
Munich Personal RePEc Archive

Predictive Performance of Conditional

Extreme Value Theory and Conventional

Methods in Value at Risk Estimation

Ghorbel, Ahmed and Trabelsi, Abdelwahed

Institut Supérieur de Gestion, Laboratoire BESTMOD, Université

de Tunis

31 March 2007

Online at https://mpra.ub.uni-muenchen.de/3963/

MPRA Paper No. 3963, posted 10 Jul 2007 UTC



 

1

  
Predictive Performance of Conditional Extreme Value 

Theory and Conventional Methods in Value at Risk 

Estimation      

Ahmed Ghorbel,              Abdelwahed Trabelsi 
1    

Institut Supérieur de Gestion, Laboratoire BESTMOD, Université de Tunis 

41, avenue de la liberté, le Bardo 2000, Tunis, Tunisie 

March 31, 2007    

    Abstract 
    This paper conducts a comparative evaluation of the predictive performance of  various 

Value at Risk (VaR) models such as GARCH-normal, GARCH-t, EGARCH, TGARCH 

models, variance-covariance method, historical simulation and filtred Historical 

Simulation, EVT and conditional EVT methods. Special emphasis is paid on two 

methodologies related to the Extreme Value Theory (EVT): The Peaks over Threshold 

(POT) and the Block Maxima (BM). Both estimation techniques are based on limits results 

for the excess distribution over high thresholds and block maxima, respectively. We apply 

both unconditional and conditional EVT models to management of extreme market risks in 

stock markets. They are applied on daily returns of the Tunisian stock exchange (BVMT) 

and CAC 40 indexes with the intension to compare the performance of various estimation 

methods on markets with different capitalization and trading practices. The sample extends 

over the period July 29, 1994 to December 30, 2005. We use a rolling windows of 

approximately four years (n= 1000 days). The sub-period from July, 1998  for BVMT 

(from August 4, 1998 for CAC 40) has been reserved for backtesting purposes. The results 

we report demonstrate that conditional POT-EVT method produces the most accurate 

forecasts of extreme losses both for standard and more extreme VaR quantiles. The 

conditional block maxima EVT method is less accurate.       

  Keywords :   Financial Risk management, Value-at-Risk, Extreme Value Theory,     

Conditional EVT, Backtesting 
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1 .  Introduction   

   Over the last seventeen years, risk management gained great importance due to increase in 

the volatility of financial markets and a desire of less volatile financial markets and less fragile 

financial system. Value-at-Risk models have been implemented throughout the financial 

industry and by non-financial corporations as well. VaR has became the key and standard 

measure that financial analysts use to quantify risk. It is defined as the maximum potential loss 

in value of an asset or a portfolio with a given probability over a certain horizon.  It measures 

the potential loss on a portfolio that would result if relatively large adverse price movement 

were to occur. It is a number that indicates how much a financial institution or an investor can 

lose with a given probability over a given time horizon. The VaR s great popularity originates 

from the aggregation of several components of risk at firm and market into a single number. 

     The Basel Commitee on banking supervision (1996) at the bank for international settlements 

imposes to financial institutions such as banks and investment firms to meet capital 

requirement based on VaR estimates. It is crucially interesting to provide accurate estimates. If 

risk is not properly estimated, these can lead to a sub-optimal allocation.     

    VaR  works on multiple levels, from the position-specific micro level to the portfolio-based 

macro level. It has become a common language for communication about aggregate risk taking, 

both within and outside an organisation.    

    A key element to VaR calculation is the distribution function we choose for the price change 

of an asset or portfolio. To calculate VaR, we can choose from three main methods: parametric, 

historical simulation and Monte Carlo simulation. Each method has some strengths and some 

weaknesses, and together offer a more comprehensive perspective of risk. The parametric 

method estimates VaR with equation that specifies parameters such as volatility and 

correlation, it is accurate for traditional assets and linear derivatives but less accurate for non 

linear derivatives and for skewed distributions. The Historical Simulation estimates VaR by 

reliving history; takes actual historical rates and revalues positions for each change in the 

market. Monte Carlo simulation method estimates VaR by simulating random scenarios and 

revaluing positions in the portfolio. The last two methods are appropriate for all types of 

instruments, linear and non linear and are mechanically identical in that they both revalue 

instruments, given changes in market rates. The difference lies in how they generate market 

scenarios. HS method takes actual past market movements as scenarios while MC method 

generates random hypothetical scenarios. 

        In this paper, we perform an evaluation of the predictive performance of the most popular 

and conventional VaR models such as GARCH-normal, GARCH-t, EGARCH, TGARCH 

models, variance-covariance method, historical simulation and filtred Historical Simulation, 

Unconditional EVT and conditional EVT as described by Mc Neil and Frey s (2000). The two 

authors calculate conditional VaR measures by filtering return series with a GARCH model 

and then apply threshold-based EVT tools to the independently identically distributed (iid) 

residuals. We extend this approach to the Block maxima method and create a conditional VaR 

forecasts based on the block maxima method. The performance of conditional block maxima 

EVT method is evaluated and compared with the conditional POT-EVT approach and with the 

others conventional methods. The models are backtested for their out-of-sample predictive 

ability by using Christoffersen s (1998) likelihood ratio tests for coverage probability. The data 

set used throughout this paper consists of daily returns on two indexes: the Tunisian stock 

exchange (BVMT) index and the CAC 40 index. The sample period is July 29, 1994 to 



 

3

December 30, 2005. We use a rolling windows of approximately four years (n= 1000 days). 

The sub-period from July, 1998 for BVMT index (and from August 4, 1998 for CAC 40) has 

been reserved for backtesting purposes.     

    The present paper is organized as follows. The EVT, conditional EVT and conventional VaR 

estimation methods are introduced in section 2. Section 3 describes the evaluation framework 

for VaR  estimation. Empirical results and predictive performance evaluation of several models 

are presented in section 4.  We conclude afterwards.   

2 .  VaR models 
   VaR has become a standard for measuring and assessing risk. It is defined as a quantile of the 

distribution of returns (or losses) of asset or portfolio in question. It is defined also as the 

predicted worst-case loss at a specific confidence level over a certain period of time.  Some 

practitioners prefer to make in consideration the negative of this quantile, so that higher values 

of VaR correspond to higher level of risk. 

    Formally, Let )/log( 1ttt ppr be the returns at time t where tp is the price of an asset (or 

portfolio) at time t.  We denote the (1-p)% quantile estimate at time t for a one-period-ahead 

return as VaR (p), so that  

ppVaRr tt ))(Pr(  

  The VaR s popularity originates from the aggregation of several components of risk at firm 

and market into a single number. 

   More formally, VaR is calculated based on the following equation  

tt pFVaR )(1

  

given that F
-1

(p) is the corresponding quantile of the assumed distribution and t

 

is the 

forecast  of the conditional standard deviation at time t-1.    

2.1   Variance-covariance method 
  The variance-covariance method is one of the simplest approach among various models used 

to estimate the VaR. let as assume that returns can be written as: tttr

 

where t has a 

distribution function F with zero mean and variance 2

t . The VaR can be calculated as 

                                                       tt

q

t qFVaR )(1                                                           (1) 

where  )(1
qF

 

is the qth quantile value of an unknown distribution function F. We can 

estimate t  and 2

t by the sample mean and the sample variance by 

n

i

tt r
n 1

1
                     

2

1

2 )(
1

1 n

i

ttt
r

n

  

For high quantile of a fat-tailed empirical distribution, the variance-covariance method 

underestimates risk since the normality assumption for financial series is usually rejected. In 

addition, this method is not appropriate for asymmetric distributions. Therefore, in order to 

estimate an accurate VaR number, researcher must make conjectures about the underlying 

distribution and about conditional variance innovation.       
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2.2 Historical simulation 
An approach to VaR modelling is to estimate the quantile nonparametrically. A Conventional 

way is to use the historical simulation. This method is powerful because of its simplicity and its 

relative lack of theoretical baggage. It assume that the distribution of return will remain the 

same in the past and in the future and hence historical returns will be used in the forecast of 

Value-at-risk.  

                                                 pyQuantileVaR
n

ttp 100,
1

                                                  (2)  

    This method need not to make distributional assumptions (although parameter fitting may be 

performed on the resulting distribution). It accommodates non-normal distributions and 

therefore it accounts for fat tails and non-zero skewness. HS provides a full distribution of 

potential portfolio values, not just a specific percentile. The key assumption of this method is 

that the series under consideration is IID. For more turmoil periods, it can turn out to be a very 

bad measure of risk since risk can change significantly. VaR estimate using this simple 

approach is extremely sensitive to the choice of the sample length n. If n is too large, the most 

recent returns, that probably can describe better the future, have the same weight with the 

earliest observations. If n is too small, then a few or an insufficient extreme events will be 

observed and possibility to incorporate tail risk became more difficult.  
   

2 .3 Filtred Historical simulation   
This method consists to combine volatility models (parametric) and historical simulation 

method (non-parametric). Such combination might lessen the problematic use of the traditional 

approaches, since it can accommodate the volatility clustering, the observed fat tails and the 

skewness of the empirical distribution.  

By using the quantiles of the standardized residuals and the conditional standard deviation 

forecast from a volatility model, the VaR number is calculated as: 

                                                 11
100, t

n

tttp pQuantileVaR                                                    (3) 

   In our empirical investigation, we assume that the volatility estimates and the corresponding 

quantiles are being generated via a GARCH(p,q) process.    

2.4   GARCH models2 

   We assume that the return series is decomposed into two parts, the predictive and 

unpredictable component,  tttr

 

where t

 

is the conditional mean and t is the 

unpredictable part or innovation process. The conditional mean return can be expressed as a s-

th order autoregressive process, AR(s):  

                                                                            

s

i

itt r
1

0                                                                   (4) 

The unpredictable component t  can be expressed as an ARCH process as follow: 

ttt z

 

                                                

 

2   
For more detail on the use of volatility univariate and multivariate GARCH to meaure and evaluate 

risk, see Andersen, T.G., T. Bollerslev, P.F. Christoffersen and F.X. Diebold (2005)  
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where tz is a sequence of independently and identically distributed random variables with zero 

mean and unit variance. The conditional variance on information at time t-1 of innovations t

 
is 2

t .   

  2.4.1   GARCH model: 

   Engle (1982) introduced the ARCH (p) model and expressed the conditional variance as a 

linear function of the past p squared innovations 
p

i

itit

1

2

0

2    

   The conditional variance will be positive, if 00

 

and 0i

 

for i=1,2, ,p. Bollerslev 

(1986) proposed a generalization of the ARCH model, the GARCH(p,q) model. Generalized 

AutoRegressive Conditional Heteroskedasticity model permits to express the conditional 

variance as a linear function of lagged squared error terms and lagged conditional variance 

terms.   

                                                  

                                                   2

11

2

0

2

jt

q

ji

j

p

i

itit                                                (5) 

where  00

 

and 0i

 

for i=1,2, ,p. If 1
11

p

i

j

q

i

i , the process t is covariance 

stationary and its unconditional variance is equal to  

 

1
11

02

q

i

j

p

i

i

t

 

   The GARCH (p,q) model is successfully captures several characteristics of financial time 

series, such as thick tailed returns and volatility clustering.   

  2.4.2   EGARCH model: 

   In the GARCH model, the signs of residuals or shocks have no effects on conditional 

volatility only squared residuals enter in the conditional variance equation. However, a stylized 

fact of financial volatility is that bad news (negative shocks) tends to have a larger impact on 

volatility than good news (positive shocks). Bad news tends to drive down the stock price, thus 

increasing the leverage of the stock and the stock will be more volatile (Black , 1976) .   

Nelson (1991) proposed the following exponential GARCH (EGARCH) model to allow for 

leverage effects: 

                                                  

q

j

jtj

p

i it

itiit

it InIn
1

2

1

0

2 )()(                                ( 6) 

    In contrast to the GARCH model, no restrictions need to imposed on the model estimation, 

since the logarithmic transformation ensures that the forecasts of the variance are non-negative. 

Note that when it

 

is positive or there is a good news, the total effect of it  is iti )1( ; in 

contrast, when  it  is negative or there are bad news, the total effect of it  is iti )1( .      
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   2.4.3   TGARCH model: 

    Another GARCH model that is capable of modelling leverage effects is the threshold 

GARCH (TGARCH) model or also known as the GJR model (Glosten, Jagannathan, and 

Runkle, 1993) which has the following form: 

                                      2

11

2

1

2

0

2

jt

q

ji

j

p

i

ititi

p

i

itit S                                       (7) 

where 

00

01

it

it

it if

if
S

 

That is, depending on whether innovation it is above or below the threshold value of 0, 2

it

 

has different effects on the conditional variance: if innovation is negative, the total effects are 
2)( itii  ; when innovation is positive the total effect are given by 2

iti .    

    Engle (1982) assumed that standardized residual zt is normally distributed.  

)
2

exp()2()(
2

)2/1( t
tD

 

   However, given the well known fat tails in financial time series, it may be more desirable to 

use a distribution which has fatter tails than the normal distribution. Bollerslev (1987) proposed 

to use the standardized symetric t-distribution with 2

 

degrees of freedom with a density 

given by 

2

12

)
2

1(
)2()2/(

)2/)1((
),(

v

t
t

vvv

v
vD

 

where (.)  is the gamma function. 

   The one-step ahead conditional variance forecast 2

t , for the GARCH (p,q) model is given 

by 

                                                           
2

11

2

0

2

jt

q

ji

j

p

i

itit                                                       (8) 

  For the EGARCH(p,q) model, one step-ahead conditional variance forecast is given by 

                                        

q

j

jtj

p

i it

itiit

it InIn
1

2

1

0

2 )()(                                             (9) 

   In the case of TGARCH (p,q) model, we forecast conditional variance using the following 

expression 

                                                
2

11

2

1

2

0

2
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q
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j

p

i

ititi

p

i

itit S                                       (10) 

   In our empirical study, we will evaluate the predictive performance of GARCH-N model in 

which the error term is assumed normally distributed, GARCH-t model in which we assume 

that the error term follows a student-t distribution with v degrees of freedom, TGARCH and 

EGARCH models not in an econometric laboratory but in a risk management environment
3
.    

                                                

 

3   For more information on volatility forecasting in financial markets, see Poon and Granger (2003). 
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2.5   Extreme Value Theory 
    Extreme Value Theory is a classical topic in probability theory. EVT is a powerful and yet 

fairly robust framework in which to study the tail behaviour of a distribution. It can be 

conveniently thought as a complement to the cetral limit theory: while the latter deals with 

fluctuations of cumultative sums, the formers deals with fluctuations of sample maxima. The 

main result is due to Fisher and Tippet (1928), who specify the form of the limit distribution 

appropriately normalised maxima.   

    There have been a number of extreme value studies in the finance literature in recent years. 

De Haan, Jansen, Koedijk and de Vries (1994) study the quantile estimation using extreme 

value theory. Mc Neil (1998) study the estimation of the tails of loss severity distributions and 

the estimation of the quantile risk measures for financial data using extreme value theory. 

Embrechts et al. (1998) overview the extreme value theory as a risk management tool. Muller 

et al. (1998) and Pictet et al. (1998) study the probability of exceedences and compare them 

with GARCH models for the foreign exchange rates. Mc Neil (1999) provides an extensive 

overview of the extreme value theory for risk managers. One year after, Mc Neil and Frey 

develop a new approach in two steps that permits to estimate the tail- related risk measures for 

heteroskedastic financial time series, a such method is a combination between GARCH models 

and EVT method. Some applications of EVT to finance and insurance can be found in 

Embrechts, Klueppeelberg and Mikosch (1997) and Reiss and Thomas (1997).        

In the following , we present two approaches to study extreme events. The first one is a 

direct modelling of the distribution of minimum or maximum realizations. The other one is  

modelling the exceedances of a particular threshold. In addition, we present Mc Neil et al 

(2000) approach called conditional EVT and used to estimate tail-related risk measures in the 

case of heteroskedastic financial time series.     

  2.5.1   The block maxima method  

   Let 1X , 2X , 3X , , nX be a sequence of independently and identically distributed random 

variables with a common distribution function CDF )Pr()( xXxF t

 

which has mean 

(location parameter) µ and variance (scale parameter) 2 .  Throughout this work, a loss is 

treated as a positive number and extreme events occur when losses take values in the right tail 

of the loss distribution F.  Under the block maxima method, the data are divided into k blocks 

with n observations in each block corresponding to n trading intervals. Let the sample maxima 

of  nX  denote the worst-case loss in a sample of n losses. From the iid assumption, the CDF  

of Mn   is given by  

            
n

X

n

i

inn xFxXxXXXxM )()Pr()),...,,Pr(max()Pr(
1

21                       (11)   

n
F

 

is assumed to be unknown and the empirical distribution function is often a very poor 

estimator of  )(xF
n . Fisher and Tippet (1928) have shown that for tX that are independent and 

drawn from the same non-degenerate distribution function H such that  

                                      )(limPrlim yHdycFy
c

dM
nn

n

n
n

nn

n
                               ( 12)  
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Then H belongs to one of the three standard extreme value distributions, regardless of the 

original distribution of the observed data.  

Fréchet:           
0,0),exp(

0,0
)(

xx

x
x   

Weibull:           
0,1

0,0)],(exp[

)(
x

xx

x

   

Gumbel :          xxx )),exp(exp()(  

   

Fréchet and  Weibull distributions attain the shape of a Gumbel distribution when the tail index 

parameter 

 

goes to 

 

and , respectively.  By taking the reparameterization 
1

, due 

to Jenkin (1955) and Von Mises (1936), these three extreme value distributions can be 

represented in an unified model with a single parameter  

                        
0,)exp(exp

01,0,)1(exp

)(

/1

ifx

xifx

xH                                 (13) 

    The parameter 
1

  

is a shape parameter and determines the tail behaviour of H .  The 

parameter 

 

is called the tail index if >0. This representation is known as the generalized 

extreme value distribution (GEV).  The tail behaviour of the distribution F of the underlying 

data determines the shape parameter 

 

of the GEV distribution. If the tail of F declines 

exponentially, then H is of the Gumbel type and =0. Normal, log-normal, exponential and 

gamma distributions are thin tailed distributions and are in the domain of attraction of the 

Gumbel type. For these distributions, all moments usually exist. Distributions in the domain of 

attraction of the Fréchet type ( >0) include fat tailed distributions like the Stundent-t, Cauchy, 

Pareto, and mixture distributions. For these distributions, not all moments are finite. If the tail 

of F is finite then H is of the weibull type and <0.  Distributions in the domain of attraction 

of the weibull type include distributions with bounded support such as uniform and beta 

distributions. All moments exist for these distributions. 

   The Fisher-Tippet Theorem is the analog of the Central Limit Theorem for extreme values. 

Whereas the Central Limit Theorem applies to normalized sums of random variables, the 

Fisher- Tipett  Theorem applies to standardized maxima of random variables.     

The GEV distribution characterizes the limiting distribution of the standardized maxima. It 

turns out that the GEV distribution is invariant to location and scale transformation  
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)()( ,, xH
µx

HzH µ

  
   For n large, the Fisher- Tippet theorem may then interpreted as follows  

)(Pr)Pr( zHz
µM

zZ
n

nn
n

 

    Letting nn µzx then 

                                  )()Pr( ,,,, xH
µx

HxM
nnµ

n

n

µn                                         (14)  

  This result is used in practice to make inferences about the maximum loss Mn.     

The parameters of the GEV distribution ),( nn andµ

 

are estimated by fitting the GEV 

distribution to the data. The likelihood function for the parameters of the GEV distribution is 

constructed from the sample of block maxima kMMM ...,, 21 . We assume that each block 

is of size n sufficiently large so that the Fisher-Tppet Theorem holds.   

i

iµH xhInMaxMaxL ))((),,( ,,

  

     where   

/11/1

,, 1exp1
1

)( ii

iµ

xµx
xh 

   is the density function of the GEV distribution if 0  and 01 ix
. 

   and   

          

/1

11

11)/11()(),,(
k

i

i
k

i

i

H

xµx
InkInL      (15)  

   is the log function  assuming iid observations from a GEV distribution whith 0 .  

   For the case where ,0  the likelihood is given by  

                                   

k

i

i
k

i

i

H

xµx
kInL

11

exp)(),(                            (16)  



 

10

   
By inverting equation (  ), we can go from asymptotic GEV distribution of maxima to the 

distribution of the observations themselves and we can get an expression for (unconditional) 

pVAR  quantiles associated with a given probability p                   

                                            

                                   
1

,

1
11

1
1

k
Inµ

k
HRVaR knp                            (17)    

where and, have been substituted by their maximum likelihood estimates. If 

observations Xi are independent then   

)(),...,Pr(
1

1 ,,,1 kn

n

knnkn RFRXRX
k

  

    In the case of iid series, The (1-1/k) quantile, knR , , for the distribution of maxima 

nM corresponds to the 
n

k
/1

)/1(1

 

quantile of the marginal distribution of iX . Suppose for 

example that we consider our model for annual (260 days) maxima. Then, the return that we 

expect to be exceeded once every 30 years, the 30 year return level corresponds to the 

99987,030/11
)260/1(

 

quantile.    

   We have only considered the case of stationary and independently distributed random 

variables. In the case of non-iid variables which are supposed to hold in most financial markets, 

we can fit a slightly modified GEV distribution to stationary series that show that show the 

kind of clustering behaviour.   

    For iid series, we can easily calculate the distribution of the sample maxima from a 

distribution F of sample observations  

n

XM FF ][

  

As this case is unrealistic for financial time series, we extend the asymptotic proprieties of 

maxima derived for an iid variable to the non-i.i.d case.  Let ( nX ) be a stationary variable with 

marginal distribution F and ( nX
~

 

) an associated independent process which have the same 

marginal distribution F and let )
~

,....,
~

max(
~

1 nn XXM . We define a new parameter 1,0

 

called extremal index such that   

n

Xkn

n

knnknnM FRFRMPRMPF )()
~

()( ,,,     

This means that the maximum of n observations from the non-i.i.d series have behaviour like 

the maximum of n observations from the associated iid variables.

 

can be interpreted as the 

reciprocal of the mean cluster size and n

 

as counting the number of pseudo-independent 

clusters in n observations. The asymptotic distribution of maxima for non-iid series is in fact a 

GEV distribution that converge in probability to )(xH . The GEV distributions for iid and 

non-iid series have the same tail index, because raising H(x) to the power 

 

only affects scale 

and location parameters. As Mc Neil (1998) points out, the extremal index  can be interpreted 
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as a reciprocal of the mean cluster size and n

 
as counting the number of pseudo-independent 

clusters in n observations. The extremal index can be estimated asymptotically as   

                                                     
)/1(

)/1(1

nkNIn

kKIn
n

u

u                                                         (18)  

where Nu is the number of observations that exceed a certain high threshold, Ku is the number 

of blocks in which this threshold is exceeded, and k and n, which should be large, are the 

number of blocks and length of these blocks respectively.  

2.5.2  The POT method 

   The distribution function uF is called the conditional excess distribution function (cedf) an is 

defined as the conditional probability:  

                                       ),/()( uXyuXPyFu   uxy F0                                                (19) 

where X is a random variable, u is a given threshold, y=x-u is the excess over u and Fx is the 

right endpoint of F .  

                                   

01

0)1(1
)(

1

,

ife

ify
yG

y

                                                  (20) 

for uxy F0 .  is the tail index.  

                                                   )()())(1()( uFyFuFxF u

 

                                                                (21)  

  The function )(uF can be estimated non parametrically by 
n

Nn u

 

where n is the total 

number of observations and uN represents the number of exceedences over the threshold u
4
.   

After replacing )(yFu by  )(, yG , we get the following estimate for )(xF : 

                 ))(1(1)1()))(1(1()( ux
n

N

n

N
ux

n

N
xF uu

u  

                          (22)  

By inverting this expression, we get an expression for (unconditional) pVAR quantiles 

associated with a given probability p: 

                                                            )1)(( p
N

n
uVAR

u

p                                                             (23)  

                                                

 

4     The and Mean excess function (MEF) and hill plot  two tools that are used to threshold determination. For a 

detailed discussion and several examples of the hill-plot, see Embrechts et al. (1997). 
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2.5.3   The Conditional EVT approach 

    To obtain value-at-risk estimates, we follow MC Neil and Frey s (2000) two-step estimation 

procedure called conditional EVT
5
:   

Step 1: Fit a GARCH-type model to the return data by quasi-maximum likelihood. That is, 

maximize the log-likelihood function assuming normal innovations. 

Step 2: Consider the standardized residuals computing in step 1 to be realizations of a strict 

white noise process and use extreme value theory (EVT) to model the tail of innovations using 

EVT and estimate the quantiles of innovations for 95.0q .  

   We assume that the dynamic of log-negative returns can be modelled by    

                                                                  tttt Zr                                                                              (24) 

where 
s

i

itt r
1

0 , i

 

are parameters, itr are lagged returns and tZ are iid innovations 

with  zero mean and unit variance and marginal distribution FZ(z). We assume that the 

conditional variance 2

t of the mean-adjusted series ttt r

 

follows a GARCH (p,q)  

process: 

                                                 2

11

2

0

2

jt

q

ji

j

p

i

itit                                                (25) 

    The conditional mean is given by 
s

i

itt r
1

0 , and the likelihood function of a sample 

of m iid observations for a GARCH model with normal innovations is given by  

                             
m

t t

tt
m

t

t

rm
L

2

2

2

)(

2

1
)log(

2

1
)2log(

2
)(                                    (26)  

     After maximizing, we can obtain parameter estimates and compute standardized residuals to 

check the adequacy of the GARCH modelling and to use in stage 2 of the method. They are 

calculated as 

                          
12

22

1

11
21 ,...,),....,,( tt

mt

mtmt

mt

mtmt
tmtmt

rrr
zzz                   (27) 

    The one-step forecast for the conditional variance in t+1 is given by 

                                                      
2

1

11

2

10

2

1 jt

q

ji

j

p

i

itit                                                       (28) 

where ttt r . The one-step-ahead VaR forecasts is given by   

                                                                    ptp ZVaRVaR )(1                                                             (29)  

                                                

 

5   
McNeil, A., & Frey, R.(2000). Estimation of tail-related risk measures for heteroscedastic financial times series: An 

extreme value approach. Journal of Empirical Finance  7, 271  300.  
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where pZVaR )( is given by equation 23 (or by equation 17) applied to negative standardized 

residuals to obtain VaR forecasts with conditional EVT-POT method ( conditional block 

maxima method)
6
. 

3 .  Statistical evaluation tests: 
    Our objective is to evaluate the adequacy of the realized VaR forecasts in a risk management 

environment. It is well know that there are many sources of error in VaR figures: Sampling 

errors, data problems, inappropriate specification, model error, ect. All these factors will cause 

our estimate often to be biased. Various methods and tests have been suggested for evaluating 

VaR model accuracy. In this paper, statistical adequacy will be tested based on Kupiec s and 

Christoffersen s  backtesting measures.  

3 .1 Unconditional coverage: 

   Let 1tI  be a sequence of VaR violations that can be described as: 

ttt

ttt

t
VaRyif

VaRyif
I

/11

/11

1
0

1 

and therefore 
T

t

tIN
1 

be the number of days over a T period that the portfolio loss was 

greater than the VaR forecast.  

    The failure number follows a binomial distribution and consequently the appropriate 

likelihood ratio statistic, under the null hypothesis that the exception frequency equals to the 

excpected one (N/T=p) is: 

                              

                            )1(~])1[(2])()1[(2 2NNTNT

uc ppInN
T

N

T

N
InLR                               (30) 

    This test can reject a model that has generated too many or too few VaR violations. As stated 

by Kupiec, this can reject a model for both high and low failures but its power is generally poor 

especially for high confidence levels, it can not indicate an inadequate model, even if the 

difference between the observed and the expected failure is significant. 

. 

3 .2 Conditional coverage: 
     A more complete test was made by Christoffersen (1998), which jointly examines the 

conjecture that the total number of failures is statistically equal to the expected one and the 

VaR violations are independent. The main advantage of this test that it takes account of any 

conditionality in forecasts: if volatilities are low in some period and high in others, the forecast 

should respond to this clustering from distribution event. Under the null huypothesis that an 

expectation occurring is independent on what happened the day before and the expected 

proportion of violations is equal to p, the appropriate likelihood ratio is given by 

                )2(~])1()1[(2])()1[(2 2

11110101
11

10
1

00 nnNNT

cc

n
à

n

InppInLR                 (31) 

where ijn is the number of observations with value i followed by j, for i, j =0,1 and 

j

ij

ij

ij
n

n

 

                                                

 

6   For the conditional block maxima EVT  method,  estimate of the extremal index is  not necessary because the 

GARCH filtred series are expected to be iid or close to iid  
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Table 1 

Descriptive statistics on stock returns 

Index Sample Mean stdev Min Max JB Q(12) Q(24) Q²(12) Q²(24) LM 

In sample 
0.019 0.431 3.93 2 12083.8 495.3 593.6 295.2 327.3 78.5 

BVMT 
All sample 

0.039 0.692 3.93 3.62 1572.5 570.23 603.0 2140.0 2434.4 776.3 

In sample 
0.067 1.131 4.37 6.1 67.7 18 34.59 69.9 84.5 50.5 

CAC40 
All sample 

0.028 1.393 7.678 7 813.0 26.3 47.4 1739.1 2876.9 521.9 

 

Mean, standard deviation, min and max are in percent. JB is the Jarque-Bera test for normality. Q(.) are the Ljung-Box tests for 

returns and for squared returns. LM refers to the Engle (1982) Lagrange Multiplier test for the presence of ARCH effect at lag 12. 

j

ij

ij

ij
n

n

 

are the corresponding probabilities. i,j=1denotes that an expectation has been made, while i,j=0 

indicates the opposite. If the sequence of values is independent, then the probabilities to 

observe or not a VaR violation in the next period must be equal, which can be written more 

formally as p1101 . This test can reject a VaR model that generates either too many or 

too few clustered violations, but it needs several observations to became more accurate.    

4.  Empirical Results   

1 .4   Data and descriptive statistics 
    The data set is the daily closings of Tunis stock Exchange (BVMT) index and CAC 40 for 

the same period from July 29, 1994 to December 30, 2005. There are observations 2868 in data 

set for BVMT index and 2890 for CAC 40 index. The period July 24, 1998 to December 30, 

2005 has been reserved for backtesting the predictive performance of alternative models for 

BVMT index. For CAC 40 index, the period reserved for backtesting cover Aout 4, 1998 to 

December 30, 2005. The daily returns are defined by )/log( 1ttt ppr where tp is the price of 

an asset (or portfolio) at time t. In fig.1, the level of BVMT index and the corresponding daily 

returns are presented.  The sample histogram of negative BVMT returns (returns multiplied 

with -1) is presented in Fig.2.  

   All computations shown hereafter were carried out with finmetrics module of S-Plus 6.1. 
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   Fig. 1   Evolution of BVMT daily index and daily  return (period: from July 29,1994 to December 30, 2005) 
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Table 2 

 Parameters estimates of AR-GARCH models for THE two index, as well as statistics on  the standardized  residuals. 

BVMT CAC 40 BVMT CAC 40 

 
Normal Student s t 

0

410

 

0.409 -6.966* -0.957 -6.942* 

1

 

0.337* -0.004 0.23 * -0.001 

2

 

0.155*  0.148 *  

0

710

 

0.485* 6.341 1.066 * 8.967 

1

 

0.333* 0.033 * 0.39 * 0.03 * 

2

 

-0.261*  -0.321*  

1

 

0.927* 0.963 * 0.928 * 0.963* 

t   3.66* 16.91* 

Q(6) 3.68 9.18 12.77 12.43 

Q(12) 12.14 17.61 22.52 17.56 

Q²(6) 

Q²(12) 

LM (12) 

0.85 

9.74 

9.83 

8.93 

10.17 

10.04 

0.49 

13.35 

13.54 

10.04 

11.17 

10.95 

* Significance at 95% level. Q(.) are the Ljung-Box tests. LM is the Lagrange multiplier test.    
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Fig. 2:  Histogram of daily negative BVMT returns (losses)  
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Fig. 3 :  Evolution of CAC 40 daily index and daily return (period: from July 29, 1994 to December 30, 2005)  
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   The descriptive statistics for daily returns of each index are presented in table 1. These 

statistics include the mean, standard deviation, median, maximum, minimum, Jarque-Bera 

statistics and Ljung-Box tests for raw and squared returns. The Jarque-Bera statistic indicate 

that daily returns for the two markets are not normally distributed. On the basis of Ljung-Box 

Q statistic and for raw returns series, the hypothesis that all correlation coefficients up to 

twelve and up to twenty four are jointly zero is rejected for the two markets. Therefore, we can 

conclude that two return series present some linear dependence in returns. In addition, the 

statistically significant serial correlations in squared returns imply that there is non linear 

dependence in return series. This indicates volatility clustering and a GARCH type modelling 

should be considered in VaR estimations. 

 

  4.2   In-sample evidence 

    The first step was to fit the model in Eqs. 24 and 25 to each return series. To identify the 

most adequate AR-GARCH model for each time series, we employ the Akaike criterion (AIC). 

For BVMT return series, we choose the AR(2)- GARCH(2,1) model. For CAC 40 returns, as in 

previous studies, we choose the AR(1)-GARCH(1,1) model. Parameter estimates for the 

models selected were obtained by the method of quasi-maximum likelihood and the log-

likelihood function of the data was constructed by assuming that innovations are conditionally 

distributed as Gaussian. For the AR-GARCH models with normal distributed and with t-

distributed errors, maximum likelihood estimates as well as some statistics on the standardized 

residuals are presented in table 2.    
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Fig. 4: 1000 day excerpt from series of negative log returns on BVMT index;   plot in the right shows 

 estimate of the conditional standard deviation derived from AR(2)-GARCH(2,1) model 

0 200 400 600 800 1000

-0
.1

0
-0

.0
6

-0
.0

2
0
.0

2
0
.0

6
0
.1

0 200 400 600 800 1000

0
.0

0
8

0
0

.0
1

4
5

0
.0

2
1

0
0

.0
2

7
5

0
.0

3

 

Fig. 5: 1000 day excerpt from series of negative log returns on CAC 40 index; plot in the right shows  

Estimate of the conditional standard deviation derived from AR (1)-GARCH (1, 1) model 
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Fig. 6: Correlograms for the raw  data (BVMT)  and their squared values as well as for the residuals and  squared residuals.  
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Fig. 7: Correlograms for the raw data (CAC 40) and their squared values as well as for the residuals and squared residuals.      

Specification tests carried out after estimation failed to detect serial correlation and missing 

ARCH effects, suggesting that the selected functional form is adequate to the data.       

In Fig. 4 and Fig.5 we show an arbitrary thousand day excerpt from our dataset; the 

estimated of the conditional standard deviation derived from GARCH fit is shown in the right. 
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   In Fig.6 and 7, we plot correlograms for the raw data and their squared values as well as for 

the residuals and squared residuals. While the raw data are clearly not iid, this assumption may 

be tenable for residuals.  

   

   The mean excess plots for the BVMT and CAC 40 data are illustrated in Fig. 8
7
.  

   A simple graphical technique infers the tail behaviour of observed losses is to create a qq-plot 

using the exponential distribution as a reference distribution. If the excesses over thresholds are 

from a thin- tailed distribution, then the GPD is exponential with 0

 

and the qq-plot should 

be linear. If the qq-plot is non-linear this indicate either bounded tails ( 0 ) or fat-tailed 

behaviour ( 0 ). Fig.9 shows qq- plots with exponential references distribution  for the 

BVMT negatives returns  and the CAC 40 negatives returns over the threshold u. There is a 

slight departure from linearity for the negative CAC 40 returns and a large departure from  

linearity for the negative CAC 40 index.  

    A simple graphical technique infers the tail behaviour of observed losses is to create a qq-

plot using the exponential distribution as a reference distribution. If the excesses over 

thresholds are from a thin- tailed distribution, then the GPD is exponential with 0

 

and the 

qq-plot should be linear. If the qq-plot is non-linear this indicate either bounded tails ( 0 ) or 

fat-tailed behaviour ( 0 ). Fig.9 shows qq- plots with exponential references distribution  for 

the BVMT negatives returns  and the CAC 40 negatives returns over the threshold u. There is a 

slight departure from linearity for the negative CAC 40 returns and a large departure from 

linearity for the negative CAC 40 index.  

   4.3  Out-sample evidence     

In order to compare the accuracy of EVT for VaR calculation with other alternatives, we 

backest each method on each return series by the following steps. Let 1r , 2r , 3r , , mr be a 

historical return series. The condition quantile is computed on t days in the set 

}1,...mnT using window of n days each time. Unless otherwise stated, we leave the last 

four years of the sample for prediction (we choose n=1000 days). In a long backtest it is less 

feasible to examine the fitted model carefully every day and to choose a new value of the 

constant k, which defines the number of exceedences above the threshold u, for the tail 

estimator each time. For this reason and as suggested by Mc Neil and Frey (2000), the constant 

k is set so that the 90
th 

percentile of the innovation distribution is estimated by historical 

simulation.      

On each day t, we fit a new AR(s)-GARCH(p,q) model and determine a new GPD to losses, 

wich are computed from the standardized residuals series. Such procedure, as mentioned 

earlier, is called conditional EVT.       

The VaR estimates, in- sample and on December 30, 1995, for all the methods implemented 

and all significance level, are presented in table 3 and 4. This evaluation is based on one-step 

ahead forecast that have produced from a series of rolling samples with a size equal to 1000 

observations. In the same tables, we calculate mean of VaR forecasts for the out-of-sample 

period.    

                                                

 

7    The mean excess function is the sum of the excess over the threshold u divided by the number of data points 

which exceeds the threshold u. It is an estimate of MEF that describes excpected overshoot of u once an 

exceedance occurs.  
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Fig. 8:     Sample mean excess function for the BVMT and CAC 40 index (In sample period)  

    The relative out-of-sample performance for each model in term of violation ratio for the left 

tail (losses) at the window size of 1000 observations is calculated and presented in table 5 for 

BVMT index and in table 6 for the CAC 40 index.  The number in parentheses are the ranking 

between ten competing models for each quantile. The violation ratio is defined as the number 

of times where the realized return is greater than estimated return (number of violation) divided 

by the total number of forecasts. An accurate and correct model is obtained when the expected 

violation ratio is equal to . At qth quantile, the model predictions are expected to underpredict 

the realized return = (1-q) percent of the time. A high violation ratio at q
th 

quantile greater 

than 

 

implies that the model excessively underepredicts the realized return. In the case of a 

violation ratio less than , there is excessive overprediction of the realized return by the 

underlying model.  For instance, at the 0.95
th 

quantile, the realized BVMT return  is 4.711% of 

the time greater than what the conditional POT-EVT model predicts implies that the model 

excessively overestimates risk. In contrary, the filtred historical simulation excessively 

underpredicts realized return as the violation ratio is greater than 5%.  
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      Fig. 9 : QQ plots with exponential references distribution  for the BVMT negatives returns 

 and the CAC 40 negatives returns over the threshold u  
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Fig.10: Fit of the estimated Generalized Pareto function for the BVMT ( in the left) and CAC 40 (in the right)       

A violation ratio excessively greater than the expected ratio implies that the model signals 

less capital allocation and the portfolio risk is not properly hedged. In this case, the model will 

increase the risk exposure by underestimating it. A excessively lower violation ratio implies 

that the model signals a capital allocation more than necessary. In this case, the portfolio holder 

allocates more to liquidity and registers an interest rate loss
8
.     

      For BVMT index, the Var-cov, unconditional EVT, HS and conditional block maxima EVT 

methods are again the worst models for quantiles lower than the 0.99
th 

quantile. AR-GARCH 

models and filtred historical simulation provide the most performance for these quantiles. 

Historical simulation provides the best results for quantiles higher than 0.98
th

 except the 0.999
th 

                                                

 

8 
Gençay, Selçuk, Ulugulyagci (2003), High volatility, thick tails and extreme value theory, Insurance: 

Mathematics and Economics.33  337 356.  
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quantile where Var-cov, filtred historical simulation and GARCH(t) perform best. This is the 

only quantile in which var-cov method not significantly overestimates nor underestimates the 

risk. Three VaR estimation methods give violation ratio that is statistically not overestimate nor 

underestimate risk at 95% level and for all quantiles: GARCH(t), EGARCH and conditional 

POT- EVT method.  

     At the 0.97
th 

and 0.98
th 

quantiles, TGARCH model performs the best with a violation ratio 

of 3.105% and 2.088% respectively. It is followed by normal GARCH model and filtred 

historical simulation. At 0.997
th 

quantile, both historical simulation and GARCH(t) provide the 

best violation ratio of 0.214% which amounts to 0.086% over-rejection. Conditional and 

unconditional POT EVT methods rank third with a ratio of  0.161% (0.139% over-rejection). 

The worst ratio is given by Var-cov, EGARCH and GARCH (N) models.  

    The GARCH(t) model provide the best performance at 0.95
th 

, 0.997
th 

, 0.999
th 

quantiles, it 

ranks second at 0.995
th 

and fourth at the other remainder quantiles. Both conditional EVT 

methods overestimate realized returns at all quantiles while the unconditional EVT 

underestimates risk at all quantile except at 0.997
th 

and 0.999
th 

quantiles. We can conclude that 

conditional POT- EVT method should be placed at the middle of the performance ranking 

between ten competing models while both conditional block EVT and unconditional EVT 

should be placed at the bottom.    

    
    

     For  CAC 40 index, the conditional POT-EVT method provides the best violation ratio for 

all quantiles except at 0.95
th 

and at 0.99
th 

quantile where it is placed at the second rank. The 

second best model is filtred Historical Simulation which provide also an excellent performance 

essentially at 0.97
th 

, 0.99
th 

and 0.995
th 

quantiles. At 0.95
th  

quantile, Historical Simulation 

provides the best performance but its performance deteriorates at higher quantiles. It is 

followed by the conditional POT-EVT method and filtred historical simulation that ranks third. 

At 0.999
th 

quantile, conditional EVT methods provide the best results. The performance of 

conditional block maxima at 0.98
th

, 0.995
th 

and 0.997
th 

quantiles is not bad but deteriorates at 

lower quantiles less than 0.995
th

 except the 0.98
th

 quantile.         

Three VaR estimation methods give violation ratio that is statistically not overestimate nor 

underestimate risk at 95% level and for all quantiles: GARCH(t), Filtred Historical Simulation 

and conditional POT- EVT method.  The unconditional EVT, var- cov and all GARCH models 

underestimate risk at all quantiles.   

        In table 7, we present the Likelihood ratio tests statistics for the conditional LRcc for the ten 

methods implemented and at eight differents significance levels. Our goal is to checks whether 

the probability of an exception occurring in one day is independent on events occurred in the 

day before.  We reconfirm for both indices the previous results in tables 5 and 6 where Var-

Cov and unconditional POT-EVT methods are not appropriate risk management techniques, as 

for the majority of cases, LRcc statistics are significant (p-value<5%). Conditional POT- EVT 

and filtred Historical Simulation methods are the best performers along with GARCH-t 

method. The GARCH models for the BVMT index have also recorded a similar success. 

Conditional Block Maxima method for the CAC 40 index  produce acceptable VaR forecasts at 

high confidence. 

     While Historical Simulation method gives  VaR violation ratios that are not significant most 

of time and for both indices and provides sometimes and at some quantiles the best results in 

the base of conditional coverage criterion, it offers LRcc statistics that are significant. 

Specifically, if VaR violation occurs, the probability to observe an exceedence the next day is 

high. Hence, we observe clustered violations, as this method does not update the VaR number 

quickly when market volatility increases.       
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  Table 3  

  VaR(%) estimates-in absolute values- for the BVMT index on July 24,1998 and on December 30, 2005 and  their  mean for  the  out-sample period. 

Model VaR ( % ) 95% 96% 97% 98% 99% 99.5% 99.7% 99.9% 

In sample 

30/12/2005 Var-Cov 

Mean 

In sample  

30/12/2005 HS 

Mean 

  In sample 

30/12/2005 Filtred HS 

Mean 

In sample 

30/12/2005 GARCH (N)

Mean 

In sample 

30/12/2005 GARCH (t) 

Mean 

In sample  

30/12/2005 TGARCH 

Mean 

In sample  

30/12/2005 
Unc EVT 

POT 
Mean 

In sample 

30/12/2005 
Cond EVT 

POT 
Mean 

In sample  

30/12/2005 EGARCH 

Mean 

In sample  0.528 0.567 0.618 0.689 0.808 0.926 1.011 1.192 

30/12/2005 0.733 0.779 0.836 0.917 1.048 1.174 1.263 1.444 
Cond EVT 

Block 
Mean  
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  Table 4  

  VaR(%) estimates-in absolute values- for the CAC 40 index on Aout 4,1998 and on December 30, 2005 and  their mean for  the  out-sample period. 

Model VaR ( % ) 95% 96% 97% 98% 99% 99.5% 99.7% 99.9% 

In sample 

30/12/2005 Var-Cov 

Mean 

In sample  

30/12/2005 HS 

Mean 

  In sample 

30/12/2005 Filtred HS 

Mean 

In sample 

30/12/2005 GARCH (N)

Mean 

In sample 

30/12/2005 GARCH (t) 

Mean 

In sample  

30/12/2005 TGARCH 

Mean 

In sample  

30/12/2005 
Unc EVT 

POT 
Mean 

In sample 

30/12/2005 
Cond EVT 

POT 
Mean 

In sample  

30/12/2005 EGARCH 

Mean 

In sample  2.137 2.265 2.431 2.668 3.081 3.506 3.830 4.557 

30/12/2005 1.047 1.153 1.295 1.521 1.726 1.866 2 .141 
Cond EVT 

Block 
Mean  
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                           Table 5 

                            VaR violation ratios for the left tail (losses) of daily BVMT returns ( in %) 

Model 95% 96% 97% 98% 99% 99.5% 99.7% 99.9% 

VAR-COV 

HS 

Filtred HS 

GARCH(N) 

GARCH(t) 

TGARCH 

Unc EVT-POT 

Cond EVT POT 

EGARCH 

Cond EVT block 

The numbers in parentheses are the ranking between  ten competing models for each quantile.  Shaded number indicate statistically significant 

overestimation or underestimation of risk at 95% level. 

                         Table 6   

                       VaR violation ratios for the left tail (losses) of daily CAC 40 returns ( in %) 

Model 95% 96% 97% 98% 99% 99.5% 99.7% 99.9% 

VAR-COV 

HS 

Filtred HS 

GARCH(N) 

GARCH(t) 

TGARCH 

Unc-EVT 

Cond-EVT 

EGARCH 

Cond EVT block 3.757 (9) 2.910 (9) 2.222 (7) 1.640 (3) 0.529 (4) 0.317 (4) 0.217 (3) 0.106 (1) 

The numbers in parentheses are the ranking between  ten competing models for each quantile. Shaded number indicate statistically significant 

overestimation or underestimation of risk at 95% level.  
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                 Table 7 

               Likelihood ratio tests statistics for the conditional LRcc   

Index 95% 96% 97% 98% 99% 99.5% 99.7% 99.9% 

BVMT VAR-COV 

CAC 40 

BVMT HS 

CAC 40 

BVMT Filtred HS 

CAC 40 

BVMT GARCH (N) 

CAC 40 

BVMT GARCH (t) 

CAC 40 

BVMT TGARCH 

CAC 40 

BVMT Unc EVT-POT 

CAC 40 

BVMT Cond EVT-POT 

CAC 40 

BVMT EGARCH 

CAC 40 

BVMT Cond EVT block 

CAC 40 

                      Shaded numbers indicate significance at 95% level. LRcc is )2(2
 distributed.   
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Fig. 11. Top: Daily BVMT negatives returns and VaR (95%) estimates. Middle: Daily BVMT negatives  

returns and VaR (99%).  Bottom: Daily BVMT negatives returns and VaR (99.9%) 
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Fig. 12: Top: DailyCAC 40 negatives returns and VaR (99.7%) estimates. 

Bottom:  DailyCAC 40 negatives returns and VaR (98%) estimates       

Fig. 9 offers a visual presentation of BVMT negative return and the estimated VaR with 

some of the more performing models and for three confidence level (95%, 99%, 99,9%). In Fig. 

10, we plot the negative returns of the CAC 40 together with VaR forecasts (for 98% and 

99,7% confidence level). We observe that unconditional models produce VaR forecasts that 

react to changing market conditions slowly. In contrast, the reaction of conditional models to 

changing market volatility is much quicker. Unconditional extreme value estimates are 

generally higher and are considerably less volatile than the GARCH models and two 

conditional EVT methods. The rolling samples do not generate substantial change of the data 
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set of extreme observations and as a result the unconditional VaR estimates are almost time 

independent. Unconditional EVT models are more suitable for long run forecasts of the extreme 

losses rather than being a day-to-day tool to measure the market risk.  

    For GARCH models and conditional EVT methods, variances are forecasted by an 

exponential model with declining weights on past observations and therefore are crucially 

dependent on the last few observations that is added in the sample. Conditional VaR forecasts 

increase with increasing volatility but also decrease with decreasing volatility indicate that 

conditional VaR estimates correspond more closely to the actual returns than the unconditional 

VaR estimates.   

 

5.  Conclusion 
    The purpose of this paper has been to attempt a comparative study of the predictive ability of 

VaR estimates from various estimation techniques. The main emphasis has been given to the 

Extreme Value methodology and to evaluate how well EVT- models perform in modelling the 

tails of distributions and in estimating and forecasting VaR measures. 

    Two different stock indexes, the BVMT and the CAC 40, have been investigated, and some 

differences between the indexes have been pointed at. Empirical results show that Var-Cov and 

unconditional POT-EVT methods are not appropriate risk management techniques for majority 

cases. Conditional POT- EVT and filtred Historical Simulation methods are the best performers 

along with GARCH-t method. The GARCH models for the BVMT index have also recorded a 

similar success. The conditional Block Maxima method for the CAC 40 index and at high 

confidence level produce acceptable VaR forecasts. GARCH models and conditional EVT offer 

high volatile quantile forecasts, while Historical simulation and unconditional EVT methods 

provide stable quantile forecasts. These two methods do not update the VaR number quickly 

when market volatility increases: when VaR violation occurs this day,the probability to observe 

an exceedence the next day is high. Hence, we observe clustered violations;    

   There are possible directions for future research. Methods presented and studied above are 

well-suited for providing forecasts of portfolio level risk measures such as the aggregate VaR. 

However they are less well-suited for providing input into the active portfolio and risk 

management process. A multivariate approach should be adopted to have a complete picture of 

the risk and to know the optimal portfolio weights to minimize portfolio variance. Multivariate 

models provide a forecast for the entire covariance matrix and are also better suited for 

calculating sensitivity risk measures. We can compute VaR variation when we add additional 

shares to my portfolio. Variety of multivariate volatility models can be used such as symmetric 

and asymmetric MGARCH and DCC models, Flexible multivariate GARCH introduced by 

Ledoit, Santa-Clara and Wolf (2003).  Multivariate Extreme Value Theory offers also a tool for 

exploring cross-asset tail dependencies, which are not captured by standard correlation 

measures. Modelling the dependence structure of multivariate financial data using copulas is an 

approach recently rediscovered by a number of authors. The copula function provides a 

complete description of the association and the co-dependence proprieties of random variables 

at each point of a distribution.           
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