
Munich Personal RePEc Archive

Testing for time-varying fractional

cointegration using the bootstrap

approach

Simwaka, Kisu

Reserve Bank of Malawi

26 June 2012

Online at https://mpra.ub.uni-muenchen.de/39698/

MPRA Paper No. 39698, posted 27 Jun 2012 14:56 UTC



Testing for time-varying fractional cointegration using the bootstrap approach 

By 

Kisu Simwaka 

Reserve Bank of Malawi 

 

Abstract 

Fractional cointegration has attracted interest in time series econometrics in recent years (see 

among others, Dittmann 2004). According to Engle and Granger (1987), the concept of 

fractional cointegration was introduced to generalize the traditional cointegration to the long 

memory framework. Although cointegration tests have been developed for the traditional 

cointegration framework, these tests do not take into account fractional cointegration. This 

paper proposes a bootstrap procedure to test for time-varying fractional cointegration. 
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1.0 Introduction 

Fractional cointegration has attracted interest in time series econometrics in recent years (see 

among others, Dittmann 2004). Fractional cointegration analysis has emerged based on the 

view that cointegrating relationships between non-stationary economic variables may exist 

without observable processes necessarily being unit root )1(I processes or cointegrating 

errors necessarily )0(I processes.  

Both fractional and standard cointegrations were originally defined at the same time in Engle 

and Granger (1987), but standard cointegration has attracted wide interest. In their standard 

approach, Engle and Granger (1987) and Johansen (1988) assumed that the cointegrating 

vector(s) do not change over time. However, when one takes into account such phenomenon 

as structural breaks and regime shifts, the assumption of fixed cointegrating vector(s) 

becomes quite restrictive. The fractional cointegration framework is more general since it 

allows the memory parameter to take fractional values and   to be any positive real number. 

Following Granger (1986), a set of )(dI variables are said to be cointegrated, or ),( bdCI , if 

there exists a linear combination that is )( bdCI   for 0b . To define fractional 

cointegration, let tx  by n-dimensional vector )1(I  process. Then tx  is fractionally 

cointegrated if there is an n
Ra , 0a , such that txa

' ~ )(dI  with 10  d . In this case, d 

is called the equilibrium long-memory parameter and write tx ~ )(dI . Compared to classical 

cointegration, where 0d , defining the cointegration rank is more difficult for fractionally 

cointegrated systems, because different cointegrating relationship need not have the same 

long-memory parameter. 

Although cointegration tests have been developed for the traditional cointegration 

framework, these tests do not take into account fractional cointegration. The bootstrap has 

become a standard tool for econometric analysis. In general, the purpose of using the 

bootstrap methodology is two-fold: first, to find the distributions of statistics whose 

asymptotic distributions are unknown or dependent upon nuisance parameters, and second,  

to obtain refinements of the asymptotic distributions that are closer to the finite sample 

distributions of the statistics. It is well known that the bootstrap statistics have the same 

asymptotic distributions as the corresponding sample statistics for a very wide, if not all, class 

of models, and therefore, the unknown or nuisance parameter dependent limit distributions 



can be approximated by the bootstrap simulations. Furthermore, if properly implemented to 

pivotal statistics, the bootstrap simulations provide better approximations to the finite sample 

distributions of the statistics than their asymptotics (see Horowitz 2002). 

The purpose of this paper is to propose a bootstrap procedure for testing for time-varying 

fractional cointegration. The rest of the paper is organized as follows. Section 1.1 examines 

the fractional cointegration framework while Section 1.2 introduces the time-varying 

cointegration framework. Section 1.3 presents the bootstrap procedure for testing for time-

varying fractional cointegration.  

1.1 Fractional cointegration 

The fractional cointegration setup that we consider in this paper is based on an extension of 

the Johansen’s (2008) Error Correction Mechanism (ECM) framework which is specified as 

follows:  
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where tX  is a vector of )1(I  series of order k x 1, tD are deterministic terms, t  is a k x 1  

vector of Gaussian errors with variance-covariance matrix , and  ,   ,,..., 11 k  are freely 

varying parameters. When the vector tX  is cointegrated, we have the reduced rank condition 

' , where    and   are N x r constant parameter matrices, having rank r, representing 

the error correction and cointegrating coefficients, respectively.  

Granger (1986) proposed the first generalization of the VECM model to the fractional case 

with the following form: 
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Where )(* LA is a lag polynomial, tX  and t  are N x 1, t ~i.i.d ),( o ;   and   are as 

defined in (1.1) above; and b and d  are real values, with d representing order of fractional 

integration and bd   representing order of co-fractional order. The process tX   is a 

fractional order of d  and co-fractional order of, bd  . In other words, that is there exists   

vectors for which tX'   is fractional of order bd  . L  represents lag operator, and ( d ) 



represents fractional difference parameter. Note that equation (1.2) has the conventional error 

correction representation when 1d  and 0bd , i.e. )1(I variables cointegrate to )0(I . 

Dittman (2004) attempts to derive this model from a moving average form but, according to 

Johansen 2008, the results are not correctly proved. In this paper, we follow the formulation 

suggested by Johansen (2008): 
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This formulation implies the following changes from (1.2): 1)1(  t

b
X  is changed to tb XL ; 

the lag polynomial )(* LA  is changed to )( bLA ; i.e. the latter is lag polynomial in bL  (and 

not bL ). b

b LL )1(1  . The lag polynomial )(Ld  is ignored. 

When 1d  and 0bd , i.e. )1(I variables cointegrate to )0(I . 
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 However, from (1.2) also note that the condition 

 t

bd
xL

')1(  ~I(0)        (1.5) 

is required so that the equation balances, having both sides I(0). bd  represents 

cointegrating rank. Setting 1 bd  yields to the usual Johansen (1988, 1991) style VECM, 

but d and b  can be real values with 0d  and db 0  . In this model, all elements of tx  

exhibit the sane order of integration, not necessarily unit, and similarly, the cointegrating 

residuals tx
'  are all of order bd  . It should be noted that in fractional cointegration, the 

cointegrating residual is long memory and possibly even non-stationary, but has a lower order 

of integration than its constituent variables.  

From equation (1.5), it follows that  
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Where tt Lw  )( ,  

 

 



1.2    Time-varying Fractional Cointegration Framework 

In this model, we extend the Johansen (2008) Fractional VECM )( p  framework to a time-

varying framework as follows: 
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where tt  ' , and t is time-varying cointegrating vector of coefficients. Our objective is 

to test the null hypothesis of time-invariant cointegration,  ''
t  , where   and   

are fixed k and r matrices with rank r,  against the time varying parameter of the type 

  )(
''
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Where t ’s are time varying k x r matrices, with constant rank r, and t  represents time, 

where 0t  .  In this case, t ’s are assumed to be fixed while t ’s are assumed to be time 

dependent. 

Equation (1.7) is governed by the following assumptions: 

Assumption 1. Ttt /  , where each element of ,t )1,0(t is a function of time, t and 

twice-differentiable on  (0,1).  

Assumption 2. tX  is an  mixing sequence with  finite 8-th moments  

Assumption 3: tu  is a stationary martingale difference sequence with finite 4-th moments, 

which is independent of tX   at all leads and lags 

Assumption 1 is quite essential. It specifies that   is a deterministic function of time. It is 

interesting to note that it depends not only on the point in time t, but also on the sample size 

T. This is necessary as one needs the sample size that relates to that parameter to tend to 

infinity, for one to estimate consistently a particular parameter. This is achieved by allowing 

an increasing number of neighbouring observations in order to obtain more information about 

  at time t. In other words, we have to assume that as the sample size grows, the function t  

will extend to cover the whole period of the sample. This kind of setup has examples in the 

statistical literature. Assumptions 2 and 3 are standard mixing and moment conditions for the 

explanatory variables and the error term.  

 



 

1.3 Testing for time-invariant fractional cointegration against time-varying 

fractional cointegration using bootstrap approach 

We wish to test the hypothesis that  t  t against the alternative hypothesis that t is 

non-constant and satisfies assumption 1. We start our analysis by looking at point-wise tests, 

i.e. tests that focus on particular time periods, and therefore consider a fixed i . Let us denote 

the estimate of   under the null as 
~

 . Depending on the assumptions made about tu , 

standard methods can be used to estimate   under the null. For example, in the case where 

the disturbances are spherical and uncorrelated, from tX  OLS is an optimal estimator. 

1.3.1 The Bootstrap approach 

The bootstrap is a method for estimating the distribution of an estimator or test statistic by 

resampling one’s data. It treats data as if they were the population for the purpose of 

evaluating the distribution of interest. What determines how reliably a bootstrap test performs 

is how well the bootstrap data generating processes (DGP) mimics the features of the true 

DGP that matter for the distribution of the test statistic.  

There are various bootstrap methods used for re-sampling data. The first is the residual 

bootstrap, which assumes the residuals (error terms) of a regression are independent and 

identically distributed with common variance. It obtains estimated parameter and residuals 

from a given regression. Using rescaled residuals, the residual bootstrap data generating 

process generates a typical observation of the bootstrap sample. The bootstrap errors are said 

to be re-sampled. The second is the parametric bootstrap which is used when the distribution 

of the error term is known (i.e. normal distribution). The third one is the wild bootstrap and it 

is used if the error terms are not independently and identically distributed. 

All of the bootstrap DGPs that have been discussed so far treat the error terms (or the data, in 

the case of the pairs bootstrap) as independent. When that is not the case, these methods are 

not appropriate. In particular, re-sampling (whether of residuals or data) breaks up whatever 

dependence there may be and is therefore unsuitable for use when there is dependence. 

Several bootstrap DGPs for dependent data have been proposed.  



 

(i) Sieve bootstrap 

The sieve bootstrap method assumes that the error terms follow an unknown stationary 

process with homoscedastic innovations.  It uses a finite autoregressive model (whose order 

is increasing with the sample size) to approximate this process and then re-samples from the 

approximated auto-regression. It obtains the residuals 


tu and then estimates the AR(p) model  
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After p has been chosen, and the preferred version of equation (1.13) estimated, the bootstrap 

error terms are generated recursively by the equation 
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where i



 are the estimated parameters, and the *
t are re-sampled residuals. The method of 

the sieve bootstrap requires to fit the linear process )( tw to a finite order VAR with the order 

increasing as the sample size grows. We may re-write )( tw as a VAR  

(ii) Block bootstrap 

This involves dividing the series into b blocks and then re-sampling the blocks. One 

disadvantage of the method is that its performance can depend on the choice of b especially 

for a moderately small sample size.  

(iii)  Sub-sampling bootstrap 

Sub-sampling bootstrap method is where b samples of the series are generated and the 

statistics of interest is calculated for each sub-series. The main difference between the 

subsampling and the Moving Block Bootstrap is that subsampling looks upon the blocks as 

“subseries”, whereas the Moving Block use the blocks to construct a new pseudo-time series.  

 



 

1.3.2 The Bootstrap test procedure for time-varying fractional cointegration 

In this section, we introduce the bootstrap procedure for testing for time-varying fractional 

cointegration  

Our objective is to test the null hypothesis of time-invariant cointegration,  ''
t  , 

where   and   are fixed k and r matrices with rank r,  against the time varying parameter of 

the type )(
''

tt  , where t ’s are time varying k x r matrices, with constant rank r, and t  

represents time, where 0t  .  The  lags of jtX   are added to account for serial 

correlation in the error terms, with  using AIC criteria.  

From equation (1.6), we may write )( tw  as a VAR  

 ttwL  )(          (1.11) 

It is therefore reasonable to approximate )( tw  as a finite order VAR  

 qtqtqtt www   ...11       (1.12) 

The order q of the approximated VAR is set to increase at a controlled rate of n, as we will 

specify below. In practice, it can be chosen by one of the commonly used order selection 

rules such as AIC and BIC. 

Assumption 1 

Let q and )( 2/1
noq  as n  

Below, is an outline of the bootstrap algorithm for the time-varying fractional cointegration: 

(a) Fit an ARIMA model of order )(Tp ) and obtain estimated coefficients of the model 

and construct a set of residuals )(
^

t   

(b) Then fractionally difference the series according to estimates from (a) to estimate tw  

in (1.6) and get the fitted values of )( *


t  

(c) Apply the sieve estimation method to )(


tw to get the fitted values )(


qt  of )(


qt i.e. 
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          Obtain )( *
t by re-sampling the centred fitted residuals  
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(d) Specify dynamic model of differences.  The objective is to estimate equation (1.7) to 

test the restriction of the null hypothesis  t . The residuals from stage (b) are re-

sampled with replacement and used to generate series according to (1.6) under 0H . 

Any suitable statistic to test for a cointegration  relation can be computed from these. 

The values of these statistics in the observed data are located in the bootstrap 

distributions to yield an estimated p-value. 

(e) Repeat steps (a) – (d), B times to obtain the empirical distribution of 


* and 

determine whether it is constant (


* ) or time-varying )( *


t  

1.3.3 Bootstrap Asymptotics 

The asymptotic theories of the estimators 


 *
n can be developed similarly as those for n



 . To 

develop their asymptotics, we develop the bootstrap invariance principle for ).( *
t  We have  

Lemma 1.1 Under 1.1 
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Generally, Lemma 1.1 allows us to regard the bootstrap samples ( *
t  ) as iid random 

variables with finite a-th moment, given a sample realization.  
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