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Abstract 

In theoretical literature on productivity, the disturbance terms of the stochastic frontier model 

are assumed to be independent random variables. In this paper, we consider a stochastic 

production frontier model with residuals that are both spatially and time-wise correlated. We 

introduce generalizations of the Maximum Likelihood Estimation procedure suggested in 

Cliff and Ord (1973) and Kapoor (2003). We assume the usual error component specification, 

but allow for possible correlation between individual specific errors components. The model 

combines specifications usually considered in the spatial literature with those in the error 

components literature. Our specifications are such that the model’s disturbances are 

potentially spatially correlated due to geographical or economic activity. For instance, for 

agricultural farmers, spatial correlations can represent productivity shock spillovers, based on 

geographical proximity and weather. These spillovers effect estimation of efficiency.  
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1.0 Introduction 

Estimation of the stochastic frontier function was simultaneously introduced by Aigner et al. 

(1977) and Meeusen and van den Broeck (1977). The production functions specify the 

maximum potential output levels, given the quantities established for a set of inputs. Aigner 

et al. (1977) specified a production function with two error terms.  

The stochastic frontier methodology has subsequently been extended in many directions 

using both cross-sectional and panel data. One advantage of using panel data is that it gives 

opportunity to examine and model behaviour of technical efficiency over time. The earlier 

models (Pitt and Lee, 1981; Schmidt and Sickles, 1984; Kumbhakar, 1987; among others) 

treated technical efficiency as time-invariant. Subsequent researchers allowed the technical 

efficiency to vary over time (Kumbhakar 1990; Cornell, Schmidt, and Sickles, 1993; Lee and 

Schmidt, 1993; Battesse and Coelli, 1992; and Battese and Coelli 1995). However, none of 

these allowed error components to be spatially and time-wise correlated.  

Meanwhile, interest has been growing for spatial econometrics in recent years. Anselin 

provides an excellent textbook treatment of the analysis of spatially dependent data. In the 

agricultural sector, farms in different geographical regions may also differ in their efficiency 

patterns owing to geographical proximity, differences in education, and access to technology. 

A common procedure in spatial econometrics is to model interactions between cross-sectional 

units in terms of some distance measure between them. Thus distance can be modeled by 

geographic measures as e.g., the physical distance between two regions, or by economic 

measures as e.g., economic similarities between regions. By far, the most widely used spatial 

models are variants of the ones considered in Cliff and Ord (1973, 1981). One method of 

estimation of these models is maximum likelihood, (ML) suggested in Cliff and Ord (1973), 

and Kapoor (2003). Kelejian and Prucha (1998) suggested an alternative instrumental 

variable estimation procedure for these models, which is based on a generalized moments 

(GM) estimator of a parameter in the spatial autoregressive process. Monte Carlo results in 

Das, Kelejian, and Prucha (2003) suggest that both the GMM and the instrumental variable 

estimators are “virtually” as efficient as the corresponding ML estimators in small samples. 

 

 



1.1 Problem Statement 

The analysis of spatial processes is of significance in many disciplines, including agriculture 

and banking. Spatial autocorrelation occurs when population members are related through 

their geographical positions. In the productivity modelling literature, the disturbance terms of 

the stochastic frontier model are assumed to be independent random variables. It is well 

known that inference can be incorrect when the data is characterized by spatial correlation. 

This is particularly so in the analysis of spatial data when correlation may exist between 

neighbouring entities. When one begins to look at cross-section of regions, states, etc, these 

aggregate units may exhibit cross-sectional correlation that has to be dealt with. Clearly, the 

asymptotic results developed for the spatial models so far are no longer appropriate in the 

case of heteroscedastic innovations. Ignoring cross-sectional dependence when in fact it exits, 

results in biased, inconsistent and inefficient estimates of regression coefficients. The nature 

of the covariance among residuals will usually not be known precisely, but it is often possible 

to adopt a simple parametric model to describe it. The approach we adopt, through maximum 

likelihood, is similar to the earlier studies by Cliff and Ord (1973) and Kapoor (2003).  

1.2 Objective of the Study 

In this paper, we evaluate the maximum likelihood approach for estimating a stochastic 

production frontier model. We generalize the maximum likelihood estimation procedure 

suggested in Cliff and Ord (1973) and Kapoor, (2003) to allow for spatial correlation in the 

context of a stochastic production frontier model. We discuss how the likelihood function 

may be numerically maximized, giving suitable formula for the derivatives and information 

matrix.  

The stochastic production frontier model presented in this paper differs from the traditional 

models in two ways. First, we assume the usual error component specification, but allow for 

possible correlation of the individual specific errors components. Our specifications are such 

that the model’s disturbances are potentially spatially correlated based on geographical or 

economic activity. For instance, for agricultural farmers, spatial correlations can represent 

productivity shock spillovers, based on geographical proximity and weather. These spillovers 

effect estimation of efficiency. In spatial models, interactions between cross sectional units 

are typically modelled in terms of some measure of distance between them. Second, we 



assume that error components are time-wise autocorrelated. These specifications merge those 

typically considered in the spatial literature with those in the error component literature.  

In section 2.0, we specify a stochastic production frontier model with spatially correlated 

residuals and discuss its properties. In Section 3.0, we discuss how the likelihood function 

may be computed and numerically maximized, giving suitable formulae for the derivatives.    

2.0 Model Specification and Assumptions   

The stochastic frontier model considered here is specified as follows: 

NititNitNit uvxY ,,, '     i=1,…,N;  t=1,…T,  (1.1) 

where Nity ,  is the N x 1 vector of observations on dependent variable in time period t, Nitx ,  

represents a vector of exogenous variables in period t;   is a vector of parameters of the 

production function to be estimated, itv is the first component of the error term, representing 

random effects,  and follows a stationary )(AR process; Nitu ,  is the second component of the 

error term, representing technical efficiency in production Nitu , ; assumed to be dii ..  and  

follow a truncated normal distribution ( with truncations at zero) and mean itz  and variance, 

2 . suit  are assumed to be a function of a set of independent variables, the szit  and unknown set of 

coefficients,  . 

We follow Battese and Coelli (1995) who specify the technical inefficiency effects as follows: 

 ititit wzu            (1.2) 

where itz  represent independent variables that determine technical inefficiency,  is an (M * 1) 

representing coefficients, and itw s represent technical efficiency.  

A popular approach to model spatial dependence is that of Cliff and Ord (1973, 1981). We 

follow this approach and specify itv in each time period Tt ,....,1  as a first order spatial 

autoregressive process.   

NitNitNNit vWv ,,,         (1.3) 

where  is the scalar spatial autoregressive coefficient which is assumed to lie in the 

parameter space | |<1; the matrix W is an N x N spatial weight matrix of constants, which 



represents the degree of potential interactions between neighbouring locations, whose 

diagonal elements are zero and off-diagonal elements are non-zero, ijw are chosen to reflect 

the degree of dependence between the error of unit i and the error of unit j; and 

]',...,[ ,,1, NNTNtNit    is an N x 1 vector of residuals in period t. In the following analysis, we 

maintain that the weighting matrix NW does not change over time.  

Combining observations in (1.1) and (1.3) we have  

NNNN uvXy          (1.4) 

and  

NNNTN vWIv   )(       (1.5) 

where ]'',...,'[ ,,1, NNTNtNit yyy  , ]')',...,)'[ ,,1, NNtNtNit XXX  , ]'',...,)'1([ ,,1 TNNNtN vvv  , and 

]')'(,...,)'1([ TNN   . 

To allow for errors to be correlated over time, we assume the following error 

component structure for the vector of errors N  

  NNNTN Ie   )(       (1.6) 

where T  represents the vector of unit specific error components, NI  is an identity matrix of 

order N, and N ]',...,[ ,,1 NNN  represents the vector of unit specific error components, and 

]',...,[ ,,1 NTNN   where ]',...,[ ,,1, NNTNtNit    contains the error components that vary 

over both the cross-sectional units and time periods. In scalar notations, we have 

  NitNiNit ,,,       Ni ,...,1 ; Tt ,...,1   

It must be noted that the specification of it  corresponds to that of the classical-one way error 

component literature. In contrast, however, we group the data by time periods rather than 

units because this grouping is more convenient for modeling spatial correlation through 1.2. 

We retain the following assumptions from the classical error component literature  

 



Assumption 1: Let T be a fixed positive integer, and for the error components assume :( a) 

For all Tt 1  and N1 ; 1N  the error components Nit ,  are independently and 

identically distributed with zero mean and variance 2
 , 0 < 2

 < b <  and finite fourth 

moments. In addition, for each 1N  and Tt 1 , Ni 1  the error components. (b) For 

all Ni 1 ; 1N  the unit specific error components Ni, are identically distributed with 

zero means and variance 2
 , 0 < 2

 < b < and finite fourth moments. In addition, for each 

1N  and Ni 1  the unit specific error Ni, are independently distributed; (c) The process  

,it  and ,it are independent. 

Assumption 2 (a) All diagonal elements of NW are zero; (b)| |<1; (c) The matrix 

NN WI  is non-singular for all| |<1.  

In scalar notation, the specification in (1.3) is 

  NitNjtNij

N

jNit vwv ,,,1,    ,   i=1,…,N; t=1,…,T 

where Nijw , is the (i, j)-th element of the weighting matrix NW . The non-zero weights Nijw , are 

usually specified to be those that correspond to units that are significantly related. Such units 

are said to be neighbours.  For instance, if the cross-sectional units are geographical regions, 

one can make 0, Nijw if the i -th and j -th regions are neighbouring, and 

0, Nijw otherwise. For reasonable time periods, one can assume that this relationship 

remains unchanged i.e.., Nijw , is constant through time. 

2.1 Assumption Implications  

Given the above assumptions, and in line with Kapoor (2003), it follows from (1.6) that 

0)( NE   and the innovations of Nit , are autocorrelated over time, but are not spatially 

correlated across units, and the covariance vector matrix of the vector of N is  

  NTNTNNN IIJE
22

, )()'(     

   NNv QQ ,1
2
1,0

2         (1.7) 

where 222
1    T  and  
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where TTT eeJ '  is a T x T matrix of unit elements, and KI is an identity matrix of order K. 

The matrices NQ ,0 and NQ ,1 are standard transformation matrices utilized in error component 

literature (see Baltagi 2005).The matrices NQ ,0 and NQ ,1  are symmetric idempotent, 

orthogonal and orthogonal to each other. Furthermore NN QQ ,1,0  . 
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   ))(( ,1,1,0,0 NNTNNTNN QIQIQQ   

   NNNNNT QQQQI ,1,1,1,1   

   NNNTNNNNT QQIQQQI ,0,1,1,1,1  , 

  0)( ,1,1,1,1,1,0  NNNNNTNN QQQQIQQ , 

  NTNN IQQ  ,1,0  

Observe that the elements NQ ,0 and NQ ,1 are uniformly bounded by 1. It will be necessary to 

prove that for any N x N matrix NA , we have  

  )()( ,0,0 NTNNNT AIQQAI  , 

  )()( ,1,1 NTNNNT AIQQAI       (1.10) 

The proof is contained in Kapoor (2003): 
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From 1.5, it follows that  

 NNNTN WIIv  ])([ 1       (1.11) 

Thus 0NEv  and considering (1.7) and (1.10) 

 ])[])([)( 1'
,

1
,

'   NNNNNTNvNN WIWIIvEv    



  ])()([ 1'1
,

  NNNNTN WIWII      (1.12) 

Please note that in general, the elements of 1)(  NN WI   will depend on the sample size of 

the cross-sectional units N. As a result, the elements of Nv  will depend on N and therefore 

form a triangular array. In general, the elements of )(, Nv  will depend on N. Additionally,  

the elements of Nv  are heteroskedastic, and spatially correlated, as well as correlated over 

time. In the following sections we explore the estimation strategies for the parameters of the 

model considered in (1.4), (1.5) and (1.6). 

 

3.0 Quasi-Maximum Likelihood Estimation 

Maximum likelihood (ML) estimation is a well-known parametric method of inference in 

statistics. It has been frequently been suggested as a way of estimating covariance parameters 

in spatial Gaussian processes. We follow quasi-maximum likelihood (ML) estimation 

approach used in Cliff and Ord (1973) and Kapoor (2003). 

 Remember our model in stacked form, from (1.4)-(1.6) 

  NNNN uvXy    

  NNNTN vWIv   )(  

  NNNTN Ie   )(  

Assuming N ~ ))(,0( , NuN     we have ))(,0(~ , NvN Nv     

  

Thus Ny ~ ))(,( ,  NuXN         (1.13) 

By substituting (1.7) and (1.8) into (1.12) we get 
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and hence  
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Given (1.7) and (1.8), then it follows that 

   NNN QQ ,1
2

1,0
21

,
       (1.16) 

thus from (1.12), 
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Assuming (1.15) the likelihood function for the model in (1.4)-(1.6) is given by 
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   (1.18) 

Substituting (1.15) and (1.17) into (1.19) and then taking the logs gives us the log likelihood 

function 

  |))(det(|ln
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  ])][)((  NNNNNN XyWIWI   

 

Equation (1.19) represents quasi-Maximum Likelihood estimators. The computation of quasi-

Maximum Likelihood estimators involves repeated evaluation of the determinant of the N ×N 

matrix NN WI  . In order to reduce the computational burden, Ord (1975) suggested 

that |det(|ln NN WI   in (1.19) be determined as |1ln(||det(|ln 1 i

N

iNN WI     

where i denotes the i-th eigenvalue of NW . Since NW  is a known matrix its eigenvalues 

have to be computed only once at the outset of the numerical optimization procedure 

employed in finding the quasi Maximum Likelihood estimates and not repeatedly at each of 

the necessary numerical iterations.  
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