
approve of.

2. We can also capture the dichotomous opinions of expert i ∈ N on X

by means of Ai ∈ {0, 1}k, i.e., component j of Ai is 1 if and only if expert
i approves of alternative j. We write V = {0, 1}k× N...... ×{0, 1}k for the set
of all dichotomous experts’ opinions on X , thus A1 × . . .×AN ∈ V captures
the sets of alternatives that the respective agents approve of.

The elements of P can be identified with elements of V in a trivial manner.
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3. An approval profile is an N × k matrix

M =







M11 . . . M1k
...

. . .
...

MN1 . . . MNk







N×k

where Mij is the opinion of the expert i over the alternative xj , in the sense

Mij =

{

1 if expert i approves the alternative xj ,
0 otherwise.

We write MN×k for the set of all N × k matrices. Again, the elements of P,
resp. of V, can be identified with elements of MN×k in a trivial manner.

For one thing, and relating to past notation, row i of the profile M can
be identified with Ai ∈ {0, 1}k thus it describes the dichotomous assessment
of expert i over the alternatives. For another, column j of the profile M

captures the experts’ assessments on the alternative j. We denote it by M j .

Any permutation σ of the experts {1, 2, ..., N} determines a profile Mσ

by permutation of the rows of M : row i of the profile Mσ is row σ(i) of
the profile M . Similarly, any permutation π of the alternatives {1, 2, ..., k}
determines a profile πM by permutation of the columns of M : column i of
the profile πM is column π(i) of the profile M .

For each approval profile M , its restriction to a subprofile on the alterna-
tives in I ⊆ X , denoted M I , arises from exactly selecting the columns of M
that are associated with the respective alternatives in I (in the same order).
In particular, and dropping brackets for simplicity, M{j} = M j is column j

of M , and M i,j is the two-column submatrix of M that consists of columns
i and j (in the same order). An s-restricted profile of M is the restriction of
M to a subprofile on s alternatives.

Any partition {I1, ..., It} of {1, 2, ..., k}, that we identify with a partition
of X , generates a decomposition of M into subprofiles M I1 , ... , M It .1

For each approval profileM on k alternatives, by n0 we denote the number
of alternatives that all agents disapprove of, and by n1 we denote the number

1A partition of a set S is a collection of pairwise disjoint non-empty subsets of S whose
union is S.
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of alternatives that all experts approve of. Similarly, n = n0 + n1 denotes
the number of alternatives the agents are unanimous on, i.e., the number of
columns of M that are constant. 2

For convenience, (1)N×k denotes the N × k matrix whose cells are uni-
versally equal to 1.

The following example illustrates the use of the previous notation.

Example 1. LetX = {x1, x2, x3, x4} be a set of four alternatives, thus k = 4
(we also use X = {1, 2, 3, 4} for simplicity). We suppose a population of three
agents or experts, N = {1, 2, 3}, and the following approval profile M :

M =





1 0 0 0
1 1 1 0
1 1 1 1





This information can also be expressed by stating B1 = {x1},
B2 = {x1, x2, x3} and B3 = X . Or alternatively, that A1 = (1, 0, 0, 0),
A2 = (1, 1, 1, 0) and A3 = (1, 1, 1, 1).

Suppose a permutation σ of the experts N = {1, 2, 3} given by

σ : N → N

1 3
2 2
3 1

, then row 1 of Mσ is row σ(1) = 3 of M , and so forth,

therefore Mσ =





1 1 1 1
1 1 1 0
1 0 0 0





Suppose a permutation π of the alternatives X = {1, 2, 3, 4} given by

π : X → X

1 2
2 3
3 4
4 1

, then column 1 of πM is column π(1) = 2 of M , and so forth,

2Strictly speaking, the notation n(M), n0(M), n1(M) should be used in order to em-
phasize the dependence of these amounts on the approval profile. We believe that dropping
the reference to M does not cause any confusion thus we omit it.
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therefore πM =





0 0 0 1
1 1 0 1
1 1 1 1



 .

Let I1 = {1, 4} and I2 = {2, 3}, then M is decomposed into the following
two subprofiles:

M I1 = M1,4 =





1 0
1 0
1 1



 and M I2 = M2,3 =





0 0
1 1
1 1



 .

An approval profile M is unanimous if the set of approved alternatives is
the same across experts. In matrix terms, if the columns of M ∈ MN×k are
constant. Equivalently: if n = k, or if A1 = ... = AN .

An extension of an approval profile M on X = {x1, ..., xk} is an approval
profile M̄ on X̄ = {x1, ..., xk, , xk+1, ..., , xk′} such that the restriction of M̄
to the first k alternatives of X̄ coincides with M .

Definition 1. An approval consensus measure (also ACM for simplicity) is
a mapping µ : MN×k → [0, 1] that assigns a number µ(M) ∈ [0, 1] to each
approval profile M , with the following properties:

i) µ(M) = 1 if and only if M is unanimous.

ii) Anonymity : µ(Mσ) = µ(M) for each permutation σ of the agents and
M ∈ MN×k

iii) Neutrality : µ(πM) = µ(M) for each permutation π of the alternatives
and M ∈ MN×k

3. The class of s-Simple ACMs. Characterization and properties

In this section we analyse a class of approval consensus measures that
depend on a parameter k > s > 0. Intuitively, they measure the probability
that a randomly chosen s-restricted profile of a given profile is unanimous.
Formally:

Definition 2. The s-Simple approval consensus measure is the mapping Cs :
MN×k → [0, 1] given by

Cs(M) =
n(n− 1)....(n− (s− 1))

k(k − 1)....(k − (s− 1))
=

(

n

s

)

(

k

s

) =
Cs

n

Cs
k

(1)
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for each approval profile M on k alternatives, where n denotes the cardinality
of the set of alternatives the agents are unanimous on.

It is not difficult to check that these expressions produce approval consen-
sus measures. The key part is that their values lie in [0, 1], and particularly
that Cs(M) > 0 throughout. This holds true because when n > s the nu-
merator is a product of positive numbers, and when n < s one of the factors
in the numerator is 0.

We proceed to explore some general properties of the class of s-Simple
approval consensus measures. Afterwards we provide an axiomatic charac-
terization in our main result in this Section, namely Theorem 1. Because
particular instances of this class of approval consensus measures have spe-
cific interpretations we also perform additional ad-hoc analyses of the most
relevant cases.

Measuring the approval consensus by means of an s-Simple ACM verifies
the following properties. Let M denote an approval profile.

1. C1(M) > C2(M) > .... > Ck(M) because Cs(M) = 0 when s > n, and
for each index s such that s < k and s 6 n one has

Cs+1(M)

Cs(M)
=

( n

s+1)
( k

s+1)

(n
s
)

(k
s
)

=
n− s

k − s
6 1 since n 6 k

2. Reversal invariance: If we define the complementary approval profile
M c ofM according to Ac

i = X−Ai (in matrix terms: M c = (1)N×k−M)
then Cs(M) = Cs(M

c) because the set of alternatives the agents are
unanimous on does not change.

3. The consensus measure does not change if agents are replicated in any
number.

4. Suppose that an agent N + 1 is added to the society N, and that this
agent approves, resp. disapproves, of all the alternatives in X . Then
the consensus measure does not rise.
We argue for the case where agent N + 1 disapproves of all the alter-
natives in X , the other case being symmetrical. The approval profile
M̄ that thus arises has n0 unanimously disapproved alternatives and 0
unanimously approved alternatives. Therefore a comparison must be
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made between the following two numbers:

Cs(M) =
Cs

n0+n1

Cs
k

, Cs(M̄) =
Cs

n0+0

Cs
k

thus Cs(M) > Cs(M̄) if and only if Cs
n0+n1

> Cs
n0
.

5. Suppose that an alternative k+1 is added to the set of alternatives X ,
and that this alternative is unanimously approved, resp. disapproved,
by all agents. If M is not unanimous, and the introduction of the
new alternative does not affect the agents’ assessments of the original
alternatives, then the consensus measurement of the enlarged sets is
strictly higher than the original one.
The argument is as follows. Let M̃ be the profile after enlarging
the set of alternatives, we want to show that Cs(M) < 1 implies
Cs(M) < Cs(M̃). Equivalently,

Cs(M) =
Cs

n

Cs
k

< Cs(M̃) =
Cs

n+1

Cs
k+1

which after some algebra is equivalent to k > n. This is true because
M is not unanimous.

6. Convergence to full unanimity can be established if we repeatedly in-
troduce alternatives with the property that all agents agree on their
acceptability. Formally: Suppose that alternatives k + 1, ..., k + t are
added to the set of alternatives X , and that each alternative is either
unanimously approved or unanimously disapproved by all agents. If
the introduction of new alternatives does not affect the agents’ assess-
ments of past sets of alternatives, then the consensus measurement of
the extended approval profiles M̃ (t) approaches one when t tends to
infinity.
The argument is as follows. If n = k the claim is trivial, so we assume
n < k. Since M̃ (t) is the profile after enlarging the set of alterna-
tives with the k + 1, ..., k + t new alternatives, we want to show that

limt→∞(Cs(M̃
(t))) = limt→∞(

Cs
n+t

Cs

k+t

) = 1 for each s 6 k, n < k. Because

lim
t→∞

(
Cs

n+t

Cs
k+t

) = lim
t→∞

(n+t)!
(n+t−s)!

(k+t)!
(k+t−s)!

= lim
t→∞

(
(k + t− s)

(k + t)
...
(n+ t− s + 1)

(n+ t + 1)
)
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and this is a finite product of constantly k−n sequences that converge
to 1 (when t tends to infinity), the thesis ensues.

7. The computation of the s-Simple ACM of a profile on k alternatives
reduces to the average of the corresponding measures of its reductions
to (k − 1)-restricted profiles:

Proposition 1. Let X = {x1, ..., xk} be a set with k alternatives, and
let M be an approval profile on X . Then

Cs(M) =
1

k

k
∑

j=1

Cs(M
−j)

Proof. If the agents are unanimous on exactly n alternatives of X , the
neutrality property of approval consensus measures permits to assume
that these alternatives are {x1, ..., xn}. Then

1

k

k
∑

j=1

Cs(M
−j) =

1

k

(

n
∑

j=1

Cs(M
−j) +

k
∑

j=n+1

Cs(M
−j)

)

=

=
1

k

(

n
Cs−1

k−1

Cs
k−1

+ (k − n)
Cn

s

Cs
k−1

)

=

=
1

k

n
(n−1)!

s!(n−1−s)!
+ (k − n) n!

s!(n−s)!

(k−1)!
s!(k−1−s)!

=

=

n!(n−s)
s!(n−s)!

+ n!(k−n)
s!(n−s)!

k!(k−s)
s!(k−s)!

=

n!
s!(n−s)!

(k!
s!(k−s)!

=
Cs

n

Cs
k

= Cs(M)

�

3.1. Necessary and sufficient conditions for the s-Simple ACM

We proceed to characterize the s-Simple ACM in terms of the following
two properties:

Definition 3. An approval consensus measure µ verifies:
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i) s-triviality if and only if for each approval profile M on X and each
I ⊆ X with cardinality s,

µ(M I) =

{

1 if the agents are unanimous on every alternative in I,

0 otherwise.

ii) s-reducibility if and only if for each approval profile M on X ,

µ(M) =
1

Cs
k

∑

I⊆X
|I|=s

µ(M I)

Their respective interpretations are as follows. For a given s, s-triviality
means that the application of µ to any s-restricted profile behaves in a trivial
manner: the profiles have an approval consensus measure of 1 exactly when
they are unanimous, the alternative being approval consensus measure of
0. As to s-reducibility, it means that the approval consensus measure of a
profile is the average of the approval consensus measures of all its s-restricted
profiles.

Theorem 1. Let µ be an approval consensus measure on X . Then µ = Cs
if and only if µ verifies s-triviality and s-reducibility.

Proof. Let Xu ⊆ X denote the set of alternatives for which the agents have
an unanimous opinion, thus n = |Xu|.

Let us first prove that Cs verifies s-triviality and s-reducibility for each
k > s > 0. For each approval profileM onX and each I ⊆ X with cardinality
s, let nI 6 s denote the number of alternatives of I for which the agents have

an unanimous opinion. Then Cs(M
I) =

(nI
s
)

(s
s
)

equals 1 iff nI = s, i.e., iff M I

is unanimous; and it equals 0 otherwise.
To check for s-reducibility we just need to observe that

∑

I⊆X
|I|=s

Cs(M
I) = Cs

n because s-triviality implies that this sum is precisely

the number of subsets of X with cardinality s, such that the agents have an
unanimous opinion on their alternatives. In other words: It is the number of
combinations of n distinct elements taken s at a time. Formally:

∑

I⊆X
|I|=s

Cs(M
I) =

∑

I⊆Xu

|I|=s

Cs(M
I) +

∑

I*Xu

|I|=s

Cs(M
I) = Cs

n + 0
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Conversely, let µ be an approval consensus measure that verifies s-triviality
and s-reducibility. Due to s-triviality,

∑

I⊆X
|I|=s

µ(M I) = |{I ⊆ Xu : |I| = s}| = Cs
n

and now s-reducibility yields

µ(M) =
Cs

n

Cs
k

= Cs(M)

�

For focal instances of s we obtain special cases of s-simple approval con-
sensus measures that we proceed to investigate further. The case s = 1 will
be called the simple ACM: it measures the probability that the agents unani-
mously agree on a randomly chosen alternatives (be it approved or not). The
case s = k will be called the trivial ACM: it is equal to 1 when the profile
is unanimous, and 0 otherwise. In between we have the case s = 2, that we
call the Pareto ACM.

3.2. The simple ACM. Futher properties

The particularization of the s-Simple ACM when s = 1 yields C1(M) = n
k

for each approval profile M on a set with k alternatives. It measures the
probability that all agents unanimously approve/disapprove of a randomly
selected alternative. This has been called the simple approval consensus
measure. We proceed to give an alternative characterization of it in terms of
the following property:

Definition 4. An approval consensus measure µ verifies convexity if and
only if for each approval profile M on X , and each decomposition of M into
two subprofiles M1 and M2,

µ(M) =
k1µ(M1) + k2µ(M2)

k

A routine checking shows that C1 verifies convexity. This property means
that the measure of a profile is a weighted average of the measures of any
decomposition into subprofiles, the weights being given by the respective
relative sizes of the subprofiles.

We are in a position to establish the following necessary and sufficient
conditions for the simple approval consensus measure:
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Theorem 2. Let µ be an approval consensus measure on X . The following
statements are equivalent:

1. µ is the simple approval consensus measure.
2. µ verifies 1-triviality and 1-reducibility.
3. µ verifies 1-triviality and convexity.

Proof. Due to Theorem 1, we only need to check that conditions 1 and 3 are
equivalent. We already know that 1 implies 3. Let us assume that µ verifies
1-triviality and convexity. We proceed by induction on k to prove µ(M) = n

k

for each approval profile M on a set with k alternatives. The case k = 1 holds
by 1-triviality. Assume that the statement is true for sets with k alternatives
or lesser. Let X = {x1, ..., xk, xk+1} be a set with k + 1 alternatives, and let
M be an approval profile on X . Denote by M1 the restriction of the profile
M to {x1, ..., xk}. Convexity assures

µ(M) =
k µ(M1) + µ(Mk+1)

k + 1

and the induction hypothesis yields

µ(M) =
k C1(M1) + C1(M

k+1)

k + 1

Because C1 verifies convexity, the latter expression boils down to µ(M) =
C1(M). �

3.3. The Pareto ACM. Futher properties

The particularization of the s-Simple ACM when s = 2 yields
C2(M) = n(n−1)

k(k−1)
for each approval profile M on a set with k alternatives. It

measures the probability that a shrink of the set of alternatives to two ran-
domly chosen alternatives produces full consensus among the agents. This is
related to a possible adapted variation of Bosch’s Pareto measure [15, pp. 81-
82], which “is based on the number of pairs on which the voters agree”: here
we interpret that the voters agree on xi and xj when they are unanimous on
xi and also on xj , i.e., when the voters have exactly the same opinion about
which of the two alternatives must be approved.

A routine checking proves the following relationships between C1 and C2
for each approval profile M on a set with k alternatives,

C2(M) = C1(M)
k C1(M)− 1

k − 1

12



C1(M) =
1−

√

4 C2(M) k (k − 1) + 1

2k

Convexity explains the behavior of the simple approval consensus measure
when a new alternative is added without affecting the agent’s opinion on the
original alternatives. In order to state the corresponding exact relation for
the Pareto ACM we prove the following result:

Proposition 2. Let X = {x1, ..., xk} be a set with k alternatives, and let M
be an approval profile on X such that the agents are unanimous on n alterna-
tives. Denote by M̄ an extension of the profile M to X̄ = {x1, ..., xk, xk+1}.
Then

C2(M̄) =
k(k − 1)C2(M) + 2nC1(M̄

k+1)

k(k + 1)
=

C2
k C2(M) + n C1(M̄

k+1)

C2
k+1

Proof. The second equality is trivial. In order to check the first equality
we recall C2(M) = n(n−1)

k(k−1)
. If the agents are unanimous on xk+1 one has

C2(M̄) = n(n+1)
k(k+1)

and our claim becomes

C2(M̄) =
k(k − 1)C2(M) + 2n

k(k + 1)

which can be checked easily. Otherwise our claim becomes

C2(M̄) =
k(k − 1)C2(M) + 0

k(k + 1)

which holds true too because now C2(M̄) = n(n−1)
k(k+1)

. �

4. The class of s-Simple Tanimoto ACMs. Characterization and

properties

In this section we explore a variant of s-Simple ACMs that satisfies an
independence of irrelevant alternatives criterion. It is inspired in the Tani-
moto similarity index. At this point we have to introduce some additional
notations. An alternative xj is called irrelevant on profile M if all agents
disapprove it of, i.e Mij = 0 for all i ∈ N, otherwise it is relevant. An
approval profile M is irreducible if it lacks for irrelevant alternatives. That
means that each alternative is approved of by at least one agent. Given a
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non-unanimous approval profile M , we denote by MR its unique irreducible
subprofile, i.e., MR arises from M after removing irrelevant alternatives.

We now introduce the class of Simple Tanimoto approval consensus mea-
sures that depend on a parameter s. Intuitively, for each non-unanimous
profile they measure the probability that a randomly chosen s-set of relevant
alternatives are approved by all agents. Formally:

Definition 5. The s-Simple Tanimoto ACM is the mapping
Ts : MN×k → [0, 1] given by

Ts(M) =











1 if M is unanimous
0 if M is not unanimous and k − n0 < s
Cs

n1

Cs

k−n0

otherwise
(2)

for each approval profile M on k alternatives.

Since k − n0 > n1 it is immediate to check that the above expresion
provides an approval consensus measure.

Now we proceed as in the previous section: we proceed to enumerate some
general properties of the class of s-Simple Tanimoto ACMs and then we give
their axiomatic characterization. Therefore, letM denote an approval profile.

1. T1(M) > T2(M) > . . . > Tk(M). If M is unanimous, k − n0 < s or
n1 < s, then the chain of inequalities is trivial. Otherwise s 6 n1 <

k − n0 yields
Ts(M)

Ts−1(M)
=

n1 − s+ 1

k − n0 − s+ 1
6 1.

2. Cs(M) > Ts(M). We only discuss non-trivial cases, that is, s 6 n1 <

k − n0. Exploiting the inequality x
y
> x+1

y+1
with x, y > 0 and x < y, we

obtain

n− i

k − i
>

n− n0 − i

k − n0 − i
=

n1 − i

k − n0 − i
for 0 6 i 6 s− 1.

From this, the assertion is straightforward.

3. The consensus measure does not change if agents are replicated in any
number.
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4. Suppose that M is not unanimous, and that an agent N + 1 is added
to the society N. If this agent disapproves of all the alternatives in
X , then the consensus measure is zero. It suffices to observe that the
number of approved alternatives by unanimity is zero.
On the other hand, if the new agent approves of all the aternatives in X

the consensus measure does not rise. Let M̂ be the profile after adding
the new agent, then note that n̂0 = 0 6 n0, n̂1 = n1 and k̂ = k. We
have either k − n0 < s or k − n0 > s. In the first case, since M is not
unanimous, we get n̂1 = n1 < k−n0 < s and then Ts(M̂) = 0 = Ts(M).
In the second case, a simple computation arrives at:

Ts(M̂) =
n1(n1 − 1) . . . (n1 − s+ 1)

k(k − 1) . . . (k − s+ 1)

6
n1(n1 − 1) . . . (n1 − s+ 1)

(k − n0)(k − n0 − 1) . . . (k − n0 − s+ 1)
= Ts(M).

5. Suppose that M is not unanimous, that an alternative k + 1 is added
to set of alternatives X , and that this alternative is unanimously ap-
proved of by all agents. If the introduction of the new alternative does
not affect the agents’ assessments of the original alternatives, then the
consensus measurement of the enlarged sets does not decrease.
Let M̂ be the elarged profile, we then have n̂0 = n0, n̂1 = n1 + 1 < s

and k̂ = k + 1. We distinguish two cases:

• Case 0 < k − n0 < s or n1 < s. This implies Ts(M) = 0 and then
Ts(M̂) > Ts(M).

• Case k − n0 > s and n1 > s. This implies k̂ − n̂0 > s and n̂1 > s.
A simple computation gives

Ts(M̂) =
Cs

n̂1

Cs

k̂−n̂0

=
Cs

n1+1

Cs
k−n0+1

=
n1 + 1

k − n0 + 1

k − n0 + 1− s

n1 + 1− s
Ts(M).

(3)

Now, using the fact that x
y
> x+1

y+1
when x, y > 0 and x > y, we

infer

k − n0 + 1− s

n1 + 1− s
>

(k − n0 + 1− s) + 1

(n1 + 1− s) + 1
> . . . >

k − n0 + 1

n1 + 1
(4)
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Combining (3) and (4) we obtain the desired assertion Ts(M̂) >
Ts(M).

6. The s-Simple Tanimoto ACM satisfies an independence of irrelevant
alternatives criterion. Suppose that M is not unanimous, that an al-
ternative k+1 is added to set of alternatives X , and that this alterna-
tive is unanimously disapproved of by all agents. Then the consensus
measurement does not change. This is trivial because n̂1 = n1 and
k̂ − n̂0 = k − n0.

7. Convergence to full unanimity can be established if we repeatedly intro-
duce alternatives that are unanimously approved. Formally: Suppose
that alternatives k + 1, ..., k+ t are added to the set of alternatives X ,
and that each alternative is unanimously approved by all agents. If the
introduction of new alternatives does not affect the agents’ assessments
of past sets of alternatives, then the consensus measurement of the ex-
tended approval profiles M̃ (t) approaches one when t tends to infinity.
The argument is analogous to that of section 3 and so omitted.

We now characterize the s-Simple Tanimoto ACMs. We first introduce
the folowing definitions.

Definition 6. An approval consensus measure µ verifies:

i) Independence of irrelevant alternatives if and only if µ(M) = µ(MR)
for any non-unanimous profile.

ii) s-reducibility on irreducible profiles if µ is a s-reducible measure on the
set of irreducible approval profiles, that is: for each irreducible approval
profile M on X

µ(M) =
1

Cs
k

∑

I⊆X
|I|=s

µ(M I)

iii) s-nullity if and only if the consensus measurement of any non unani-
mous profile that approves of less than s alternatives is zero.

The first property reveals that the unanimously disregarded alternatives
do not play any role in the consensus measurement. The second one is a
weak version of s-reduciblity at Section 5.1. Combining both properties we
infer that the consensus measurement of a profile M only depends on its
s-restricted profiles that are irreducible. The last property means that the
consensus only can be positive if the agents approve of at least s alternatives.
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Theorem 3. Let µ be an approval consensus measure on X . Then µ = Ts

if and only if µ verifies s-triviality, independence of irrelevant alternatives,
s-reducibility on irreducible profiles and s-nullity.

Proof. Given an approval profile, let Xu(M), X1(M) ⊆ X(M) be the set of
alternatives for which the agents have an unanimous opinion and the set of
approved alternatives by unanimity, respectively. Thus n = |Xu(M)|, and
n1 = |X1(M)|.

Let us first prove that Ts verifies the four properties above. For each
approval profile M and each I ⊆ X with cardinality s, let nI

0 and nI
1 be

the number of alternatives of I that all agents disapprove of and approve of,
respectively. If M I is unanimous then it is obvious that Ts(M

I) = 1. If M I

is not unanimous, we have either nI
0 > 0 or nI

0 = 0. In the first case it must
be the case that |I| − nI

0 < s and then Ts(M
I) = 0. In the second case we

deduce that nI
1 < s, thus Cs

nI
1

= 0. It again implies Ts(M
I) = 0.

To prove that Ts satisfies the independence of irrelevant alternatives is
enought to note that an approval profile M and its associated irreducible
profile MR have the same number of approved alternatives and the same
number of approved alternatives by unanimity.

Note that s-nullity is a simple consequence of the definition of Ts.
We finally check for s-reducibility on irreducible profiles. Let M be an

irreducible profile, since n0 = 0 and Xu(M) = X1(M) we deduce by s-
triviality that

Ts(M) =
1

Cs
k

∑

I⊆X(M)
|I|=s

Ts(M
I).

Conversely, let µ be an approval consensus measure that satisfies the four
properties above. We can assume that M is not unanimous, because in other
case any measure provides consensus one. By independence of irrelevant
alternatives we have

µ(M) = µ(MR),

where the cardinality of the set of evaluated alternatives in MR is k − n0. If
k − n0 < s by s-nullity we deduce µ(M) = 0 = Ts(M).

We now analyse the case k− n0 > s. Due to s-reducibility on irreducible
profile we infer

µ(MR) =
1

Cs
k−n0

∑

I⊆X(MR)
|I|=s

µ(M I
R).
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Since Xu(MR) = X1(MR), using s-triviality we obtain
∑

I⊆X(MR)
|I|=s

µ(M I
R) = Cs

n1
,

and we then arrive at the desired assertion

µ(M) =
Cs

n1

Cs
k−n0

= Ts(M).

�

5. Illustrative example

In order to performe a practical exploration of the behavior of our consen-
sus measures proposals, in this section we develop an illustrative example that
considers different separate scenarios to illustrate some differences between s-
Simple approval consensus measures (s-SACM) and s-Simple Tanimoto con-
sensus measures (s-STACM). Moreover, different values of the parameters
are considered in this fictitious exercise.

We suppose, without loss of generality, an imaginary small experts com-
mittee of 16 members, X = {A,B,C,D,E, F,G,H, I, J,K, L,M,N,O, P}.
This committee has to elect a president among its members. The voting sys-
tem selected to carry out this choice is approval voting. Thus each member
of the committee should pick as many candidates as she/he considers good
fits for the position. In addition, throughout the example we assume that J
and N are two major candidates.

We recall that n0 represents the number of candidates that all commit-
tee members disapprove, n1 represents the number of candidates that all
committee members approve and that our proposals of approval consensus
measures are computed by means of Equations (1) and (2).

We now explore in detail four real possible scenarios.

5.1. First scenario

In the simplest non-trivial scenario, there are only two candidates (k = 2),
namely, the set of options isX1 = {J,N}. The corresponding approval profile
is M1 (see Figure 1). We note n0 = 0 and n1 = 0 in this case. Table 1 gives
the recount of the ballots which are represented by the approval profile M1.

In this first scenario, the two favorites candidates obtain similar results.
The degree of agreement among the experts about the candidates is zero for
all values of the s parameter and for each ACM under inspection.
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Table 1: Approval voter breakdown (1st scenario)

Candidates
J N

Approval voting results 9 8

5.2. Second scenario

In this case we have the same two favorites candidates, but now a third
candidate, the G candidate joins the list. Then, X2 = {J,N,G} is the set of
the alternatives. The G candidate does not have any real chance of winning
the election as we can observe in the approval profile M2 (see Figure 1) and
Table 2 .

Table 2: Approval voter breakdown (2nd scenario)

Candidates
J N G

Approval voting results 9 8 0

The number of candidates approved or disapproved for all committee
members are n1 = 0 and n0 = 1, respectively.

We can note in Table 3 that the degree of agreement among the experts
for s-SACM and s = 1 is equal to 1

3
but it is zero for s-STACM. It is clear

that at least the experts agree on all hands that the candidate G is not a
“good” candidate for such a position.

Table 3: Consensus measures for 3 alternatives

s

1 2 3 4 . . .

s-SACM 1
3

0 0 0 0

s-STACM 0 0 0 0 0
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5.3. Third scenario

Suppose a third scenario where there are four candidates, the J, N, G and
F candidates, thus the set of options is X3 = {J,N,G, F}. The F candidate
exposes a mix-candidacy between J’s and N’s ideas. Additionally, F is totally
hostile to G’s ideas. In this voting setting, M3 is the updated approval profile
(see Figure 1) and Table 4 gathers the approval voter breakdown.

Table 4: Approval voter breakdown (3rd scenario)

Candidates
J N G F

Approval voting results 6 4 0 16

As we can observe in Table 4 there is a candidate that has been accepted
by all committee members (n1 = 1), namely the J candidate, and one can-
didate has been rejected by all committee members (n0 = 1), namely the G
candidate.

The relevant alternatives are J, N and F. Table 5 collects the measurement
given by the s-Simple and s-Simple Tanimoto ACMs.

Table 5: Consensus measures for 4 alternatives

s

1 2 3 4 . . .

s-SACM 1
2

1
6

0 0 0

s-STACM 1
3

0 0 0 0

5.4. Fourth scenario

Finally, we are going to suppose that after calling for nominations, nobody
is running for president. Then, following statutory provision, all committee
members are appointed as candidates. In this case, k = 16 and the alterna-
tives set is X . Table 6 gives the corresponding approval voter breakdown.

20



M1 =

























































1 0

0 1

1 0

1 1

0 1

0 1

0 1

1 0

1 0

0 1

1 0

1 0

0 1

0 1

1 0

1 0

























































M2 =

























































1 0 0

0 1 0

1 0 0

1 1 0

0 1 0

0 1 0

0 1 0

1 0 0

1 0 0

0 1 0

1 0 0

1 0 0

0 1 0

0 1 0

1 0 0

1 0 0

























































M3 =

























































1 0 0 1

0 1 0 1

0 0 0 1

0 0 0 1

0 1 0 1

0 1 0 1

0 0 0 1

0 0 0 1

0 0 0 1

1 0 0 1

0 0 0 1

1 1 0 1

1 0 0 1

1 0 0 1

0 0 0 1

1 0 0 1

























































Figure 1: Approval profiles for the 1st, 2nd and 3rd scenarios

We can observe that there are six candidates that have been disapproved
by all members, n0 = 6 and there is only one candidate approved for all
members, n1 = 1.

Table 6: Approval voter breakdown (4th scenario)

Candidates
A B C D E F G H I J K L M N O P

Results 1 1 0 0 0 16 0 1 4 12 2 1 6 8 0 0

The numerical results are shown in Table 7.

6. Concluding remarks

We have explored the problem of measuring the degree of cohesiveness
in a group decision making setting where experts express their opinions in
a dichotomous way. To that purpose, we defined the concept of approval
consensus measures (ACMs) and gave the first necessary and sufficient con-
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Table 7: Consensus measures for 16 alternatives

s

1 2 3 4 5 6 . . .

s-SACM 7
16

21
120

35
560

35
1820

21
4368

7
8008

0

s-STACM 1
10

0 0 0 0 0 0

ditions that characterize relevant primary classes of ACMs, namely s-Simple
ACMs and s-Simple Tanimoto ACMs.

In this initial contribution to the topic we have ellaborated on approval
consensus measures that adapt to simple real-world situations. An obvi-
ous future development is the study and characterization of other consensus
measures that can be used to analyze complex situations more faithfully.
Moreover, our approach (or other similar proposals) could be applied in con-
flict resolution as a component of a decision aid system. But this would be
the topic of another paper.
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[20] D. Rodŕıguez-Baena, A. Pérez-Pulido, J. S. Aguilar-Ruiz, A biclustering
algorithm for extracting bit-patterns from binary datasets, Bioinformat-
ics 27 (2011) 2738–2745.

24


